Due Date: 20 November 2021 Saturday Time: 10:00-12:30 Instructor: Ali Sinan Sertöz

NAME:
nt Univer STUDENT NO: \qquad

Math 202 Complex Analysis - Midterm Exam - Solution Key

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

[^0]Q-1) Calculate the principal value of $(1+i)^{i}$ and write the result in the rectangular form $a+i b$ where $a, b \in \mathbb{R}$. (Recall that "principal value" means that the argument of a complex number is to be considered between $-\pi$ and π.)

Solution:

Note that $i=e^{i \pi / 4}=\frac{(1+i)}{\sqrt{2}}$, so $(1+i)=\sqrt{2} e^{i \pi / 4}$.
Now $\log (1+i)^{i}=i \log (1+i)=i \log \left(\sqrt{2} e^{i \pi / 4}\right)=i(\ln \sqrt{2}+i \pi / 4)=i \ln \sqrt{2}-\pi / 4$.
Finally $(1+i)^{i}=\exp \left(\log \left[(1+i)^{i}\right]\right)=\exp (i \ln \sqrt{2}-\pi / 4)=\exp (i \ln \sqrt{2}) \exp (-\pi / 4)$.
Hence $(1+i)^{i}=e^{-\pi / 4} \cos \ln \sqrt{2}+i e^{-\pi / 4} \sin \ln \sqrt{2} \approx 0.42+0.15 i$.

Q-2) Let $D=\{z \in \mathbb{C} \mid 0 \leq \operatorname{Re} z \leq 2,0 \leq \operatorname{Im} z \leq 3\}$ and $f(z)=z^{2}$. Describe $f(D)$.

Solution:

Holomorphic functions preserve orienttion so the inside of D will be mapped to the inside of the image of the boundary of D. Therefore we map the boundary of D by z^{2}.

Note that $f(z)=z^{2}=\left(x^{2}-y^{2}\right)+i(2 x y)$, so

$$
u=x^{2}-y^{2}, \quad v=2 x y
$$

AB : Here $x=0,0 \leq y \leq 3$.
$u=-y^{2}, v=0$. Hence $-9 \leq u \leq 0$.
AB maps to $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$.
BC: Here $y=3,0 \leq x \leq 2$.
$u=x^{2}-9, v=6 x$, so $v=6 \sqrt{u+9}$ and $-9 \leq u \leq-5$.
BC maps to $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$.
CE: Here $x=2,0 \leq y \leq 3$.
$u=4-y^{2}, v=4 y$, so $v=4 \sqrt{4-u}$ and $-5 \leq u \leq 4$.
CE maps to C'E'.
EA: Here $y=0,0 \leq x \leq 2$.
$u=x^{2}, v=0$ and $0 \leq u \leq 4$.
EA maps to E'A'.
Coordinates of these significant points are as follows.

$$
A^{\prime}=(0,0), \quad B^{\prime}=(-9,0), \quad C^{\prime}=(-5,12), \quad E^{\prime}=(4,0)
$$

Q-3) Evaluate

$$
\frac{1}{2 \pi i} \int_{|z|=2} \frac{z^{1 / 3}}{z^{2}+1} d z
$$

where the cube root is taken using the principal value.

Solution:

First observe that $i=\exp (i \pi / 2)$, hence $i^{1 / 3}=\exp (i \pi / 6)=\frac{\sqrt{3}}{2}+i \frac{1}{2}$.
And also $-i=\exp (-i \pi / 2)$ and $(-i)^{1 / 3}=\exp (-i \pi / 6)=\frac{\sqrt{3}}{2}-i \frac{1}{2}$.
Now define $g(z)=\frac{z^{1 / 3}}{z+i}$ and $h(z)=\frac{z^{1 / 3}}{z-i}$. Observe that we can write

$$
\frac{z^{1 / 3}}{z^{2}+1}=\frac{g(z)}{z-i}=\frac{h(z)}{z+i}
$$

Hence

$$
\operatorname{Res}\left(\frac{z^{1 / 3}}{z^{2}+1}, z=i\right)=g(i)=\frac{1}{4}-i \frac{\sqrt{3}}{4},
$$

and

$$
\operatorname{Res}\left(\frac{z^{1 / 3}}{z^{2}+1}, z=-i\right)=h(-i)=\frac{1}{4}+i \frac{\sqrt{3}}{4} .
$$

Finally

$$
\frac{1}{2 \pi i} \int_{|z|=2} \frac{z^{1 / 3}}{z^{2}+1} d z=g(i)+h(-i)=\frac{1}{2}
$$

Q-4) For any positive integer $n>1$ define the function

$$
f(n)=\frac{1}{2 \pi i} \int_{|z|=n} \frac{z^{2 n-1}}{\left(z^{2}-1\right)\left(z^{2}-2\right) \cdots\left(z^{2}-n\right)} d z
$$

Evaluate $f(n), n=2,3, \ldots$

Solution:

Let $\phi_{n}(z)=\frac{z^{2 n-1}}{\left(z^{2}-1\right)\left(z^{2}-2\right) \cdots\left(z^{2}-n\right)}$.
Then $\phi_{n}\left(\frac{1}{w}\right) \frac{1}{w^{2}}=\frac{1}{w} \alpha_{n}(w)$, where $\alpha_{n}(w)=\frac{1}{\left(1-w^{2}\right)\left(1-2 w^{2}\right) \cdots\left(1-n w^{2}\right)}$.
Notice that $\alpha_{n}(w)$ is analytic around $w=0$ and $\alpha(0)=1$.
Now since all the poles of $f(n)$ are inside the given disk, we can write, after substituting $z=1 / w$

$$
f(n)=\frac{1}{2 \pi i} \int_{|w|=\frac{1}{n}} \phi_{n}\left(\frac{1}{w}\right) \frac{1}{w^{2}} d w=\frac{1}{2 \pi i} \int_{|w|=\frac{1}{n}} \frac{\alpha_{n}(w)}{w} d w=\alpha_{n}(0)=1 .
$$

For fun you may consider the following.
Let $F(z, n)=\frac{z^{2 n-1}}{\left(z^{2}-1\right)\left(z^{2}-2\right) \cdots\left(z^{2}-n\right)}, n>1$. This function has simple poles at $\pm \sqrt{m}$ for $m=$ $1, \ldots, n$. By direct calculation we find that

$$
\operatorname{Res}(F(z, n), z= \pm \sqrt{m})=\frac{1}{2} \frac{m^{n-1}}{\prod_{\substack{k=1 \\ k \neq m}}^{n}(m-k)} .
$$

Since the above $f(n)$ is equal to the sum of all its residues, we find that

$$
f(n)=\sum_{m=1}^{n} \frac{m^{n-1}}{\prod_{\substack{k=1 \\ k \neq m}}^{n}(m-k)} .
$$

Now the above calculation using the residue at infinity shows that this incredible sum is always equal to 1 .
Try it!
For example when $n=5$, we have

$$
f(5)=\frac{1}{24}+\frac{-8}{3}+\frac{81}{4}+\frac{-128}{3}+\frac{625}{24}=1 .
$$

Q-5) Let f be a meromorphic function in a simply connected region D with no zeros and finitely many poles. Let C be a simple closed contour in D enclosing all poles of f. Calculate

$$
\frac{1}{2 \pi i} \int_{C} \frac{f^{\prime}(z)}{f(z)} d z
$$

Solution:

Without loss of generality we can assume that f has only one pole, say at z_{0} of order m. We can write

$$
\begin{aligned}
f(z) & =\frac{b_{m}}{\left(z-z_{0}\right)^{m}}+\cdots+\frac{b_{1}}{z-z_{0}}+a_{0}+a_{1}\left(z-z_{0}\right)+\cdots, b_{m} \neq 0 \\
& =\frac{1}{\left(z-z_{0}\right)^{m}}\left(b_{m}+b_{m-1}\left(z-z_{0}\right)+\cdots\right) \\
& =\frac{1}{\left(z-z_{0}\right)^{m}} \phi(z),
\end{aligned}
$$

where we observe that $\phi(z)$ is analytic around z_{0} and $\phi\left(z_{0}\right)=b_{m} \neq 0$.
Then

$$
f^{\prime}(z)=\frac{-m}{\left(z-z_{0}\right)^{m+1}} \phi(z)+\frac{1}{\left(z-z_{0}\right)^{m}} \phi^{\prime}(z)
$$

and

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{-m}{z-z_{0}}+\frac{\phi^{\prime}(z)}{\phi(z)} .
$$

Since ϕ^{\prime} / ϕ is analytic inside C, its integral is zero. We get

$$
\frac{1}{2 \pi i} \int_{C} \frac{f^{\prime}(z)}{f(z)} d z=\frac{1}{2 \pi i} \int_{C}\left[\frac{-m}{z-z_{0}}+\frac{\phi^{\prime}(z)}{\phi(z)}\right] d z=\frac{1}{2 \pi i} \int_{C} \frac{-m}{z-z_{0}} d z=-m
$$

If we have more than one pole, we repeat the above calculation around each pole and as a result of this the value of the integral in the question becomes the negative sum of the orders of all poles inside C.

[^0]: "At every district there will be a geometer, and we will give away triangles to all."

