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Q-1) We start by reminding numerous notations. The questions follow the descriptions at the end.

Let V be an n-dimensional real inner product space with 〈·, ·〉 denoting the inner product. Let Λ(V ) =
⊕nk=0Λk(V ) be the exterior algebra on V . We extend the inner product of V to Λ(V ) as follows. If
u ∈ Λr(V ) and v ∈ Λs(V ), then 〈u, v〉 = 0 if r 6= s. When r = s, let u = u1 ∧ · · · ∧ ur,
v = v1 ∧ · · · ∧ vr, where ui, vj ∈ V , then we set

〈u1 ∧ · · · ∧ ur, v1 ∧ · · · ∧ vr〉 = det(〈ui, vj〉),

and extend this to Λr(V ) linearly.

Let e1, . . . , en be a basis of V . For any subset I = {i1, . . . , id} ⊆ {1, . . . , n}, define

eI = ei1 ∧ · · · ∧ eid ,

and define e∅ = 1, where ∅ is the emptyset.

Since Λn(V ) is a one dimensional real space, Λn(V ) − {0} has two components. An orientation of
V is a choice of one of these components. V is oriented if one such choice is made. If e1, . . . , en is a
basis of V , we say that e1, . . . , en is positively oriented if e1 ∧ · · · ∧ en is in the chosen component of
Λn(V )− {0}.

If V is an oriented real inner product space, there is a linear map

∗ : Λ(V )→ Λ(V ),

called the star map which is defined as follows. Let e1, . . . , en be an orthonormal basis of V , not
necessarily positively oriented. Then we set

∗(1) = ±e1 ∧ · · · ∧ en, ∗ (e1 ∧ · · · ∧ en) = ±1,

∗(e1 ∧ · · · ∧ ep) = ±ep+1 ∧ · · · ∧ en,

where one takes “+” if e1 ∧ · · · ∧ en is positively oriented, and “−” otherwise. We then extend this
definition linearly to all of Λ(V ).

Moreover for any α ∈ V , let Lα be the left multiplication by α in the algebra Λ(V ), i.e. for any
γ ∈ Λ(V ), we define Lα(γ) = α∧ γ. Let L∗α be its adjoint, i.e. for any β ∈ Λp(V ) and γ ∈ Λp+1(V ),
we have 〈Lα(β), γ〉 = 〈β, L∗α(γ〉.



Our exam questions now follow.
We assume throughout that V is an oriented real inner product space of dimension n.

(i) Let e1, . . . , en be an orthonormal basis of V . Show that the collection

{eI | I = {i1, . . . , id} is a subset of {1, . . . , n} with i1 < · · · < id, for d = 0, . . . , n}

is an orthonormal basis of Λ(V ). Here when d = 0, we take I as the empty set ∅, and assign
e∅ = 1.

(ii) Prove that for α ∈ Λp(V ), we have

∗ ∗ (α) = (−1)p(n−p)α.

(iii) Prove that for α, β ∈ Λp(V ), we have

〈α, β〉 = ∗(α ∧ ∗β) = ∗(β ∧ ∗α).

(iv) Show that for any γ ∈ Λp+1(V ), we have

L∗α(γ) = (−1)np ∗ Lα(∗γ).

Remark: These are composed from Exercises 13 and 14 on pages 79-80 of
Frank W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer-Verlag, 1983.
You may find it helpful to read pages 54-57 of this book for the above problems. Also notice that all the
operations are extended linearly, so proving certain identities only on nice basis elements may suffice for the
general case if you argue convincingly.

Solution (i) That this collection spans Λ(V ) is clear. So we show orthonormality. From the definition
of the inner product on Λ(V ), we immediately see that 〈eI , eJ〉 = 0 if #I 6= #J . Now suppose #I =
#J = d > 0 but I 6= J . Then there is an i ∈ I such that i 6∈ J = {j1, . . . , jd}. Then 〈ei, ejk〉 = 0
for k = 1, . . . , d. Hence the i-th row of the matrix (〈eis , ejt〉)1≤s,t≤d will be zero, where we set
I = {i1, . . . , id}. Hence by definition 〈eI , eJ〉 = 0. Whereas clearly 〈eI , eI〉 = 1 by definition. Hence
the given collection is an othonormal basis.

Solution (ii) It surely suffices to prove this for the orthonormal basis given in part (i). For this
purpose let α = ei1 ∧ · · · ∧ eip with 1 ≤ i1 < · · · < ip ≤ n. Let {j1, . . . , jn−p} be the complement of
{i1, . . . , ip} in {1, . . . , n}, where again 1 ≤ j1 < · · · < jn−p ≤ n. Let ε ∈ {−1,+1} be such that

ei1 ∧ · · · ∧ eip ∧ ej1 ∧ · · · ∧ ejn−p = ε e1 ∧ · · · ∧ en.

This means that
∗(ei1 ∧ · · · ∧ eip) = ε ej1 ∧ · · · ∧ ejn−p .

On the other hand, it is trivial to check that

ej1 ∧ · · · ∧ ejn−p ∧ ei1 ∧ · · · ∧ eip = (−1)p(n−p)ei1 ∧ · · · ∧ eip ∧ ej1 ∧ · · · ∧ ejn−p

= ε (−1)p(n−p)e1 ∧ · · · ∧ en,

which says that
∗(ej1 ∧ · · · ∧ ejn−p) = ε (−1)p(n−p)ei1 ∧ · · · ∧ eip .
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Now we have

∗(ei1 ∧ · · · ∧ eip) = ε ej1 ∧ · · · ∧ ejn−p

∗ ∗ (ei1 ∧ · · · ∧ eip) = ε ∗ (ej1 ∧ · · · ∧ ejn−p)

= ε2(−1)p(n−p)ei1 ∧ · · · ∧ eip
= (−1)p(n−p)ei1 ∧ · · · ∧ eip ,

as claimed.

Solution (iii) Again by linearity, it suffices to prove this when α, β are elements of the orthogonal
basis given in (i).

If I, J are subsets of {1, . . . , n} and I 6= J , then without loss of generality we may assume that there
is i ∈ I such that i 6∈ J . Then ei is a component of both eI and ∗eJ , hence eI ∧ ∗eJ = 0. Also from
(i) we know that 〈eI , eJ〉 = 0. Therefore it remains to prove the required equality when I = J . In this
case we first have 〈eI , eI〉 = 1. Now using the notation of (ii) above, we have

∗(ei1 ∧ · · · ∧ eip) = ε ej1 ∧ · · · ∧ ejn−p

eI ∧ ∗eI = ε ei1 ∧ · · · ∧ eip ∧ ej1 ∧ · · · ∧ ejn−p

= ε2 e1 ∧ · · · ∧ en,
= e1 ∧ · · · ∧ en.

∗(eI ∧ ∗eI) = 1.

Hence the required equality holds.

Solution (iv) We will show that

〈θ, L∗α(γ)〉 = 〈θ, (−1)np ∗ Lα(∗γ)〉, for any θ ∈ Λp(V ). (A)

For this we will use the identities we proved in (iii). Recall that α ∈ Λ1(V ) = V , and Lα(γ) = α∧ γ.

We first have

〈θ, L∗α(γ)〉 = 〈Lα(θ), γ〉 = 〈α ∧ θ, γ〉
= ∗(α ∧ θ ∧ ∗γ)

= (−1)p ∗ (θ ∧ α ∧ ∗γ). (B)

Next we have

〈θ, (−1)np ∗ Lα(∗γ)〉 = 〈θ, (−1)np ∗ (α ∧ ∗γ)〉
= (−1)np ∗ (θ ∧ ∗ ∗ (α ∧ ∗γ))

= (−1)np(−1)p(n−p) ∗ (θ ∧ α ∧ ∗γ)

= (−1)p ∗ (θ ∧ α ∧ ∗γ), (C)

since np+ p(n− p) ≡ p mod 2.

Since (B) and (C) agree, (A) holds. This completes the proof.
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