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1) Exercise 8.3 page 93: Show in particular that s is a ramification point of f(x) of
multiplicity k if and only if s is a root of f ′(x) of multiplicity k − 1.

Assume that s is a ramification point of f with index k. Then f(x) − f(s) = (x − s)kg(x)
with g(s) 6= 0. Now f ′(x) = (x − s)k−1h(x) where h(x) = kg(x) + (x − s)g′(x). Note that
h(s) = sg(s) 6= 0, so s is a root of f ′(x) with multiplicity k − 1.

Conversely assume that s is a root of f ′(x) with multiplicity k − 1. Let f(x)−f(s) = (x−s)tg(x)
for some integer t ≥ 0 and some polynomial g(x) with g(s) 6= 0. Then f ′(x) = (x− s)t−1h(x),
where h(x) = tg(x) + (x− s)g′(x). Note that h(s) = tg(s) 6= 0. This gives s as a root of f ′(x)
with multiplicity t− 1, so t = k and s is a ramification point of f(x) with index k.

Another solution for this second part, which was popular on the homework papers is the
following: Let f ′(x) = (x− s)k−1h(x) with h(s) 6= 0. Let the degree of h be m. f(x)− f(s) =∫ x

s
(z − s)k−1h(z)dz. Using integration by parts m times we get f(x)− f(s) = 1

k
(x− s)kh(x)−

1
k

1
k+1

(x− s)k+1h′′(x)+ · · ·± 1
k

1
k+1

· · · 1
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(x− s)k+mh(m)(x). From here it follows immediately
that s is a ramification point of f(x) with index k.

To check the answer with the Riemann-Hurwitz formula let R be the ramification divisor of f
where we consider f as a holomorphic mapping from P1 to P1. Clearly ∞ is a ramification point
with index n−1 where n = deg f . Assume that R = (n−1)∞+

∑r
i=1 mipi. The above argument

shows that f ′(x) = (x−p1)
m1 · · · (x−pr)

mr . We now have m1 + · · ·+mr = deg f ′ = n−1. Thus
we find the degree of the ramification divisor as 2(n − 1). On the other hand the Riemann-
Hurwitz formula gives deg R = 2(g + n − g′n − 1), which gives 2(n − 1) after substituting
g = g′ = 0.

2 ) Exercise 7.5 page 89: If an n th degree curve has [n
2
] + 1 singular points on a straight

line L, then L is necessarily a curve component of this curve.

By Bezout’s theorem
∑

p∈C∩L

(L · C)p = deg L · deg C = n. On the other hand
∑

p∈C∩L

(L · C)p =

∑

p∈C∩L, p singular

(L · C)p +
∑

p∈C∩L, p smooth

(L · C)p ≥
∑

p∈C∩L, p singular

(L · C)p ≥ 2([
n

2
] + 1) > n, since

each (L · C)p ≥ 2 when p is singular on C. But this contradicts Bezout’s theorem. So L must
be a component of C. For the proof of (L ·C)p ≥ 2 when p is singular, see either the definition
7.3 on page 83, or see the hint to exercise 7.3 on page 85.

3) Show that every smooth algebraic plane curve C is irreducible.

Let C be the zero set of the polynomial f . Suppose C is not irreducible. Then f = gh for
some nontrivial polynomials g and h. The curves V (g) and V (h) intersect at a point p in
P2. Let x and y be the affine coordinates at p. Then we have f(x, y) = g(x, y)h(x, y) and
∂f
∂x

(p) = ∂g
∂x

(p)h(p) + ∂h
∂x

(p)g(p) = 0 since p is both on V (g) and V (h). Similarly ∂f
∂y

(p) = 0. But
this means that p is a singular point of C contradicting the fact that C is smooth. So C must
be irreducible.


