NAME:....

Ali Sinan Sertöz

STUDENT NO:....

Math 431 Algebraic Geometry – Homework – Solutions

previous	11	12	13	TOTAL
100	10	10	10	130

Please do not write anything inside the above boxes!

Q-11) Let R and S be connected Riemann surfaces with R compact. Show that every holomorphic map $f: R \to S$ is surjective. Show how it follows from this that there are no non-constant holomorphic functions on a connected compact Riemann surface.

Answer:

Since f is a non-constant holomorphic map, it is an open mapping. Hence f(R) is an open subset of S.

On the other hand since f is continuous, f(R) is compact. Being a compact subset of a compact set, f(R) is closed.

f(R) being both open and closed, and non-empty, must be the whole of S, where we assume that Riemann surfaces are defined to be irreducible and connected.

If f is a holomorphic function on a compact Riemann surface then it is a holomorphic function to \mathbb{P}^1 which is not onto, since it does not take ∞ . By the above argument it must be constant.

Q-12) Let Λ be a lattice in \mathbb{C} generated by ω_1 and ω_2 . Define

$$g_2(\Lambda) = 60 \sum_{\omega \in \Lambda - \{0\}} \omega^{-4}$$
, and $g_3(\Lambda) = 140 \sum_{\omega \in \Lambda - \{0\}} \omega^{-6}$.

Show that

$$g_2(\Lambda)^3 - 27g_3(\Lambda)^2 \neq 0.$$

Answer:

On page 120, the curve C_{Λ} is defined as the set of points $[x:y:z] \in \mathbb{P}^2$ satisfying the equation

$$y^2 z = 4x^3 + g_2 x z^2 - g_3 z^3.$$

Lemma 5.20 on page 120 says that this curve is nonsingular. In particular it is smooth on the chart z = 1. This means that the cubic

$$4x^3 - g_2x - g_3$$

has no repeated roots. Therefore its discriminant, which is $g_2^3 - 27g_2^2$, is non-zero.

NAME:

NAME:

STUDENT NO:

Q-13) Let Λ , $g_2(\Lambda)$ and $g_3(\Lambda)$ be as in the previous question. Let C_{Λ} be the projective curve in \mathbb{P}^2 defined by

$$y^{2}z = 4x^{3} - g_{2}(\Lambda)xz^{2} - g_{3}(\Lambda)z^{3}$$

Once the curve C_{Λ} is known, described how to recover the lattice Λ .

Answer:

This is the content of Corollary 6.18 on page 151.