Due Date: November 29, 2013 Friday

NAME:....

Ali Sinan Sertöz

STUDENT NO:

Math 302 Complex Analysis II – Homework 2

1	2	3	4	TOTAL
10	10	10	10	40

Please do not write anything inside the above boxes!

Check that there are 3 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

STUDENT NO:

Q-1) Let L be a line in the complex plane and let T be a Mobius transformation sending L again to a line. Classify all such T.

STUDENT NO:

Q-2) Let T be the Mobius transformation with $T(i\sqrt{3}) = \infty$, $T(-i\sqrt{3}) = 0$, and T(0) = -1. Find the image under T of the region R which is the intersection of the discs $|z + 1| \le 2$ and $|z - 1| \le 2$.

STUDENT NO:

Q-3) Let R be a connected, simply connected, non-empty, proper open subset of \mathbb{C} . Fix a point $z_0 \in R$. Let \mathcal{F} be the set of all analytic injective functions f from R into the unit disc U with $f(z_0) = 0$. Assume that \mathcal{F} is not empty. Take an $f \in \mathcal{F}$. Show that if f is not surjective, then there is some $g \in \mathcal{F}$ such that $|g'(z_0)| > |f'(z_0)|$.

STUDENT NO:

Q-4) Suppose f is an entire function and there is some R > 0 and $z_0 \in \mathbb{C}$ such that the open ball $B_R(z_0)$ with radius R centered at z_0 is not in the range of f, i.e. $B_R(z_0) \cap f(\mathbb{C}) = \emptyset$. Show that f is constant. (In fact if the complement of $f(\mathbb{C})$ contains at least two distinct points, let alone a whole disc, then f is constant. That is Picard's theorem but you must demonstrate a proof for this homework problem only using Liouville's theorem.)