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Math 302 Complex Calculus II - Homework — Solution
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Please do not write anything inside the above boxes!

Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any
credit.

Q-6) Find a formula for F(g), where n is a positive integer.

Solution:
Using the recursive formula I'(z + 1) = 2I'(z) and induction, it can be easily shown that

2k+1)_1~3~--(2k—1)
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I( VT,

and

where £ is a non-negative integer.



Q-7) Prove in detail and in your own words that

n— 00 n

n t n
I'(z) = lim / =1 <1 — —) dt, for Rez> 0.
0

Solution:

Fix a complex number 2 = x + 1y such that Rez = 2 > 0.

/ et dt

integral for the Gamma function converges for z > 0.

Choose any € > 0/

Choose an integer /Ny such that for all n > Ny, < €/2. This is possible since the

Choose an integer N, such that for all n > Ns, 231“(1' +2) <e¢/2.
n

In the following calculations, we take n > N = max{Ny, No} and 0 < t < n.

~t/7 we find

t t?
0<e®/m—[(1—-=)<—.
= ( n)_2n2

For a > b > 0, we recall that a™ — b" = (a — b)(a" ' +a"2b+--- + 0" ') < (a — b)na™'. Using
this with a = e™*/™ and b = (1 — t/n) together with the above inequality, we find

n —t42 —t42
0<et— (1 _ 3) < et — (1 _ 3)]ne(—t)+(t/n> <

n n - 2n — 2n
Finally, we have
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= QnF(m +2)+¢/2

< €/24¢€/2 +¢,

From the Taylor expansion of e

dt + / et qt

which proves that
n t n
['(z) = lim =1 <1 — —) dt, for Rez> 0.
0 n

n—oo
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Q-8) Prove in detail and in your own words that Z — diverges.

p prime
Solution: We have the identity

1
((z) = for Rez> 1.

1
Hp:pm'me (1 o p_Z)

We also know that: If Z 2x, and Z |21|? converge, then H(l + z1,) converges. (This is an exercise

k=1 k=1 k=1
from the book, and also was a midterm exam question.)

1
Since ((z) becomes infinite as z approaches 1, the infinite product H <1 — —> diverges to zero.
pZ

p:prime
Take z; as —1 times the k-th prime.

Since the infinite product diverges and Y |2;|? converges, we must have Y 2, diverge according to
the above fact.

1
This proves that Z — diverges.

p prime



