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Math 302 Complex Analysis II – Midterm Exam 2 – Solutions
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Please do not write anything inside the above boxes!

Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your
work in reasonable detail. A correct answer without proper reasoning may not get any credit.

Q-1) Show that every non-constant meromorphic function on C is the ratio of two entire functions.

Solution: (This is solved in class.)

Let ϕ(z) be a meromorphic function whose poles are λ1, λ2, . . . repeated according to order. In other
words, if z0 is a pole of order 3, then z0, z0, z0 is in the list. If the set of poles is finite, say λ1, . . . , λn,
then consider the entire function f(z) = (z − λ1) · · · (z − λn).

If the set of poles is infinite, since ϕ is non-constant, the set of poles has no accumulation point and
hence diverges to infinity. According to Weierstrass Theorem (Theorem 17.7 on page 219, Second
Edition) there is an entire function f vanishing exactly at the points λ1, λ2, . . . .

Now that we have an entire function f vanishing on the poles of ϕ to multiplicity equal to the order of
the pole, the function g(z) = f(z)ϕ(z) is an entire function vanishing on the zeros of ϕ to the same
order as ϕ.

Then ϕ(z) =
g(z)

f(z)
as claimed.
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Q-2) Show that if
∞∑
k=1

zk and
∞∑
k=1

|zk|2 converge, then
∞∏
k=1

(1 + zk) converges.

Solution: (This is Exercise 3 on page 226, solution on page 286, Second Edition.)

The main result we use from complex analysis is that the convergence of
∞∏
k=1

(1 + zk) is equivalent

to the convergence of
∞∑
k=1

log(1 + zk). Therefore we will try to show the convergence of this infinite

sum.

Since
∞∑
k=1

zk converges, |zk| ≤ 1/2 for all large k. So for all large k we have

| log(1 + zk)− zk| = | − z2k
2

− z3k
3

− · · · |

≤ |zk|2
(
1

2
+

|zk|
3

+ · · ·
)

≤ |zk|2
(
1

2
+

1

2 · 3
+

1

22 · 4
+ · · ·

)
< |zk|2

(
1

2
+

1

22
+ · · ·

)
= |zk|2.

By direct comparison from Calculus,
∞∑
k=1

(log(1 + zk) − zk) converges absolutely, since
∞∑
k=1

|zk|2

converges.

Finally, as the difference of two convergent series

∞∑
k=1

log(1 + zk) =
∞∑
k=1

(log(1 + zk)− zk)−
∞∑
k=1

zk

converges, which is what we wanted to show.
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Q-3) Show that f(z) =
∞∏
k=0

(
2(k − z) + 1

2k + 1

)
e(2z)/(2k+1) is an entire function and determine all the solu-

tions of f(z) = 0.

Solution: (The solution is given in the Note immediately after Weierstrass Theorem on page 219.)

Let λk = k +
1

2
. Then we observe that

∞∑
k=0

1

λk

diverges but
∞∑
k=0

1

λ2
k

converges. So we can use

Ek(z) = exp

(
z

k + 1/2

)
, for k = 0, 1, . . .

can be used as the convergence factor in Weierstrass product. Hence

f(z) =
∞∏
k=0

(
1− z

λk

)
Ek(z) =

∞∏
k=0

(
2k − 1− 2z

2k + 1

)
e(2z)/(2k+1)

is an entire function whose zero set is precisely the set of all λk for k ≥ 0.
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Q-4) Find a function f(x, y) which is harmonic on D = {z ∈ C | |z| < 1} and continuous on D̄ =
{z ∈ C | |z| ≤ 1} such that f(x, y) = x3 + x on ∂D = {z ∈ C | |z| = 1}.

Solution: (This is a simplified version of Example i on page 207.)

Let u be the real part of z3. Then u = x3 − 3xy2 and is harmonic everywhere. Restricting u to ∂D
we find u|∂D = 4x3 − 3x. We try to make this equal to f .

f(x, y)|∂D = x3 + x =
1

4
u|∂D +

7

4
x.

So we set
f(x, y) =

1

4
u+

7

4
x =

1

4
x3 − 3

4
xy2 +

7

4
x.
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Q-5) Show that
∞∑
n=0

zn! diverges at every point on the unit circle |z| = 1.

Postmortem note: The problem was intended to ask to show that |z| = 1 is a natural boundary. With
the given wording, the problem became totally trivial. I will accept the trivial solution! What follows
is the solution to the intended question.

Solution: (This is solved in class. It also follows directly from the statement of Theorem 18.5 on
page 231.)

Let ω be a k-th root of unity. Then ωn! = 1 for every n ≥ k, so the infinite sum consists of infinitely
many ones and diverges. Since the k-th roots of unity for k = 1, 2, . . . are dense on the unit circle, the
series cannot be analytic on any open set containing any arc of the circle. Hence |z| = 1 is a natural
boundary for the series.

Also note that from Theorem 18.5, nk = k! and lim inf
k→∞

nk+1

nk

= ∞ > 1, so the series has its circle of

convergence as a natural boundary. The circle of convergence, from Calculus, is R = 1.


