\(a) f(t) = \Re \left[F e^{\sigma_t} \right] \\
= \Re \left[F e^{\sigma t} + i \omega t \right] = \Re \left[F e^{i \omega t} \right] \\
= e^{\sigma t} \left\{ \Re [F] \cos(\omega t) - \Im [F] \sin(\omega t) \right\}

\(i) f(t) = \cos \left(2\omega t + \frac{\pi}{2} \right) = \Re \left[e^{i \frac{\pi}{2}} e^{2i\omega t} \right] \\
\sigma = 0 \quad F = e^{i \frac{\pi}{2}} \rightarrow \text{phasor} \\
\omega = 10 \quad s = i \cdot 10 \rightarrow \text{complex frequency}

\(ii) f(t) = 2e^{-t} \sin(3t) = e^{-t} \Re \left[2 e^{-i \frac{\pi}{2}} e^{3i\omega t} \right] \\
\sigma = -1 \quad F = 2e^{-i \frac{\pi}{2}} \rightarrow \text{phasor} \\
\omega = 5 \quad s = -1 + 5i \rightarrow \text{complex frequency}

\(iii) f(t) = 4e^{-2t} = e^{-2t} \Re \left[4 e^{i \omega t} \right] \\
\sigma = -2 \quad F = 4 \rightarrow \text{phasor} \\
\omega = 0 \quad s = -2 \rightarrow \text{complex frequency}
b) If \(f(t) \) has more than one frequency component, then it won't have a phasor representation. For example, if \(f(t) = (\cos t) + (\cos 2t) \) then \(f(t) \) can't be represented by \(\text{Re} \left[F \cdot e^{jt} \right] \) where \(F \) is independent of \(t \). Such functions have more than one complex frequency and as a result they don't have a phasor \(F \) which is independent of \(t \). For \(f(t) = (\cos t) + (\cos 2t) \),

\[
f(t) = (\cos t) + (\cos 2t) = \text{Re} \left[e^{jt} + e^{j2t} \right]
\]
e\(jt \) and \(e^{j2t} \) can't be represented by \(F = \text{Re} \left[e^{j\omega t} \right] \) where \(F \) is independent of \(t \).

\[
e^{jt} + e^{j2t} = e^{jt} \left[1 + e^{j\pi t} \right]
\]

We don't have a \(F \) independent of \(t \).
If \(f(z) \) and \(f'(z) \) are analytic within and on \(C \), \(z_0 \) is not on \(C \). There are two cases:

1. \(z_0 \) is in \(C \)
2. \(z_0 \) is outside \(C \)

For case 1. If \(\frac{f'(z)}{z-z_0} \) is analytic on \(C \),

\[
\oint_C \frac{f'(z)}{z-z_0} \, dz = z_0 \cdot \pi \cdot i \cdot f'(z_0)
\]

Cauchy Integral Formula

for \(z_0 \) is outside \(C \),

\[
\frac{f''(z)}{z-z_0} \quad \text{and} \quad \frac{f'(z)}{(z-z_0)^2}
\]

are analytic within and on \(C \).

Since \(C \) is a simple closed contour, we have:

\[
\oint_C \frac{f''(z)}{z-z_0} \, dz = \oint_C \frac{f'(z)}{(z-z_0)^2} \, dz = 0
\]

So, \(\oint_C \frac{f''(z)}{z-z_0} \, dz \) and \(\oint_C \frac{f'(z)}{(z-z_0)^2} \, dz \)

are always equal under given conditions.
\[z_n = (z - i) + i \cdot \frac{(-i)\sqrt{n}}{n^2} = x_n + i \cdot y_n \]

\[x_n = -z \quad y_n = \frac{(-i)\sqrt{n}}{n^2} \]

\[\lim_{n \to \infty} z_n = \lim_{n \to \infty} x_n + i \cdot \lim_{n \to \infty} y_n \]

\[\lim_{n \to \infty} x_n = -z \quad \lim_{n \to \infty} y_n = \lim_{n \to \infty} \frac{-i\sqrt{n}}{n^2} = 0 \]

So, \(\lim_{n \to \infty} z_n = -z + i \cdot 0 = -z \)

We will also show that \(z_n \) converges to \(-z \) by using the definition of limit.

If \(z_n \) converges to \((-2) \), then for every positive number \(\varepsilon \), there should exist a positive integer \(N \) such that

\[|z_n - (-2)| < \varepsilon \quad \text{whenever} \quad n > N_0. \]

\[|z_n - (-2)| = \left| i \cdot \frac{-i\sqrt{n}}{n^2} \right| = \frac{1}{\sqrt{n}} \]

\[|z_n - (-2)| < \varepsilon \quad \Rightarrow \quad \frac{1}{\sqrt{n}} < \varepsilon \quad \Rightarrow \quad n > \frac{1}{\varepsilon^2} \]

So if we choose \(N_0 \) as the biggest integer which is smaller than or equal to \(\frac{1}{\varepsilon^2} \), the desired condition is satisfied.

This means that we can find a \(N_0 \) for every positive \(\varepsilon \) value. This concludes the proof.

\[\lim_{n \to \infty} z = -2. \]
\[
\frac{1}{4z - 2z^2} = \frac{1}{4z} \cdot \frac{1}{1 - \frac{z}{4}}
\]

\[
\frac{1}{z - \frac{z}{4}} = \sum_{n=0}^{\infty} \left(\frac{z}{4} \right)^n \quad \text{when} \quad \left| \frac{z}{4} \right| < 1.
\]

So when \(|z| < 4 \),

\[
\frac{1}{4z - 2z^2} = \frac{1}{4z} \cdot \frac{1}{1 - \frac{z}{4}}
\]

is singular at \(z = 0 \).

So when \(0 < |z| < 4 \),

\[
\frac{1}{4z - 2z^2} = \frac{1}{4z} \cdot \sum_{n=0}^{\infty} \left(\frac{z}{4} \right)^n = \sum_{n=0}^{\infty} \frac{z^n}{4^{n+1}}
\]

\[
= \sum_{n=-1}^{\infty} \frac{z^n}{4^{n+2}} = \frac{1}{4z} + \sum_{n=0}^{\infty} \frac{z^n}{4^{n+2}}
\]
5) Since \(f(z) \) is entire, it satisfies Cauchy's inequality for every \(z \) and \(R \) value. We should find \(M_R \) on \(C: z = z_0 + R \cdot e^{i\theta} \), \(-\pi < \theta < \pi\)

\[
\left| f(z) \right| \leq A \cdot |z|^2 \leq A \cdot (|z_0| + R)^2
\]

\[
M_R
\]

So for every \(z \) and \(R \) value

\[
\left| f^{(n)}(z_0) \right| \leq \frac{n! \cdot A \cdot (|z_0| + R)^2}{R^n}
\]

for \(n = 1, 2, 3, \ldots \)

If we let \(R \to \infty \), \(\left| f^{(n)}(z_0) \right| \leq 0 \) for every \(z \) value.

This means that \(f^{(n)}(z_0) = 0 \) for every \(z \) value.

So \(f^{(n)}(z) = 0 \), \(\to f(z) = c \to \text{constant} \)

\[
f^{(2)}(z) = c \cdot z + d \to \text{constant}
\]
\[f^{(21)}(z_0) \leq \frac{2A \left(12z_0 + R \right)^2}{R^2} \]

We also know \(f^{(21)}(z) = c\cdot z + d \).

If we let \(z_0 = 0 \), we get:

\[\left| f^{(21)}(0) \right| = |d| \leq \frac{2A \cdot R^2}{R^2} \]

for every possible \(R \) value.

If we let \(R \to 0 \), we get:

\[\lim_{R \to 0} |d| \leq 0 \]

\[d = 0 \]

\[f^{(21)}(z) = c \cdot z \]

\[f^{(31)}(z_0) \leq \frac{A \left(12z_0 + R \right)^2}{R} \]

If we let \(z_0 = 0 \), we get:

\[\left| f^{(31)}(0) \right| = |e| \leq A \cdot R^2 \]

for every possible \(R \) value.

If we let \(R \to 0 \), we get:

\[\lim_{R \to 0} |e| \leq 0 \]

\[e = 0 \]

\[f^{(41)}(z) = \frac{c}{2} \cdot z^2 \]

\[f^{(42)}(z) = \frac{c}{6} \cdot z^3 + b \rightarrow \text{constant} \]

\[f(0) = b \quad \text{We know} \quad |f(z)| \leq A \cdot |z|^2 \]
\[f(x) = \frac{1}{3}x^3 \]

So

\[f(0) = \frac{1}{3}a \]

Where \(a \) and \(b \) are constants.