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1) Give an example of a function f : R2 → R such that fx and fy exist
everywhere on R2 but the function f itself is not differentiable at (0, 0).
Prove however that if you further assume that fx and fy are continuous
at the origin, then f has to be differentiable there.

Solution: Such an example is given in Example 2 on page 291. The proof
that continuity of the partials implying differentiability is the content of The-
orem 6.9 on page 292.

2) Let f : R3 → R be a C2 function. Let a, b and c be points in R3 and
define H(x) = ( ∂2f

∂xi∂xj
(x))1≤i,j≤3 for x ∈ R3. We have the following data:

∇f(a) = 0, ∇f(b) = 0, ∇f(c) = 0 and

H(a) =



−1 0 0

0 −13 5
0 5 −2


 , H(b) =




1 0 0
0 1 0
0 0 −2


 , H(c) =




3 2 1
2 3 0
1 0 1


 .

With this much information can you decide which of these points a, b
and c are min/max or saddle points for f? If so, classify these points
accordingly.

Solution: The criteria to make such decisions is given in Theorem 6.22
on page 321. For the matrix H = (hij)1≤i,j≤3 define H1 = h11, H2 =
h11h22 − h12h21 and H3 = det(H).
For the first matrix we have H1 = −1, H2 = 13, H3 = −1. Then this is
a negative definite matrix and satisfies part (ii) of Theorem 6.22. Thus the
point a gives local maximum for f .
The second matrix clearly satisfies the condition (iii) of this theorem so the
point b gives a saddle point.
For the third matrix H1 = 3, H2 = 5, H3 = 2. This is then a positive definite
matrix and satisfies condition (i) of the theorem and thus c gives a local
minimum point for f .

3) Consider the functions f : R3 → R2 and g : R2 → R3 given by
f(u, v, w) = (u3 + v2 + 2u + 2v + w, u7 + v6 + w8 + u + 2v − w),
g(x, y) = (x5 +xy + y3 +x+2y, x5y7 + y7 +3x+4y, x21 + y30 +3x+2y).
Calculate D(f ◦ g)(0, 0).

Solution: Note that g(0, 0) = (0, 0, 0). Let f = (f1, f2) and g = (g1, g2, g3).



Then

Df(0, 0, 0) =




∂f1

∂u
(0, 0, 0) ∂f1

∂v
(0, 0, 0) ∂f1

∂w
(0, 0, 0)

∂f2

∂u
(0, 0, 0) ∂f2

∂v
(0, 0, 0) ∂f2

∂w
(0, 0, 0)




=

(
2 2 1
1 2 −1

)
= A

and

Dg(0, 0) =




∂g1

∂x
(0, 0) ∂g1

∂y
(0, 0)

∂g2

∂x
(0, 0) ∂g2

∂y
(0, 0)

∂g3

∂x
(0, 0) ∂g3

∂y
(0, 0)




=




1 2
3 4
3 2


 = B.

Now D(f ◦ g)(0, 0) = AB =

(
11 14
4 8

)
.

The theory behind this is in Theorem 6.13 on page 298.

4) Let F (y) =
∫∞

0
e−x2y2

dx, y ∈ [1, 100]. Calculate F ′(1) and justify your
answer.
(You may want to be reminded that

∫∞
0

e−t2dt =
√

π/2)

Solution: First assume that F ′(y) converges uniformly on [1, 100]. Then we
can apply Theorem 6.6 on page 284 and differentiate under the integral sign:

F ′(1) =
∫∞
0

(−2yx2e−x2y2
)|y=1dx

= −2
∫∞
0

x2e−x2
dx

= xe−x2|x=∞
x=0 − ∫∞

0
e−x2

dx

= −
√

π
2

,

where we used integration by parts with u = x and dv = xe−x2
dx for inte-

gration and used the hint in the last line.
Now for the justification observe that when y ∈ [1, 100],
| − 2yx2e−x2y2| = 2|yx2| |e−x2y2| ≤ 2|100x2| |e−x2| = 200x2e−x2

And this
function is improperly integrable on [0,∞) as we showed above. Thus by
Weierstrass M-Test, on page 283, the integral F ′(y) converges uniformly.
This satisfies the main requirement of Theorem 6.6 on page 284 and differ-
entiation under the integral sign is justified.



5) Prove that there exist functions u(x, y), v(x, y) and w(x, y) and r > 0
such that u, v, w are continuously differentiable and satisfy the equations

u5 + xv2 − y + w = 0

v5 + yu2 − x + w = 0

w4 + y5 − x4 = 1

on Br(1, 1), and u(1, 1) = 1, v(1, 1) = 1, w(1, 1) = −1.

Solution: This is Exercise 5 on page 318, and I solved it in detail in class.
Here we basically use the Implicit Function Theorem on page 315.


