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Chapter 1

Affine Varieties

1.1 First Definitions

Affine Space: We fix an algebraically closed field k. The affine n space
over k, denoted by An

k , is the set of n-tuples of elements of k, where n is any
positive integer. We generally denote An

k by An when there is no confusion
about which k is used. An is simply kn without the k-vector space structure.

We will consider An only with polynomial functions of the form

f : An −→ A1

where f ∈ k[x1, . . . , xn].

Zero Set: For any ideal J of the polynomial ring k[x1, . . . , xn] we define

Z(J) = {p ∈ An | f(p) = 0 for all f ∈ J }.
Every ideal in k[x1, . . . , xn] is finitely generated. If J = (f1, . . . , fr), then we
denote Z(J) also by Z(f1, . . . , fr). Clearly, for any two ideals J1 ⊆ J2, we
have Z(J1) ⊇ Z(J2).

Definition 1 A subset X of An is called an algebraic set if it is of the form
X = Z(J) for some ideal J ⊂ k[x1, . . . , xn].
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4 CHAPTER 1. AFFINE VARIETIES

Some immediate examples of algebraic sets are Z(1) = ∅, Z(x1−a1, . . . , xn−
an) = {(a1, . . . , an)} and Z(0) = An. If k = C, then a nonempty proper
subset of An which is open with respect to the usual metric topology is not
an algebraic set.

By the Fundamental Theorem of Algebra a nonconstant polynomial f ∈
k[x1] always has a root in k. Since k[x1] is a principal ideal domain, every
proper ideal J in k[x1] is generated by a single nonconstant polynomial and
consequently Z(J) 6= ∅.

However a proper ideal J in k[x1, . . . , xn] is not necessarily generated by a
single element and attempts to check if Z(J) is empty or not using the Fun-
damental Theorem of Algebra above raises complicated technical difficulties.
We have nonetheless the highly nontrivial result:

Theorem 2 (Hilbert’s Nullstellensatz) If k is algebraically closed then
Z(J) 6= ∅ for every proper ideal J in k[x1, . . . , xn].

Proof: Let m be a maximal ideal containing J . Since Z(m) ⊆ Z(J), it
suffices to show that Z(m) is not empty. Let

k[x1, . . . , xn] −→ k[x1, . . . , xn]/m = k[x̄1, . . . , x̄n] = K

be the usual surjection, where x̄i is xi mod m. Here K is a field and
(x̄1, . . . , x̄n) is a point of Z(m) in An

K . We want to show that this point
actually lies in An

k . We will achieve this by showing that K is in fact k. If
K is algebraic over k, then since k is algebraically closed it will follow that
K = k.

We then proceed to show that each x̄1, . . . , x̄n is algebraic over k. Here we
follow [14, p165].

If n = 1, then k[x̄1] being a field, x̄1 has an inverse, say f(x̄1). Then x̄1f(x̄1)−
1 = 0 is an algebraic equation for x̄1 over k.

We now show how to pass from n = 1 case to n = 2 case. The field k[x̄1, x̄2]
contains the field k(x̄1)[x̄2]. By what we showed above, x̄2 is algebraic over
k(x̄1). If we can now show that x̄1 is algebraic over k, we will be done.



1.1. FIRST DEFINITIONS 5

Assume that x̄1 is transcendental over k. Recall then that k[x̄1] is integrally
closed in k(x̄1).

Take an algebraic equation of x̄2 over k(x̄1), clear denominators and obtain

h(x̄1)x̄
m
2 + hm−1(x̄1)x̄

m−1
2 + · · ·+ h0(x̄1) = 0

for some m > 0 and h(x̄1), hm−1(x̄1), . . . , h0(x̄1) ∈ k[x̄1]. Then (hm(x̄1)x̄2) is
integral over k[x̄1]. It follows that for every f(x̄1, x̄2) ∈ k[x̄1, x̄2] there exists
an integer r such that hr(x̄1)f(x̄1, x̄2) is integral over k[x̄1]. Since the field
k(x̄1) is in k[x̄1, x̄2], this also applies to fractions of the form f(x̄1)/g(x̄1)
where f and g are polynomials and are relatively prime. In particular choose
g to be nonconstant and also relatively prime to h. From hr(x̄1)f(x̄1)/g(x̄1)
being integral over k[x̄1] for some integer r ≥ 0 and k[x̄1] being integrally
closed in k(x̄1), it follows that hr(x̄1)f(x̄1)/g(x̄1) is in k[x̄1] and hence g(x̄1)
divides hr(x̄1) which is a contradiction. So x̄1 is algebraic over k and conse-
quently so is x̄2.

For the general case apply the induction hypothesis to k(x̄1)[x̄2, . . . , x̄n]. Each
x̄2, . . . , x̄n is algebraic over k(x̄1). We can find a polynomial h(x̄1) ∈ k[x̄1] and
an integer m such that each (hm(x̄1)x̄i) is integral over k[x̄1], i = 2, . . . , x̄n.
This leads to a contradiction since k[x̄1] is integrally closed in k(x̄1). ¤

Observe how k being algebraically closed is used in the proof. In fact Z(x2
1 +

x2
2 + 1) = ∅ in A2

R.

Zariski Topology: We put a new topology on An by declaring that the
collection of closed sets will consist only of algebraic sets. The topology thus
defined is called the Zariski topology.

A closed set in a topological space is called irreducible if it is not the union of
two proper nonempty closed subsets. The empty set is then not irreducible.

The only proper irreducible subsets of A1 are singletons. Since k is alge-
braically closed, A1 is infinite. This shows that A1 is irreducible.

Affine Variety: An affine algebraic set is called an affine variety if it is
irreducible in the Zariski topology.

We know so far that A1 and singletons in A1 are algebraic varieties. We
cannot yet show that An is irreducible for any n ≥ 1. Try it!
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Dimension: The dimension of a set V in a topological space is defined to
be the supremum of the integers m for which there is a chain of inclusions

V ⊇ V0 ! V1 ! · · · ! Vm

where each Vi is a closed irreducible subset.

Dimension of V is denoted by dim V or by dimk V when the reference to k
is relevant.

For any nonconstant f ∈ k[x1, . . . , xn], the algebraic set Z(f) is called a
hypersurface, and if f is linear it is called a hyperplane.

We would like to show that the dimension of An is n and to know if it is irre-
ducible. Moreover we expect in general that the dimension of a hypersurface
Z(f) in An is n−1 and that it is irreducible if f is an irreducible polynomial.

To answer such questions we must have a tool of recovering information about
the ideal from its zero set.

Ideal of a Set: When X is a subset of An define

I(X) = {f ∈ k[x1, . . . , xn] | f(p) = 0 for all p ∈ X }.

This is a radical ideal in k[x1, . . . , xn]. Clearly, for any subsets X ⊆ Y , we
have I(X) ⊇ I(Y ).

We have the immediate relations:
(i) X ⊂ Z(I(X)) for any X ⊂ An and
(ii) J ⊂ I(Z(J)) for any ideal J ⊂ k[x1, . . . , xn].

To understand when equality holds in these inclusions we need the following
corollary to Theorem 2.

Corollary 3 If J is any ideal in k[x1, . . . , xn], then I(Z(J)) =
√

J , where√
J is the radical of J .

Proof: First take any f ∈ √J . Then f r ∈ J for some integer r > 0 and f
vanishes at every point of Z(J). Hence f ∈ I(Z(J)).
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For the converse inclusion let f be in I(Z(J)). Choose a set of generators
for J , say J = (f1, . . . , fm). Then f vanishes at every point where f1, . . . , fm

simultaneously vanish. Consider the ideal

J0 = (f1, . . . , fm, 1− tf) ⊂ k[x1, . . . , xn, t].

Clearly Z(J0) = ∅ in An+1 and by Theorem 2, J0 cannot be proper. So 1 ∈ J0

and there are polynomials g, g1, . . . , gm ∈ k[x1, . . . , xn, t] such that

1 = g1f1 + · · ·+ gmfm + g · (1− tf).

In this identity substitute t = 1/f and clear denominators to obtain

f r = h1f1 + · · ·+ hmfm

where

hi = gi(x1, . . . , xn,
1

f(x1, . . . , xn)
) · f r(x1, . . . , xn)

and r is chosen to be the largest of the degrees of the gi’s in t. This then
gives f ∈ √J and establishes the equality. ¤

We now have an inclusion reversing correspondences between radical ideals
in k[x1, . . . , xn] and algebraic sets in An.

{
Radical ideals
in k[x1, . . . , xn]

} Z−→←−
I

{
Algebraic sets

in An
k

}

Moreover these correspondences are inverses of each other. I ◦ Z is identity
on radical ideals and Z ◦ I is identity on algebraic sets.

Commutative Algebra: Let R be a finitely generated k-algebra which is
an integral domain. For example R can be k[x1, . . . , xn]/p for a prime ideal
p. The dimension of R, denoted by dim R, is defined to be the supremum of
all integers m for which there is a chain of prime ideals of length m of the
form

p0 ⊂ p1 ⊂ · · · ⊂ pm.

Every maximal chain of primes have the same length. If we denote the
transcendence degree of R over k by tr.degkR, then dim R = tr.degkR. In
particular dim k[x1, . . . , xn] = n. Moreover for any prime ideal p in R, there
is a maximal chain of primes as above where p = pi for some i. For the proofs
we refer to [4, Chapter 13].
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Exercises

1. An algebraic set Z(J) is irreducible if and only if J is a prime ideal. It follows
that An is irreducible, and the hypersurface Z(f) is irreducible if and only if
f is an irreducible polynomial.

2. If X  Y are algebraic sets, then dimX < dimY .

3. The dimension of an algebraic variety Z(J) is the Krull dimension of the ring
k[x1, . . . , xn]/J . In particular dimAn = n.

4. Dimension of a hypersurface in An is n− 1.

5. For any ideal J in k[x1, . . . , xn], Z(J) is singleton if and only if J is a maximal
ideal.

6. Closure with respect to Zariski topology of a set X in An is Z(I(X)).

7. An arbitrary union of algebraic sets need not be algebraic.

8. With respect to the induced Zariski topology on an algebraic variety, any
nonempty open subset is dense.

9. For any f ∈ k[x1, . . . , xn] let Df denote the complement of Z(f) in An. It is
called a fundamental open set. Every open subset of An can be written as a
finite union of fundamental open sets.

10. Every fundamental set is isomorphic to an affine variety. However the union
of two fundamental sets need not be isomorphic to an algebraic set. Does
this contradict with the fact that the union of two algebraic sets is again an
algebraic set?

1.2 Affine Morphisms

In this section X ∈ An and Y ⊂ Am are affine varieties and J denotes the
prime ideal I(X).

Polynomial Functions: A function f : X → k is called a polynomial
function if there is a polynomial F ∈ k[x1, . . . , xn] such that f(p) = F (p) for
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all p ∈ X. Two polynomials F1 and F2 define the same polynomial function
on X if and only if F1− F2 ∈ J . The set of polynomial functions on X form
a ring which we call the coordinate ring of X. This ring is denoted by k[X].
Clearly k[X] ∼= k[x1, . . . , xn]/J .

Rational Functions: An expression of the form F/G where F, G ∈ k[x1, . . . , xn]
is traditionally called a rational function on An. It is not a function in general
since it is not defined at the points where G vanishes. However, elsewhere
it defines a legitimate function. If we define DG as An\Z(G), then F/G is a
function on DG. We denote this by

F

G
: An 99K k

where broken arrow notation warns that the domain of the function may not
be all of what is written there but is an open dense subset of it. Here with
this understanding we call F/G a rational function on An.

A rational function on X is a function on an open dense subset of X where
it is evaluated as the restriction of a rational function of An. A rational
function φ on X is denoted by

φ : X 99K k

where the broken arrow reminds that the domain is some open dense subset.
If φ = F/G for some polynomials F,G ∈ k[x1, . . . , xn] on some open dense
subset of X, then we agree to use F/G to denote the rational function φ.

If F/G and F ′/G′ are rational functions on An with G,G′ 6∈ J , then they
define the same rational function on X if and only if FG′ −GF ′ ∈ J .

Two rational functions are added and multiplied on their common domain.
If φ is a rational function which is not identically zero, then 1/φ is also a
rational function on X. The set of all rational functions on X forms a field,
called the field of rational functions or the function field of X, and is denoted
by k(X).

Regular Functions: A rational function F/G on X is called regular at
p ∈ X if G(p) 6= 0. The set of all regular functions at p is a ring denoted by
Op,X , or by Op if the reference to X is clear, and is called the ring of regular
functions at p.
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For any subset U of X, we say that a rational function is regular on U if it is
regular at every point of U . The set of all such functions forms a ring which
is denoted by O(U).

It follows from these definitions that

O(U) =
⋂
p∈U

Op, O({p}) = Op and k[X] ⊂ Op for all p ∈ X.

A function is regular on X if it is regular at all points of X. The nature of
such functions is given by the following theorem.

Theorem 4

O(X) = k[X].

Proof: The inclusion k[X] ⊂ O(X) is clear. Conversely take φ ∈ O(X).

For any polynomial H ∈ k[x1, . . . , xn], let h denote the corresponding poly-
nomial function in k[X].

Let J0 consist of all polynomials H such that hφ is a polynomial function on
X.

Clearly J0 is an ideal in k[x1, . . . , xn]. Moreover if H ∈ J , then hφ is identi-
cally zero on X, so H ∈ J0. Thus J ⊂ J0 and Z(J0) ⊂ X.

For every point p ∈ X, there is a rational function F/G in the equivalence
class of φ with G(p) 6= 0. Clearly G ∈ J0, so p 6∈ Z(J0). This forces Z(J0) to
be empty. By the nullstellensatz, 1 ∈ J0. It follows now from the description
of J0 that φ is in k[X]. ¤

Morphisms of Varieties: If X ⊂ An and Y ⊂ Am are two algebraic
varieties, then a morphism

φ : X −→ Y

is given by φ = (f1, . . . , fm) where each fi is a regular function on X, i.e.
each fi is a polynomial function on X.
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Two varieties X and Y are isomorphic if there are polynomial maps f :
X −→ Y and g : Y −→ X such that f ◦g = IdY and g ◦f = IdX , where IdX

and IdY denote the identity map on X and Y respectively. In this case we
call f , an also g, an isomorphism between X and Y . If X = Y , we usually
call f an automorphism.

The simplest case of an automorphism is the one on An
k . Let F = (F1, . . . , Fn) :

An
k −→ An

k be a polynomial map which is an automorphism. The Jacobian
of this map

J
(n)
k (F ) = det(

∂Fi

∂xj

),

where xi’s are coordinates on An
k , is a polynomial and is nonzero wherever

F has a local inverse. Since k is algebraically closed and since F is invert-
ible everywhere, J

(n)
k (F ) is a nonzero constant. The converse however is a

challenge. In particular we have,

Conjecture 5 (Jacobian Conjecture) If J
(n)
C (F ) is a nonzero constant,

then F is an automorphism.

Biregular Theory: When f : X −→ Y is a morphism of algebraic varieties
and φ ∈ k[Y ] is a polynomial function on Y , then φ ◦ f is a polynomial
function on X and is denoted by f ∗φ. This is a k-algebra morphism.

Conversely any k-algebra morphism α : k[Y ] −→ X on the coordinate rings
induces a map on the varieties themselves. To show this define a map

f : X −→ Am

p 7→ (α(y1)(p), . . . , α(ym)(p)).

We claim that f(p) is actually in Y . To show this take any G ∈ I(Y ). Then
G(f(p)) = G(α(y1)(p), . . . , α(ym)(p)) = α(G(y1, . . . , ym))(p) = 0 since G ≡ 0
in K[Y ]. This shows that f(X) ⊂ Y . It is also clear that α = f ∗.

For two algebraic varieties X and Y , we denote the set of all morphisms
f : X −→ Y by Homk(X, Y ), and the set of all k-algebra morphisms between
their coordinate rings by Homk(k[Y ], k[X]).
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Theorem 6 There is a one-to-one bijection between the sets Homk(X,Y )
and Homk(k[Y ], k[X]).

¤

This theorem is the first crucial link between algebra and geometry. In
particular two varieties are isomorphic if and only if their coordinate rings
are isomorphic.

Rational Morphisms: If X ⊆ An and Y ⊆ Am are affine varieties, a
rational morphism

φ : X 99K Y

is given by φ = (f1, . . . , fm) where each fi is a rational function on X. Two
algebraic varieties X and Y are said to be birationally equivalent, or simply
birational, if there exist rational maps f : X 99K Y and g : Y 99K X such
that f ◦ g = IdV and g ◦ f = IdU on some open sets U ⊂ X and V ⊂ Y .

Birational Theory: Any rational map f : X 99K Y between algebraic
varieties induces through composition a field morphism f ∗k(Y ) −→ k(X).
Similar to the biregular theory, any field morphism from k(Y ) to k(X) in-
duces and is in turn induced by a rational map from X to Y . Two varieties
are birational if and only if their function fields are isomorphic.

Exercises

1. For a morphism f : X −→ Y of varieties, f∗ is injective if and only if f(X)
is dense in Y . And if f∗ is surjective, then f is an isomorphism of X with
f(X).

2. The function field of an algebraic variety is the field of fractions of its coordi-
nate ring. The transcendence degree of the function field over the coordinate
ring is equal to the dimension of the variety.
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3. If p1 ⊂ k[x1, . . . , xn] and p2 ⊂ k[y1, . . . , ym] are two prime ideals, denote by
p ⊂ k[x1, . . . , xn, x1, . . . , xm] the ideal generated by p1p2. Let X = Z(p1) ⊂
An, Y = Z(p2) ⊂ Am and W = Z(p) ⊂ An+m. Show that the coordinate ring
of W is isomorphic to k[X] ⊗k k[Y ] and that W is the product of X and Y
in the category of affine varieties with affine morphisms. We denote W by
X ×k Y .

4. For an algebraic variety X and any point p ∈ X, the ring Op is a local ring
whose maximal ideal mp is the set of all regular functions in Op vanishing at
p. If ZX(p) denotes the set of all polynomial functions on X vanishing at p,
then it is a maximal ideal and Op is isomorphic to the localization of k[X] at
ZX(p).

5. If f ∈ k[x, y] is a non-degenerate quadratic polynomial and chark 6= 2, then
the coordinate ring of Z(f) ⊂ A2 is isomorphic either to the polynomial ring
k[x] or k[x, 1

x ]. What happens if chark = 2?

6. The polynomial map f : A1 −→ Z(y2 − x3) ⊂ A2, given by f(t) = (t2, t3) is
one-to-one and onto but the varieties A1 and Z(y2 − x3) are not isomorphic.

1.3 Complete Intersections

Definition 7 For an ideal J in k[x1, . . . , xn] we define µ(J) to be the number
of elements in a minimal generating set for J . If X is an algebraic set we
define µ(X) as the minimum integer r such that there exist r polynomials
f1, . . . , fr with X = Z(f1, . . . , fr) We define codim(X), the codimension of
X, as n− dim(X), where the dimension of X is its dimension in the Zariski
topology of An

We immediately have the inequalities 0 ≤ codim(X) ≤ µ(X) ≤ µ(J(X)).

In A2, when C is a curve, we always have 1 = codim C = µ(C) = µ(I(C)).

Every codimension one variety X in An is a hypersurface and necessarily
n− 1 = µ(X) = µ(I(X)), see [12].

For every variety X in An, it is known that µ(X) ≤ n, see [5]. However for
any given integer m, there exists a variety X in An with µ(I(X)) ≥ m. One



14 CHAPTER 1. AFFINE VARIETIES

such variety will be discussed in the next section.

Complete Intersections: For any variety X, if µ(X) = codim X, then X
is called a set theoretical complete intersection, STCI for short. If further
µ(I(X)) = codim X, then X is an ideal theoretical complete intersection, or
ITCI. We have examples of STCI varieties which are not ICTI.

Conjecture: It is conjectured that all curves in A3 are STCI.

1.4 Affine Monomial Curves

It is known that all monomial curves in A3 are STCI. However the situation
is more complicated in A4. Let C ∈ A4 be a monomial curve associated to
the integers m1, . . . ,m4 where gcd(m1, . . . , m4) = 1. Let g be the Frobenius
number of the semigroup S = 〈m1, . . . , m4〉. S is called symmetric if g−c ∈ S
if and only if c ∈ N − S. It is known that C is a STCI if and only if the
semigroup 〈m1, . . . ,m4〉 is symmetric.

It is an open question to describe all STCI monomial curves in An for n > 4.



Chapter 2

Projective Varieties

2.1 First Definitions

The projective n-space over k, denoted by Pn
k , is the space of all lines through

the origin in An+1
k . We also denote it by Pn if the reference to k is understood.

To define a line ` through the origin in An+1 it suffices to know only one
point on ` other than the origin. If (x0, . . . , xn) is such a point, then each
(λx0, . . . , λxn) is also on ` and is different than the origin for every nonzero
λ in k. Thus any of these points can be used to uniquely define `. We denote
by [x0 : · · · : xn] the line passing through (x0, . . . , xn) and the the origin in
An+1 when (x0, . . . , xn) 6= (0, . . . , 0).

This defines Pn as the set of equivalence classes of points in An+1\(0, . . . , 0),
where two points p and q in An+1\(0, . . . , 0) are called equivalent if p = λq
for some nonzero λ in k. If we denote this equivalence relation by ∼, then
there is a projection

π : An+1\(0, . . . , 0) −→ Pn =
(
An+1\(0, . . . , 0)

)
/ ∼

sending each point p to its equivalence class, the line through p and the
origin.

We put on An+1\(0, . . . , 0) the induced Zariski topology, i.e. X ⊂ An+1\(0, . . . , 0)
is closed if X = Y ∩ {An+1\(0, . . . , 0)} for some closed set Y ⊂ An+1. Us-

15
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ing this we put on Pn the quotient topology via the above projection π, i.e.
X ⊂ Pn is closed if π−1(X) ⊂ An+1\(0, . . . , 0) is closed.

If X ⊂ Pn is a closed set and f ∈ I(π−1(X)), then f vanishes on every line
` ⊂ π−1(X). If f = f0 + · · · + fd where each fi is homogeneous of degree i,
then it follows that each fi ∈ I(π−1(X)). Moreover of [x0 : · · · : xn] ∈ X,
then fi(x0, . . . , xn) = 0 for each i = 0, . . . , d.In particular f0 ≡ 0 if X is not
empty.

These observations necessitates the following definitions but first recall that
a polynomial ideal is called homogeneous if it is generated by homogeneous
polynomials.

Zero Set: For any homogeneous ideal J in k[x0, . . . , xn] we define

Z(J) = {[p0 : · · · : pn] ∈ Pn
∣∣ f(p0, . . . , pn) = 0 for all f ∈ J }.

Generally if p = [p0 : · · · : pn], we denote f(p0, . . . , pn) by f(p). If J is
generated by the homogeneous polynomials f1, . . . , fr, then we denote Z(J)
also by Z(f1, . . . , fr). For any two homogeneous ideals J1 ⊆ J2, we have
Z(J1) ⊇ Z(J2).

Definition 8 A subset X of Pn is called an algebraic set if it is of the form
X = Z(J) for some homogeneous ideal J ⊆ k[x0, . . . , xn].

The topology defined on Pn by taking algebraic sets as the closed sets is the
same as the quotient topology defined above. We also call this topology the
Zariski topology.

Clearly Z(1) = ∅ and Z(0) = Pn are closed sets. For any point a = [a0 :
· · · : an] ∈ Pn, let J be the ideal in k[x0, . . . , xn] generated by the set {aixj −
ajxi

∣∣ 0 ≤ i, j ≤ n. }. Then Z(J) = {a}.

If J is a homogeneous ideal in k[x0, . . . , xn] then we temporarily denote by
Za(J) its zero set in An+1 and by Zp(J) its zero set in Pn. Using the above
projection we have the obvious relation π(Za(J)\(0, . . . , 0)) = Zp(J). We
usually drop these subscripts when no confusion arises.

In the affine case we had Z(J) 6= ∅ for every proper ideal. However in the
projective case a slight exception occurs. The ideal in k[x0, . . . , xn] generated
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by x0, . . . , xn does not have a zero in Pn. We call this ideal the irrelevant
ideal.

Theorem 9 (Projective Nullstellensatz) If k is algebraically closed and
J is any proper homogeneous ideal in k[x0, . . . , xn] not containing any power
of the irrelevant ideal, then Z(J) 6= ∅.

Proof: Let m denote the irrelevant ideal and mr ⊆ J for some positive
integer r. We have the inclusion Za(J) ⊆ Za(m

r) = {(0, . . . , 0)}. This forces
Zp(J) to be empty. If J does not contain a power of the irrelevant ideal, then
the result follows from the usual Nullstellensatz, Theorem 2. ¤

Projective Variety: A projective algebraic set is called a projective variety
if it is irreducible in the Zariski topology.

The dimension of an algebraic variety is defined as its dimension as a closed
set in the Zariski topology.

Ideal of a Set: When X is a subset of Pn define

I(X) = {f ∈ k[x0, . . . , xn]
∣∣ f(p) = 0 for all p ∈ X }.

This is necessarily a homogeneous radical ideal. For any subsets X ⊆ Y , we
have I(X) ⊇ I(Y ).

Corollary 10 If J is any proper homogeneous ideal in k[x0, . . . , xn] not con-
taining any power of the irrelevant ideal, then I(Z(J)) =

√
J , where

√
J is

the radical of J .

Proof: With minor adaptations the proof of Corollary 3 works in this case
too. ¤

We now have an inclusion reversing bijection between the homogeneous rad-
ical ideals in k[x0, . . . , xn] other than the irrelevant ideal and the algebraic
sets in Pn.
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2.2 Projective Morphisms

Polynomial Functions: We do not expect any nontrivial polynomial func-
tions on projective varieties. On one hand there is the technical challenge of
defining a polynomial which will evaluate to the same value on each point of
a line. On the other hand if k = C, then it can be shown easily using the
projection π that Pn is compact in the metric topology and any polynomial
function on Pn, being a global holomorphic function on a compact space, is
constant. A projective variety of Pn is a closed subset of a compact space will
also be compact and will carry no nontrivial global functions. This heuristic
argument suggests that we start defining the rational functions.

Rational Functions: If we define a rational function in the projective case
in exactly the same way as we defined it in the affine case, we would encounter
the same technical difficulty mentioned above. Namely, there is no canonical
way of choosing a representative from [x1 : · · · : xn], and any choice should be
available for calculating the value of the function. This detail is put aside by
using homogeneous polynomials. A rational function on a projective variety
X ⊆ Pn is defines as

φ : Pn 99K k

[x1 : · · · : xn] 7→ F (x0, . . . , xn)

G(x0, . . . , xn)
,

for some F, G ∈ k[x0, . . . , xn] which are homogeneous polynomials of the
same degree. Two other homogeneous polynomials F ′, G′ ∈ k[x0, . . . , xn]
of the same degree will define the rational function φ as F ′/G′ if and only
if FG′ − F ′G = I(X). The domain of φ as a rational function is X, but
as a function its domain consists of those points p ∈ X for which there
are homogeneous polynomials F, G of the same degree such that φ(p) =
F (p)/G(p) and G(p) 6= 0.

The set of rational functions form a field, the rational field of X, and is
denoted by k(X).

Regular Functions: For a point p ∈ X ⊆ Pn, a rational function φ ∈ k(X)
is called regular at p if there is a representation of φ of the form φ = F/G
where F,G ∈ k[x0, . . . , xn] are homogeneous of the same degree and G(p) 6= 0.



2.2. PROJECTIVE MORPHISMS 19

The set of all functions regular at p ∈ X form a ring, the ring of regular
functions at p, and this ring is denoted by Op,X , or by Op if the reference to
X is unambiguous.

If U is a subset of X, then as before we denote by O(U) the ring of regular
functions on U . Clearly

O(U) =
⋂
p∈U

Op.

The heuristic arguments of the first paragraph of this section are justified
now with the following theorem.

Theorem 11 If X ⊆ Pn
k is a projective variety, then

O(X) = k.

In other words, the only global regular functions are constants.

¤

Morphisms of Algebraic Sets: If X ⊆ Pn and Y ⊆ Pm are algebraic sets,
then a morphism from X to Y is given by

φ : X −→ Y

p 7→ [f0(p) : · · · : fm(p)]

where f0, . . . , fm ∈ k[x0, . . . , xn] are homogeneous polynomials of the same
degree not vanishing simultaneously on X. Projective morphisms are locally
affine morphisms in the sense that if Di ⊂ X is the set on which fi does not
vanish then

φ(p) = [
f0(p)

fi(p)
: · · · : fm(p)

fi(p)
]

where each fj/fi is a regular function on Di.

Two projective varieties X and Y are isomorphic if there are morphisms
f : X → Y and g : Y → X such that g ◦ f and f ◦ g are identity maps on X
and Y respectively.
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Biregular Theory: The affine biregular theory involved coordinate rings.
Two affine varieties are isomorphic if and only if their coordinate rings are
isomorphic. This fact follows from the fact that the affine coordinate ring
k[X] of an affine variety X ⊆ An has two identical descriptions. Both the
ring of global regular functions and the quotient ring k[x1, . . . , xn]/I(X) can
be taken as k[X]. However in the projective case we just saw that the ring
of global regular functions consists of only the constants. We can still define
the projective coordinate ring k[X] of a projective variety X ⊆ Pn as the
quotient ring

k[X] = k[x0, . . . , xn]/I(X).

This ring however is not a biregular invariant of X since it does not reflect
the properties of the global regular functions on X.

Rational Morphisms: Projective rational maps are defined in exactly the
same way as the affine case except that the functions are now projective
functions given as the ratios of two homogeneous polynomials of the same
degree.

If X ⊆ Pn and Y ⊆ Pm are projective varieties, a rational morphism

φ : X 99K Y

is given by φ(p) = [f0(p) : · · · : fm(p)] where each fi is a rational function on
X.

Two projective varieties X and Y are said to be birationally equivalent, or
simply birational, if there exist rational morphisms f : X 99K Y and g :
Y 99K X such that f ◦ g = IdV and g ◦ f = IdU on some open sets U ⊂ X
and V ⊂ Y .

Birational Theory: As in the affine case, any rational map φ : X 99K Y
induces a field morphism φ∗ : k(Y ) → k(X). Two varieties are birational if
and only if their function fields are isomorphic.
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2.3 Affine Covers

In the projective n-space define the open sets

Ui = {[x0 : · · · : xn] ∈ Pn
∣∣ xi 6= 0 },

for i = 0. . . . , n. It follows that Pn =
n⋂

i=0

Ui. The advantage of this construc-

tion is that each Ui is affine through the following map.

φi : Ui −→ An

(x0 : · · · : xn) 7→ (
x0

xi

, . . . ,
x̂i

xi

, . . . ,
xn

xi

)

where ̂ means that the term is omitted. Defining coordinates on An as

z
(i)
j =

{
xj−1

xi
If j < i,

xj

xi
If j > i.

the transition functions are given by

φj ◦ φ−1
i : φi(Ui ∩ Uj) −→ φj(Ui ∩ Uj)

z = (z
(i)
1 , . . . , z(i)

n ) 7→ (f1(z), . . . , fn(z))

where each fs(z) is either
1

z
(i)
j

or of the form
z

(i)
t

z
(i)
j

for some t = s− 1, s, s + 1.

This makes Pn a rational k-manifold in the sense that the transition functions
are regular rational functions. If k = C, then Pn is a complex manifold.

2.4 Quasi-Projective Varieties

Each φi : Ui → An is a bijective map. If Ui is given the induced Zariski
topology from Pn and An is taken with its usual Zariski topology, then φi

becomes a homeomorphism. If X ⊆ An is an affine variety, then the closure
of φ−1

i (X) in Pn is a projective variety.
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A subset X ⊆ Pn is called a quasi-projective variety if the closure of X in Pn

is a projective variety.

This concept collects together both affine and projective varieties and brings
forward the significance of searching for birational invariants.

From now on when we say “variety” we will mean a “quasi-projective vari-
ety”.

Since coordinate rings are not biregular invariants of projective varieties, we
keep the function field as the main algebraic structure associated to a variety.

Exercises

1. The projective variety Z(x0x2− x2
1) in P2 is isomorphic to P1, yet their coor-

dinate rings are not isomorphic.

2. The Krull dimension of the coordinate ring of a projective variety is equal to
dimX +1. In particular dimX = tr.degk(X)− 1. The surplus is contributed
by the irrelevant ideal.

2.5 Smoothness

A quasi-projective variety X ⊆ PN is going to be called smooth if it locally
looks like An where dim X = n. We want to make precise what it means for
a variety to locally look like an affine n-space.

Since smoothness is a local concept we want to define what we expect from
X if it is going to be smooth at p ∈ X.

Definition 12 A variety X is called smooth at p ∈ X if the local ring Op is
a regular local ring. Otherwise it is called singular at p. X is called smooth
if it is smooth at all of its points. It is called singular if it is not smooth.

Recall that a Noetherian local ring R with maximal ideal m is called regular
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if dim R = dimk m/m2 where k = R/m.

If Op is the local ring of X at p, then its maximal ideal m consists of all
f ∈ Op vanishing at p and the underlying field k is recovered as Op/m.

Let f1, . . . , fm ∈ k[x1, . . . , xn] is a set of generators for the ideal J . Define
partial derivatives of a polynomial formally, and for every p ∈ X = Z(J) let

Jac(f1, . . . , fm)(p) =

(
∂fi

∂xj

(p)

)

be the Jacobian matrix at p ∈ X associated with the given basis. Choose
another set of generators g1, . . . , gr for the ideal J . Then

rank Jac(f1, . . . , fm)(p) = rank Jac(g1, . . . , gr)(p).

X is smooth at p if and only if this rank is n− dim X.

Exercises

1. If X is singular at p, then dimk m/m2 > dimOp.

2. The set of singular points of a variety X is a proper algebraic subset of X.

3. If X is a smooth variety then dimX = dimOp for any p ∈ X.

2.6 Resolution of Singularities

If X and Y are varieties with X singular and Y smooth, and if there is a
surjective morphism

φ : Y −→ X

where φ−1 is defined as a rational map, we say that Y , or φ, resolves the
singularity of X. In this case there is an open subset U of X, necessarily
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containing the singular set of X in its complement, such that the restriction
map

φ : φ−1(U) −→ U

is an isomorphism.

When char k = 0, it is known, by Hironaka’s famous work [6], that a reso-
lution of singularities always exist. Moreover there is a way of obtaining Y
from X through a process called blowing up.

We first describe the blowing up of An at the origin. The process consists
of replacing the origin by the set of lines through the origin. As a result
of this, two distinct lines passing through the origin in An are assigned to
two different points in the new space at the origin while keeping their other
points unchanged. Thus they no longer intersect in the new space. We need
to show how this is accomplished.

Define

B0(An) = {((x1, . . . , xn), [y1 : · · · : yn]) ∈ An × Pn−1
∣∣ xiyj = xjyi, 1 ≤ i, j ≤ n }.

This is a smooth quasi-projective variety which is called the blowing up of
An at the origin. We have the canonical projection

π : B0(An) −→ An

((x1, . . . , xn), [y1 : · · · : yn]) 7→ (x1, . . . , xn)

which is an isomorphism outside the origin

π : π−1(An − {(0, . . . , 0)}) ≈−→ An − {(0, . . . , 0)}.
Moreover the origin is replaced by Pn−1 in the sense that

π−1 ((0, . . . , 0)) = Pn−1.

If X ⊆ An is an affine variety with (0, . . . , 0) ∈ X, then by restricting π to
π−1(X) we obtain B0(X), the blowing up of X at the origin. It turns out
that

B0(X) = {((x1, . . . , xn), [y1 : · · · : yn]) ∈ X × Pn−1
∣∣ xiyj = xjyi, 1 ≤ i, j ≤ n },

and π : B0(X) → X the canonical projection on the first component.



Chapter 3

Arf Rings and Closure

3.1 Preliminaries

Curve Branch: Consider resolution of a curve C

π : C̃ −→ C,

and take a point p on C. In general π−1(p) = {p1, . . . , pr}. Let Ui be an open
neighborhood of pi not containing any of the other pj’s and such that π(Ui)
does not meet any singular point of C with the possible exception of p itself.
We call π(Ui) a branch of the curve at p. If π is the composition of several
blow up maps at p, restricting our attention to a branch at p, we have the
assurance that the preimage of p under the first blow up is a single point,
and further each subsequent blow up gives a single point corresponding to
the preimages of p.

Multiplicity Sequence: Now let C denote a branch at p ∈ C and assume
that π = πm ◦ · · · π1 : C̃ −→ C is a resolution of C. Since C̃ is smooth,
there is an open neighborhood of π−1(p) which is an isomoprhic image of
some open subset U of the origin in A1

k. Composing this with π gives an
isomorphism of U with a neighborhood of p with A1. If C is in An, this
isomorphism is given by n regular functions on some open neighborhood of
An. Each of these regular functions are of the form fi(t)/gi(t) with gi(0) 6= 0
and fi(0) = 0, i = 1, . . . , n. The multiplicity of C at p is defined to be the

25
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smallest of the orders of these fi’s, where the order of a polynomial in one
variable is its order of vanishing at the origin. Note that the multiplicity of
a smooth point is 1.

Let mi be the multiplicity of (πi ◦ · · · π1)
−1(C) at (πi ◦ · · · π1)

−1(p), for i =
0, . . . , m where m0 is set as the multiplicity of C at p. The sequnce

m0, . . . , mr, 1, 1, . . .

is called the multiplicity sequence of C at p.

Effect of Blowing up: Assume that C lies in An and p is the origin. If
we blow up An at the origin and consider the local affine charts of the blow

up, we obtain (x1, . . . , xn) 7→ (
x1

xi

, . . . ,
xi−1

xi

, xi,
xi+1

xi

, . . . ,
xn

xi

). Assume now

that xj = φj(t), j = 1, . . . , n is a parametrization of C at p. Assuming that
the order of φi is smallest among the orders of the φj’s, the corresponding
expression

(
φ1

φi

, . . . ,
φi−1

φi

, φi,
φi+1

φi

, . . . ,
φn

φi

)

is a parametrization of the first blow up.

3.2 Formal Set Up

For this section k can be any field. Let k[[t]] denote the ring of formal power
series in the variable t. Any element of this ring can be represented as a
formal power series of the form

φ(t) = c0 + c1t + · · ·+ crt
r + · · · , where ci ∈ k.

This is a unique factorization domain.

We define the order of φ(t) as

ord φ(t) = m if cm 6= 0 and ci = 0 for all i < m.

We note that every element of order zero is invertible in k[[t]]. Moreover
if ord φ1(t) < ord φ2(t), then φ1(t)|φ2(t). In other words there is a unique
element (φ2/φ1)(t) ∈ k[[t]] such that φ2(t) = (φ2/φ1)(t)φ1(t).
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For any subring H of k[[t]] we define

S(H) = {ord w ∈ N
∣∣ w ∈ H }

which is a semigroup of N. The greatest common divisor of the elements of
S(H) is denoted by gcd(S(H)).

A formal curve branch C is defined to be the set up

x1 = φ1(t)
...

xn = φn(t)

where each φi(t) ∈ k[[t]] and for the formal power series ring H = k[[φ1, . . . , φn]]
generated by the φi’s in k[[t]] is such that gcd(H) = 1. We say that the
branch passes through the origin if φ(0) = · · · = φn(0) = 0, or equiv-
alently if the order of each φi(t) is zero. The formal power series ring
H0 = k[[φ1(t), . . . , φn(t)]] is called the ring associated to the branch. Note
that m0 is the smallest nonzero integer in H0, m0 = min S(H0\{0}).

If ord φ1(t) ≤ ord φi(t) for all i = 2, . . . , n, we say that the multiplicity of the
origin on this branch is m0 = ord φ1(t). In this case we define the blow up
of this branch at the origin to be the branch defined by

x1 = φ1(t) = ψ1(t)

x2 =
φ2(t)

φ1(t)
− (φ2/φ1)(0) = ψ2(t)

...

xn =
φn(t)

φ1(t)
− (φn/φ1)(0) = ψn(t).

This can be interpreted as the image of the blow up in the first open affine
chart, where the preimage of the origin is made the origin again by a change
of variables. The multiplicity of this branch is m1 = min S(H1\{0}), where
H1 = k[[ψ1(t), . . . , ψn(t)]].

Continuing in this way we obtain the sequence of rings H0, H1, . . . and inte-
gers m0,m1, . . . where mi = min S(Hi\{0}) for all i = 0, 1, . . . .
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The sequence m0, m1, . . . is called the multiplicity sequence of the branch C,
or equivalently of the ring H0.

Main question: The main question is to find the multiplicity sequence
starting with H0. Since each φi(t) is a formal power series with infinitely
many terms, we cannot attack the problem directly as we would not know
beforehand how many terms of the division φi/φj)(t) we should keep at each
stage so that none of the relevant terms of future blow up constructions will
be missed.

The ideal situation would be to recover the multiplicity sequence using only
the semigroup S(H0).

Exercises

1. Let the semigroup S(H0) consist of the integers {i0, i1, . . . , ih, . . . } where ih <
ih+1 for all h = 0, 1, . . . . Show that S(H1) is the semigroup of N generated by
the integers i2 − i1, i3 − i1, . . . , ih − i1, . . . .

2. The multiplicity eventually stabilizes in the sense that there exists an integer
r such that mr+i = 1 for all i = 0, 1, . . . . Equivalently Hr+i = k[[t]] for all
i ≥ 0. The geometric interpretation of this is that branch singularities are
eventually resolved.

3.3 Arf Rings

As in the previous section let H = k[[φ1(t), . . . , φn(t)]] be the subring of k[[t]]
generated by the formal power series φ1(t), . . . , φn(t) such that

gcd{ord φ1(t), . . . , ord φn(t)} = 1.

For every nonnegative integer m define

Im = {s ∈ H
∣∣ ord s ≥ m },

and for every m ∈ S(H) let sm denote a fixed element of order m in H.
Clearly if s′m is another element of order m, then sm = αs′m where α ∈ k[[t]]
is a unit.
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For every m ∈ S(H) we define the set

Im/sm = { φ

sm

∣∣ φ ∈ Im }.

This set is closed under addition but not necessarily under multiplication.

Let [Im/sm] denote the ring generated in k[[t]] by the set Im/sm. If Im/sm

is closed under multiplication then [Im/sm] is nothing but Im/sm itself. The
ring [Im/sm] does not depend on the choice of the element sm, so we use the
notation

[Im] = [Im/sm] .

Definition 13 A subring H of k[[t]] is called an Arf ring if the set Im/sm

is always closed under multiplication for every m ∈ S(H) and every element
sm of order m. The smallest Arf ring containing H in k[[t]] is called the Arf
closure of H and is denoted by ∗H

Since k[[t]] is clearly an Arf ring, and since the intersection of two Arf rings
is again an Arf ring, Arf closure of any ring exists.

We have a dual definition for semigroups.

Definition 14 A subsemigroup S of N is called an Arf semigroup if the set
{m′−m

∣∣ m′ ∈ S and m′ ≥ m } is a semigroup. The smallest Arf semigroup
in N containing S is called the Arf closure of S and is denoted by ∗S.

Again by observing that N is an Arf semigroup and that the intersection of
two Arf semigroups is an Arf semigroup, we conclude that Arf closure of any
semigroup exists.

The multiplicity sequence can now be redescribed using the above concepts.
Suppose we have: H = k[[φ1(t), . . . , φn(t)]] where each φi(t) ∈ k[[t]] with
gcd{ord φ1(t), . . . , ord φn(t)} = 1. Assume that the multiplicity sequence of
the branch formally parameterized by the φi(t)’s is m0,m1, . . . . We want to
describe a procedure to obtain this multiplicity sequence.
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Let H0 = H. Then clearly m0 is the smallest nonzero integer in S(H0).
Define H1 to be [Im0 ] for the ring H0. Then m1 is the smallest nonzero
integer in S(H1).

Having defined H0, . . . , Hi and the sequence of integers m0, . . . , mi, we define
Hi+1 to be [Imi

] of the ring Hi, and then mi+1 is define to be the smallest
nonzero integer in S(Hi+1).

The point of all these definitions is the following theorem.

Theorem 15 The multiplicity sequence obtained from H is the same as the
one obtained from ∗H. ¤

Observe that if H is an Arf ring, then necessarily S(H) is an Arf semigroup
but not conversely.

Exercises

1. If H is the subring of k[[t]] generated by some elements φ1(t), . . . , φn(t) ∈ k[[t]]
where the greatest common divisor of the orders of the φi’s is one, then H
is isomorphic to the ring k + ks1 + · · · + ksm + k[[t]]sm+1 where the si’s are
elements of k[[t]] with ord s1 < · · · < ord sm+1.

3.4 Constructing Arf Closure: Rings

3.5 Constructing Arf Closure: Semigroups
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[1] Arf, C., Une interprétation algébrique de la suite des ordres de multi-
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