Due Date: December 13, 2013 Friday

NAME:....

Ali Sinan Sertöz

STUDENT NO:.....

Math 302 Complex Analysis II – Homework 3

1	2	3	4	TOTAL
10	10	10	10	40

Please do not write anything inside the above boxes!

Check that there are 3 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

NAME:

STUDENT NO:

Q-1) Let f be an entire function and suppose that there is a positive integer n and positive real numbers A and R such that for all $z \in \mathbb{C}$ with $|z| \ge R$, we have $|f(z)| \le A|z|^n$. Use Cauchy Integral Formula to show that f is a polynomial of degree at most n.

Solution:

STUDENT NO:

Q-2) Let f = u + iv be an entire function. Theorem 16.10 says that if $|u(z)| \le A|z|^n$ for all sufficiently large z, and for some constant A > 0 and for some non-negative integer n, then f is a polynomial of degree at most n. The proof uses Theorem 16.9 which says that if f is C-analytic in D(0, R), for some R > 0, then

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} u(Re^{i\theta}) \frac{Re^{i\theta} + z}{Re^{i\theta} - z} \, d\theta + iv(0).$$

Assuming that differentiation with respect to z can be carried inside the integral sign for all orders, give an alternate proof of Theorem 16.10 by showing that $f^{(n+1)}(z_0) = 0$ for all $z_0 \in \mathbb{C}$.

Solution:

NAME:

NAME:

STUDENT NO:

Q-3) Let u(x, y) and v(x, y) be harmonic functions on a region D in \mathbb{C} . Find conditions on u and v such that uv is harmonic on D. Show that these conditions hold if u + iv is analytic on D. Show however that when uv is harmonic, it does not necessarily imply that u + iv is analytic on D.

Solution:

NAME:

STUDENT NO:

Q-4) Find the Weierstrass product form of the entire function $\sinh z$.

Solution: