Due Date: 19 October 2017, Thursday

NAME:	

Math 503 Complex Analysis - Midterm 1

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!

Check that there are **4** questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit. **Submit your solutions on this booklet only. Use extra pages if necessary.**

General Rules for Take-Home Assignments

- (1) You may discuss the problems with your classmates or with me but it is absolutely mandatory that you **write your answers alone**.
- (2) You must obey the usual rules of attribution: all sources you use must be explicitly cited in such a manner that the source is easily retrieved with your citation. This includes any ideas you borrowed from your friends. (It is a good thing to borrow ideas from friends but it is a bad thing not to acknowledge their contribution!)
- (3) Even if you find a solution online, you must rewrite it in your own narration, fill in the blanks if any, making sure that you **exhibit your total understanding of the ideas involved**.

Affidavit of compliance with the above rules: I affirm that I have complied with the above rules in preparing this submitted work.

Please sign here:

Q-1) Let G be simply connected open subset of \mathbb{C} and u(x, y) a harmonic function on G. Show that a harmonic conjugate for u exists on G.

Q-2) Derive, in your own words, the polar form of the Cauchy-Riemann equations and use that to show that the log function is holomorphic on $\mathbb{C} \setminus \{z \leq 0\}$.

NAME:

STUDENT NO:

Q-3 Classify all holomorphic functions on a fixed connected open subset of $\mathbb C$ which take only real values.

NAME:

STUDENT NO:

- **Q-4**) Calculate the following numbers, always using the fundamental branch of the logarithm whenever a logarithm is required.
 - (i) *i*^{*i*}
 - (ii) $(-2)^i$.
 - (iii) $\pi^{\frac{1+i}{1-i}}$
 - (iv) $(\sqrt{3}+i)^{1+i\sqrt{3}}$
 - (v) Let $a_0 = i$ and $a_n = (a_{n-1})^i$ for n = 1, 2, ... Find a_n .