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Please do not write anything inside the above boxes!

Check that there are 3 questions on your exam booklet. Write your name on top of every page. Show your
work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.
Submit your solutions on this booklet only. Use extra pages if necessary.

Rules for Homework and Take-Home Exams

(1) You may discuss the problems with your classmates or with me but it is absolutely mandatory that
you write your answers alone. Any similarity with your written words with any other solution or
any other source that I happen to know is a direct violation of honesty.

(2) In particular do not lend your written solutions to your friends, nor borrow your friends’s written
solutions. Oral exchange of ideas is acceptable and is in fact encouraged.

(3) You must obey the usual rules of attribution: all sources you use must be explicitly cited in such a
manner that the source can be easily retrieved by the reader. This includes any ideas you borrowed
from your friends.

(4) Finally, in your written solution make sure that you exhibit your total understanding of the ideas
involved, even mentioning where you quote a result but don’t really follow the reasoning. This is
an essential ingredient of learning.

Affidavit of compliance with the above rules: I affirm that I have complied with the above rules in
preparing this submitted work. Every solution I wrote reflects my true understanding of the problem.
Any sources used, ideas from friends or others are explicitly cited without exception.

Please sign here:
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Q-1) Let M ⊂ Cn be a complex manifold of dimension n − 1. Prove or disprove that for any point
p ∈ M , there exists an open neighborhood U ⊂ Cn of p, and a holomorphic function f on U such
that the zero set of f is precisely U ∩M .

Solution:

Let p ∈ M ⊂ Cn and Op be the germs of holomorphic functions defined around p. i.e. each
holomorphic function f defined on an open set U ⊂ Cn, with p ∈ U , represents a germ. Let mp ⊂ O
be the ideal of germs vanishing at p. Assume that mp properly contains a non-trivial prime ideal p.
The zero set N of p is irreducible and properly contains the zero set of mp. The latter is the germ
represented by M . As germs we have

M  N  Cn,

which entails
n− 1 = dimM < dimN < dimCn = n.

This leaves no integer for dimN , so this contradiction shows that mp contains no non-trivial proper
prime ideal. This means mp has height one.

We now quote two algebraic results.

1) mp is a unique factorization domain; see Griffiths and Harris p10.

2) A noetherian integral domain is a unique factorization domain if and only if every prime ideal of
height one is principal; see Hartshorne p7.

At this point we now know that mp is principal, say it is generated by a germ which can be represented
by a function f on U . Then M ∩ U is precisely the zero set of f .

For other approaches to the problem see Griffiths and Harris p13 (paragraph 3), or Huybrechts p21
remark 1.1.32. The algebraic case, i.e. when all holomorphic functions are taken to be polynomials,
see Hartshorne p7 Proposition 1.13.
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Q-2) Let T be an elliptic curve. Show that any holomorphic map fn : Pn → T is constant, n ≥ 1.

Solution:

First take n = 1. Let g denote the genus of a curve. We know that g(P1) = 0 and g(T ) = 1.

Assume that f1 is non-constant. By Hurwitz formula we have

2g(P1)− 2 = d(2g(T )− 2) + degR,

where d > 0 is the degree of f1, and R is the ramification divisor which is an effective divisor. In
particular degR ≥ 0. We then have

−2 = degR ≥ 0,

which is a contradiction showing that f1 must be constant.

Now for the general case. Suppose fn is non-constant, where n > 1.

Since fn is non-constant, there exist two points p, q ∈ Pn such that fn(p) 6= fn(q). Let P1 ⊂ Pn be
the line joining the points p and q. Restricting fn to this P1 we obtain a map from P1 to T which we
showed to be constant. We then have fn(p) = fn(q), which is a contradiction. So fn must also be
constant.
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Q-3) Using Čech cohomology techniques, show that for any meromorphic function φ on C, there ex-
ist two entire functions f and g such that φ = f/g. (In complex analysis we prove this using
Weierstrass factorization theorem.)

Solution:

Let {Uα} be an open cover of C with open disks such that we can write

φ|Uα =
fα
gα
,

where fα and gα are holomorphic on Uα and have no common zeros. Define

hαβ =
fα
fβ
.

Since any zero of fα on Uα ∩ Uβ is a zero of φ with the same multiplicity, and since the same is true
for fβ , we must have

hαβ ∈ O∗(Uα ∩ Uβ).

Moreover if we set h = {hαβ}, we see that

δ(h)αβγ = hβγh
−1
αγhαβ = 1,

so h defines a cohomology class in H1(C,O∗). Here we use the fact that the covering we chose
is Leray. Now since H1(C,O∗) = 0, (see GH p47), there must be a 0-cochain k = {kα} ∈
C0({Uα},O∗) such that δ(k) = h. This gives

kβ
kα

= hαβ =
fα
fβ
,

which in turn gives
kαfα = kβfβ.

Thus there exists an entire function F such that

F |Uα = kαfα.

Note that, since each kα ∈ O∗(Uα), the entire function F has the same zeros as φ with the same
multiplicities.

Similarly there exists an entire function G which has the same zeros of 1/φ with the same multiplici-
ties. Then the function H defined as

H = φ
G

F

is an entire function which has no zeros. Finally we see that

φ =
FH

G
,

as claimed.


