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Q-1) Prove the folowing identities where a € C but is not an integer.
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Remarks: The result of (c) is crucially used in the factorization of the sine function. All these
identities are proved in a very similar manner so they can all be considered as the manifestation of
a single idea. All the information needed to attack these identities are explained in detail on page
122 of Conway’s book.

Solutions start on next page.
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We consider the rectangle with the corners at
A=(nt ) B=(-n—=n),C=(n—— n) D=0+ n)
=n+—-,n =(—n——n =(—n——,—n =n+—,—n
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where n is a positive integer. Our path -, is traced counterclockwise.

Our first task is to find upper bounds for the moduli of sin 7z and cos 7z when 2z = = + iy € ,,. We
use the usual identities

cos(x +wy)m|” = cos” mx + Sinh” wy, | sin(x + y)w|° = sin” wx + Sinh” Y.
. 9 2 . h2 . . 2 s 2 : h2
On ypa we have z = (n + 1/2) + iy, for —n < y < n. Then
cos|(n + T +wym||® = cos®(n + T+ sinh” Ty = sinh” 7wy,
1/2 iy | *(n+1/2 inh? inh”
|sin[(n + 1/2)7 + iyn]|> = sin®(n + 1/2)7 + sinh® 7y = 1 + sinh® 7y.

Hence for z € yp4 we have

12
| cot mz|* = smh—7r2y <1,
1 + sinh® 7y
and 1
lesemz]? = ———— < L.
1+ sinh” 7y

On 45 we have z = z + in, for —n — 1/2 < x < n + 1/2. Then for z € y45 we have

cos? mx + sinh®7mn 1+ sinh®mn

|cot m2|* = —— —5— < ——— <2,
sin® wx + sinh” mn sinh” ™
9 1 1
|esemz]? = — < —— <1
sin“ wx + sinh* 7n — sinh“7mn




When 2z € vp¢, then —z € ypga, and when z € y¢p, then —z € y45. Hence the upper bounds for
| cot mz| and | csc wz| on these parts of the boundary are the same.

Hence for z € ~,, we have
|cotmz| <2 and |cscmz| < 1.
(a) Let a be a complex number which is not an integer. Let

mecotmz
(z+a)?

I,azf%fa(@ z

By residue theorem we know that [, , is equal to 27 times the sum of the residues of f,(z) inside
the contour ~,,. The poles of f,(z) inside thsi contour are z = a and z = k, for k = —n, ..., n. We
calculate the residues to be

fa(2) =

2 1
Res(fu(2), 2 = —a) = _sinz —, and Res(fu(z),z=1k) = m.

=271 (-5 + Y o
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’ sin? 7a  (k+a)?
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Hence we have

Now we take the limit of both sides as n goes to infinity. For this first we examine |I,, ,|.

For this purpose observe that when z € ~,,, we have |z| > |a| and |z| > |n|. Hence
(2 +a)*| = (Iz] = lal)* > |2]* > n?,

and it then follows that .

(z+a)?

1

_n2‘

We can know see that 5 )
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where 8n + 2 is the length of the contour +,,. It then follows that

Y

lim I, , = 0.
n—oo

This gives

li — 0,
nL%( sin® 7a ; k—l—a )

which is equivalent to what we wanted to establish

2 - 1
sinfra n:z—oo (a+n)?

(b) In the previous result we choose a = 1/2. Then we have

o [e.e] o

Z n—|—1/2 Z 2n+1 Z 2n—i—1



as claimed.

(c) We again use the contours ~,, for n > |al, but this time we set

meotmz

fa(2) =

22_a2'

For z € v, we again have

1 1
e < ot and |cotmz| < 2.
The poles of f,(z) inside the contour v, are z = +a and z = k, for k = —n, ..., n. Then the residues
are . .
Res(fu(2), 2z = +a) = %aﬁa, Res(fu(2),z =k) = e

We argue as in (a) above and find that the sum of the residues as n goes to infinity is zero. This gives
meotma i 1
a a? — k%’
k=—o0

Multiplying both sides by a, taking out the & = 0 case and observing that k£ and —k give the same
summand we get

1 o0
mecotma = — + )
a ;az k2

as claimed.

(d) We again use ~,, for n > |al, but this time we set

TCSCTZ
) =g

Repeating the above arguments we see that
T 1 (—1)k

Res(fa(2),2 = £a) = Res(fu(2),2=k) =

2a sinma’

Since we showed that
|esemz] <1 for z € 7y,

. T "L (1)
nh—{go (asinﬂa +kz_n k2 — a2> =0

we have, as above,

Rearranging this we get

81117Ta_ +Z k:2’

k=1
as claimed.



