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Math 302 Complex Analysis II - Midterm Exam 1 — Solutions

1 2 3 4 5 TOTAL

20 20 20 20 20 100

Please do not write anything inside the above boxes!

Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your
work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Use the following at your own risk.
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Q-1) Demonstrate the use of residue theory to find the value of the sum Z

Solution:

STUDENT NO:
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From the theory of utilizing residue theory to infinite sums, we know that
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to evaluation as follows:
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Putting these into the above formula, we find

Finally we have
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It remains to calculate these residues. Since cot(7z) is analytic at +-2i, the residue calculation reduces

= —.7854036418...,

= —.7854036418....
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Q-2) For a real number « let L(«) be the line z(t) = o + it where ¢ € R. Evaluate the integral

for all possible values of a.

Solution:

If o = 5, the integral is not defined since the integrand has a pole along the path.

Let < 5. Let I be the line L(«) for —R < ¢t < R, and let C'r be the semicircle of radius R and
centered at the point « on the real line, extending towards the right hand side. Choose R large enough
so that the pole z = 5 is inside the closed contour [/ + Ck, traversed counterclockwise. Then
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—1
= 2%25
~ —0.042s.

We further claim that the integral on C'r vanishes as R goes to infinity.For thsi note that for |z — o =
R, we have

e ? < e
(z—=5)2| ~ (R+5—a)?
and hence
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This shows that
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It is now clear that if o > 5, then the integrand is analytic inside the closed contour /r + Cg, and
hence the integral is zero. The integral on C'r again vanishes as R goes to infinity.

Thus we find that .
. _% if a < 5,
/ 6—2 dz = < does not exists if o« = 5,
L(c) (2 —5) i
0 ifa > 5.
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Q-3) Classify all the automorphisms f of the unit disk with f(0) = 0 and f’(0) > 0.

Solution:

All automorphisms of the unit disk are of the form

[(z) =" (12—_5?;)

for some real number ¢ and where clearly «, with |a| < 1, is such that f(«) = 0. In our case o = 0,
so the automorphism becomes

f(z) = ez

But now f'(z) = ¢% and since f'(0) > 0, we must have e = 1, forcing f(z) = 2.

Hence the only such automorphism of the unit disk is the identity.
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Q-4) Let R be an open, non-empty subset of the complex plane. Assume that there exists a conformal
mapping f of R onto the unit disk U. Choose any z, € R. Prove or disprove that there exists a
conformal mapping g from R onto U such that g(z) = 0 and ¢'(zo) > 0.

Solution:
We prove the statement.

Let
o (1) = I
g (1—mf<z>)

for some real 6. Here g is obtained by composing f with an automorphism of the unit disk sending
f(20) to zero.

We calculate and find that P 0
zo)e
g,<20) = ( 0) 2°
1 - ‘f (Zo)|

To make ¢'(z) > 0, all we need to do is to choose § = — Arg f’(z).
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Q-5) Let H be the upper half plane. Suppose that we have a function f analytic on H and continuous
on H, where H denotes the closure of H. Assume further that |f(z)| is bounded on H. Let
M = sup{|f(2)| | = € R}

Prove or disprove that |f(z)| < M forall z € H.
Solution:
We prove the statement.
If f is constant, there is nothing to prove. Assume then that f is not constant and hence M > 0.

Dividing f by M if necessary, we may assume without loss of generality that M/ = 1. Assume that
K is an upper bound for |f(z)| for z € H.

Fix any zo € H. We claim that | f(zo)| < 1.

For this purpose, consider the function

f"(2)

hz) =2,

where 7 is a positive integer to be determined later. Clearly |h(z)| < 1 for all real z. Moreover for
all z € H with |z| = R > 1, we have |h(z)] < K"/(R — 1). Choose R large enough such that
K"/(R—1) < 1and R > |z]|. Consider the set

Dr={z€ H||z| < R}.

We showed above that |h(z)| < 1 on the boundary of Dg, so by maximum modulus principle,
|h(z0)] < 1.

Hence for each zy € H, we have

f"(20)

Zo—f—i

[h(z0)] = <1 oor [f(z0)] < [z0 '™

Taking n large enough, we can get
|f(20)] <1 forall z, € H,

which proves the claim and finishes the solution of the problem.



