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Q-1) Show that I'(2) never vanishes.

Q-2) Show that

, for Rez>1,

() A
¢(2) — "
where ((z) is the Riemann zeta function, and A(n) is the Mangoldt function defined on positive
integers as A(n) = log p if n is a power of the prime p, and is zero otherwise.
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Answer-1:

Here we recall the definition of the Gamma function.
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Also from the functional equation I'(1 + z) = 2I'(z) we get I'(1 — z) = —zI'(—z). We now have:
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Thus we proved that
['(2)['(1 — 2) = wcosecmz.

The right hand side never vanishes, so the left hand side and hence I'(z) never vanishes.
Answer-2:
Let n > 1 be an integer such that n = p*m where p is prime and (p, m) = 1. Consider the product
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—— + terms with denominator 7~ with  # n
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We recall the Von Mangoldt function defined on positive integers

A(n) {log p n = p" for some prime p and some integer k > 1
n)=

0 otherwise.



The above calcultion showed us that for Re z > 1,
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where

f(n) =kilogp, + -+ kelogp, = logn, where n = pi' - ~p§f is the prime factorization of n,

Since .
) =-Y 2,
we just proved that -
(i A ) () = '),

which proves the identity we want.



