Date: November 26, 2008, Wednesday NAME:......

Time: 17:30-19:30 Altıntaş & Sertöz

STUDENT NO:

Math 206 Complex Calculus – Midterm Exam II – Solutions

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 4 questions on your exam booklet. Write your name on the top of every page. A correct answer without proper reasoning may not get any credit.

Q-1) Evaluate

$$\int_C \frac{\cot z}{z^2} \ dz$$

where C is the circle |z| = 3 described in the positive sense.

Solution: The only singularity of the integrand in the given domain is z = 0. If $\cot z = \cdots + a_1 z + \cdots$, then the residue of $\frac{\cot z}{z^2}$ at z = 0 is a_1 . The easiest way to obtain a_1 is to divide the series of $\cos z$ by that of $\sin z$. We then find that

$$\cot z = z^{-1} - \frac{1}{3}z - \frac{1}{45}z^3 - \frac{2}{945}z^5 + \cdots$$

and this gives $a_1 = -1/3$. Hence the value of the integral is $-2\pi i/3$ from the residue theorem.

Q-2) Let

$$f(a) = \int_C \frac{e^{az}}{1 + e^z} dz$$

where C is the rectangular contour shown in the figure below and a is a complex variable.

- (i): Calculate f(1)
- (ii): Calculate f(1/4).

C is the rectangle, traversed in the positive direction, with corners at the points 2π , $2\pi + 2\pi i$, $-2\pi + 2\pi i$ and -2π .

Solution: The only singularity of the integrand in the given region is $z = \pi i$. By the residue theorem $f(a) = 2\pi i e^{(a-1)\pi i}$. Hence

$$f(1) = 2\pi i$$
, $f(1/4) = 2\pi i(-1/\sqrt{2} - i/\sqrt{2}) = \sqrt{2}\pi(1-i)$.

Q-3) Calculate the integral
$$\int_{|z|=2} \frac{z^{18}}{z^{19}-1} dz$$
.

Solution: Let $g(z) = \frac{z^{18}}{z^{19} - 1}$. There are 19 singularities of the integrand in the given region. By the residue theorem the value of the integral is $2\pi i$ times the sum of all these 19 residues. But the sum of all the residues is also equal to the residue at zero of $\frac{1}{z^2}g(1/z) = \frac{1}{z}\frac{1}{1-z^{19}}$, which is easily seen to be 1. Hence the value of the integral is $2\pi i$.

Q-4) Represent the function $f(z) = \frac{z}{(z-1)(z-3)}$ by its Laurent series in the domain 0 < |z-1| < 2.

Solution:

$$\frac{z}{(z-1)(z-3)} = \frac{(z-1)+1}{(z-1)((z-1)-2)}$$

$$= -\frac{1}{2} \frac{(z-1)+1}{(z-1)(1-\frac{(z-1)}{2})}$$

$$= -\frac{1}{2} \left(1 + \frac{1}{z-1}\right) \left(1 + \frac{z-1}{2} + \dots + \frac{(z-1)^n}{2^n} + \dots\right)$$

$$= -\frac{1}{2} \left[\left(1 + \frac{z-1}{2} + \dots + \frac{(z-1)^n}{2^n} + \dots\right) + \left(\frac{1}{z-1} + \frac{1}{2} + \frac{z-1}{4} + \dots + \frac{(z-1)^n}{2^{n+1}} + \dots\right)\right]$$

$$= -\frac{1}{2} \left[\frac{1}{z-1} + \frac{3}{2} + \frac{3(z-1)}{4} + \dots + \frac{3(z-1)^n}{2^{n+1}} + \dots\right]$$

$$= -\frac{1}{2(z-1)} - \frac{3}{4} - \frac{3(z-1)}{8} - \dots - \frac{3(z-1)^n}{2^{n+2}} + \dots$$

Please send comments to sertoz@bilkent.edu.tr