Due Date: 8 December 2016, Thursday, Class Time

NAME:

STUDENT NO:....

Math 503 Complex Analysis - Homework 3

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!

Check that there are **4** questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit. **Submit your solutions on this booklet only. Use extra pages if necessary.**

Rules for Homework Assignments

- (1) You may discuss the problems with your classmates or with me but it is absolutely mandatory that you **write your answers alone**.
- (2) You must obey the usual rules of attribution: all sources you use must be explicitly cited in such a manner that the source is easily retrieved with your citation. This includes any ideas you borrowed from your friends. (It is a good thing to borrow ideas from friends but it is a bad thing not to acknowledge their contribution!)
- (3) Even if you find a solution online, you must rewrite it in your own narration, fill in the blanks if any, making sure that you **exhibit your total understanding of the ideas involved**.

Affidavit of compliance with the above rules: I affirm that I have complied with the above rules in preparing this submitted work.

Please sign here:

Q-1) Construct a sequence of functions $f_n(x) \colon \mathbb{R} \to \mathbb{R}$ such that each $f_n(x)$ is real analytic, i.e. at every $x_0 \in \mathbb{R}$ each $f_n(x)$ has a Taylor expansion converging to the function itself, and moreover $f_n(x)$ converges uniformly to f(x) on \mathbb{R} where f(x) = |x|. Note that the uniform limit of these real analytic functions is not analytic. This never happens with complex analytic functions.

Q-2) Let D be the unit disc. Find all analytic functions $f: D \to D$ with at least two fixed points.

Q-3

- (a) Does there exist an analytic surjective map $f: D^* \to D$? Here D is the unit disc around the origin and D^* is D with the origin removed.
- (b) Does there exist an analytic surjective map $f: D \to D^*$?

Q-4) For any positive integer n calculate the integral

$$I_n = \int_0^\infty \frac{dx}{(x^2 + 1)^n}.$$