## MATH 202 Complex Analysis

## Homework 3

## Due date: Due date: 28 December 2021 Tuesday Class Time

Show your work in reasonable detail. It is important that you explain your solution in a convincing way. I can but will not do mind reading!

1) Let $\phi_{N}$ be the stereographic projection of the Riemann sphere $S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2}+\right.$ $\left.x_{3}^{2}=1\right\}$ onto the complex plane $x_{3}=0,\left(z=x_{1}+i x_{2}\right)$. Let $M_{\theta}$ be the rotation of $S$ around the $x_{1}$-axis, where $-\pi<\theta \leq \pi$. Show that

$$
\phi_{N} \circ M_{\theta} \circ \phi_{N}^{-1}(z)= \begin{cases}\frac{z+i\left(\tan \frac{\theta}{2}\right)}{i\left(\tan \frac{\theta}{2}\right) z+1} & -\pi<\theta<\pi \\ \frac{1}{z} & \theta=\pi\end{cases}
$$

where the second stereographic projection is with respect to the new North pole of the sphere after the rotation by $\theta$.
2) Let $z_{1}, z_{2}, z_{3}, z_{4}$ be four distinct points in $\mathbb{C}$. Let $T(z)=\left(z, z_{2} ; z_{3}, z_{4}\right)$ be the cross-ratio morphism. For any $k \in \mathbb{C}$, can you find a Mobius transformation $w$ such that $w\left(z_{1}\right)=k, w\left(z_{2}\right)=-k, w\left(z_{3}\right)=1$, $w\left(z_{4}\right)=-1$ ? Can $k$ be equal to $i$ ?

For the next two questions consider Ptolemy's Theorem: A quadrilateral $A B C D$ is cyclic if and only if the sum of the products of the opposite sides equals the product of the diagonals. In other words, the points $A, B, C, D$ lie on a circle if and only if $A C \cdot B D=A B \cdot D C+A D \cdot B C$.

3) Prove Ptolemy's theorem using the fact that the cross-ratio of four complex numbers is real if and only if the points lie on a circle.
4) Let $C$ be a circle with center at $a \in \mathbb{C}$ and radius $R>0$. For any complex number $z$, let $z^{*}$ denote its symmetric point with respect to $C$. Prove Ptolemy's theorem using the fact that for any two complex numbers $z_{1}$ and $z_{2}$, neither being $a$, we have $\left|z_{1}^{*}-z_{2}^{*}\right|=\frac{R^{2}}{\left|z_{1}-a\right|\left|z_{2}-a\right|}\left|z_{1}-z_{2}\right|$.

