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Please do not write anything inside the above boxes!

Check that there are 2 questions on your booklet. Write your name on top of every page. Show your work in
reasonable detail. A correct answer without proper or too much reasoning may not get any credit.
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Q-1) Show that ee
z

<< 1 throughout the boundary of the region

D = {x+ iy | − π

2
< y <

π

2
}.

Show that it is the “smallest” such analytic function.

This is Exercise 3 of your textbook at the end of the chapter on Maximum-Modulus Theorems.
(page 199 on 2nd edition, page 223 on 3rd edition.)

Explain what the problem is asking for. Give your solution in detail. There is a clue given at the
back of the book which does not count as a solution!

Solution: Since ez maps the boundary of D onto the imaginary axis, α(z) = ee
z has modulus 1 on

the boundary of D.

Note that α(log z) = ez and is unbounded on D.

Let f(z) be a function“smaller” that α(z) on D, in the sense that for all ϵ > 0 there exists a constant
Aϵ such that |f(z)| ≤ Aϵ|eϵe

z | for z ∈ D, then |f(log z)| ≤ Aϵe
ϵ|z|.

It follows that f(z) is bounded on ∂D as well as on D, by Phragmén-Lindelöf theorem.

Consider the collection of all functions F analytic on D̄, satisfying the condition that F (z) is bounded
on ∂D but F (log z) is unbounded in D. Then in the above sense, α(z) = ee

z is the “smallest” function
of this collection.



NAME: STUDENT NO:

Q-2) We proved the following theorem: If f is a non-constant entire function, there exists a curve along
which f approaches infinity.

(i) Explain why Liouville’s theorem does not immediately guarantee the existence of such a curve.
Does there exist a non-constant entire function f and a path γ such that f does not go to infinity
along γ even though γ(t) → ∞ as t → ∞? If yes, give an example, if no, explain why.

(ii) In the proof of the above theorem we explicitly used the polygonally connectedness of certain
open sets which were connected components of some crucially defines sets. Prove that these sets
were actually polygonally connected. (i.e., using the notation of the book, show that each Sk is
polygonally connected.)

Solution:

(i) Liouville’s theorem assures the existence of a sequence z1, z2, . . . of complex numbers converging
to infinity such that the sequence f(z1), f(z2), . . . , converges to infinity. But the points zk may be
connected by a path such that f along that path need not converge to infinity. Here is an example.

Define f(z) = z sin2(πz/2). Let zk = 2k + 1 and take the real line as the path γ joining them. Then
clearly f(k) = 2k + 1 and goes to infinity as k goes to infinity but each wk = 2k is also on the curve
γ with wk < zk < wk+1 and f(wk) = 0, so f(z) does not converge to infinity along γ.

(ii) Let S be an open and connected set. Fix a point p ∈ S. Let A be the set of points in S which can
be polygonally connected to p. A is clearly not empty since p ∈ A. Moreover A is clearly open since
if q ∈ A, then there is an open ball U around q totally lying in S, since S is open. But all the points
in this ball can be polygonally connected to q, so U is in A. Similarly the complement of A in S is
open, so A is closed in S. Thus A is a non-empty subset of S which is both open and closed. So A is
a component of S, but S is connected, so S = A, which says that all points of S can be polygonally
connected to p, and hence to each other.


