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Q-1) Let f(z) = u(x, y) + iv(x, y) be a C1-function on C. Here as usual u and v are real valued C1-
function of the real variables x and y, and z = x+ iy. Assume that f is conformal. Show that f is
complex analytic.

Answer: We will show that f satisfies the Cauchy-Riemann equations.

Let z0 be an arbitrary point in C and z(t) = x(t) + iy(t) be a C1-curve passing through z0. Assume
without loss of generality that z(0) = z0. Also assume that z(t) is smooth in the sense that z′(t) 6= 0
for any t in its domain.

z′(0) is the tangent vector to z(t) at t = 0.

Define the image of z(t) under f as w(t) = f(z(t)). Since z(t) and f(x, y) are C1-functions, w′(t)
exists.

To say that f is conformal at z(0) means that the f rotates z′(0) by a fixed angle regardless of what
z′(0) is. In other words f is conformal at z0 if the difference argw′(0) − arg z′(0) is independent of

z′(0). We note here that argw′(0)− arg z′(0) = arg
w′(0)

z′(0)
. Now we want to explicitly write

w′(0)

z′(0)
.

Since we can write w(t) = f(z(t)) = f(x(t), y(t)) = u(x(t), y(t)) + iv(x(t), y(t)), using the chain
rule for real variables we have

w′(t) = fxx
′ + fyy

′

= fx
1

2
(z′ + z̄′) + fy

1

2i
(z′ − z̄′)

=
1

2
(fx − ify) z′ +

1

2
(fx + ify) z̄

′.

It then follows that
w′

z′
=

1

2
(fx − ify) +

1

2
(fx + ify)

z̄′

z′
.

For all possible choices of curves z(t) with z(0) = z0, this expression describes points on a circle

of radius
1

2
(fx + ify) and center 1

2
(fx − ify). The argument on this circle certainly changes and

depends on z(t) unless of course the the circle is a point, i.e. the radius is zero.

Hence if f is conformal we have

0 = fx + ify = ux + ivx + i(uy + ivy) = (ux − vy) + i(uy + vx),

which are precisely the Cauchy-Riemann equations. Hence f is analytic.

See: Ahlfors, Complex Analysis, Second Edition, McGraw-Hill, 1966, page 74.
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Q-2) If f(z) is analytic on a region G and is zero on a non-empty open subset U of G, then f(z) ≡ 0
on G. This is in stark contrast with what is possible in real analysis. To see this wide difference
between these two worlds construct a real valued, non-negative C∞-function f(x) of the real vari-
able x with the property that f(x) = 1 on the open interval (−1, 1), and is zero outside the interval
(−2, 2).

Answer: First consider the function

g(x) =

{
e−1/x when x > 0,

0 when x ≤ 0.

In Calculus courses we proved that this function is C∞.

Our second auxiliary function is defined as

h(x) =
g(x)

g(x) + g(1− x)
.

Check that h is non-negative, C∞, and h(x) = 1 when x ≥ 1, and is zero when x ≤ 0.

We finally define our required function as

f(x) = h(x+ 2)h(2− x).

Check that f satisfies our expectations.

See: Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer-Verlag, 1983, page
10.

Q-3) Let m ≥ 1 be an integer, and define

F (m) =

∫
|z|=1

sin z

zm
dz,

where the integration is taken counterclockwise. Find an explicit formula for F (m).

Answer:

For any analytic function f(z) we have, by Cauchy Integral Formula (Corollary 2.13, page 73)∫
|z|=1

f(z)

zm
dz =

2πi

(m− 1)!
f (m−1)(0).

Define

εm =


0 m ≡ 1 mod 4,

1 m ≡ 2 mod 4,

0 m ≡ 3 mod 4,

−1 m ≡ 0 mod 4.

Notice that if f(z) = sin z, then f (m−1)(0) = εm. Then we have

F (m) =
2πi

(m− 1)!
εm, m ≥ 1.
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Q-4) Show that

tan z =
∞∑
n=1

(−1)n−1
22n(22n − 1)B2n

(2n)!
z2n−1, |z| < π

2
,

where Bn are Bernoulli numbers with the convention that B0 = 1 and
n∑

k=0

(
n+ 1

k

)
Bk = 0, for

n ≥ 1.

Answer:

There are several ways to derive this formula but they all revolve around the same idea, ex = cosx+
i sinx, where x is real. Of course the Bernoulli numbers also play a crucial role.

We will follow Euler for Bernoulli numbers.

We let the following equation define the constants Bn. Letting z be a complex parameter we write

z

ez − 1
=
∞∑
n=0

Bn

n!
zn, |z| < 2π.

Note that the left hand side can be extended to z = 0, and this sets

B0 = 1.

Also observe that the series converges for |z| < 2π since the nearest pole to zero of the function
z/(ez − 1) is z = 2πi.

Now we determine the coefficients Bn.

1 =

(
ez − 1

z

)(
z

ez − 1

)
=

(
∞∑
n=0

zn+1

(n+ 1)!

)(
∞∑
n=0

Bn

n!
zn

)
=
∞∑
n=0

(
n∑

k=0

Bk

(
n+ 1

k

))
zn

(n+ 1)!
.

Thus the coefficients Bn are determined by the following recursive relation.

B0 = 1,
n∑

k=0

Bk

(
n+ 1

k

)
= 0 for n ≥ 1.

These are precisely the defining conditions of Bernoulli numbers.

B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = 0, B4 = − 1

30
, B5 = 0, . . .

Let

f(z) =
z

ez − 1
+
z

2
= 1 +

∞∑
n=2

bn
n!
zn.

Direct calculation shows that f(z) = f(−z), so f is an even function and hence the coefficients of
odd powers of z are zero.

B2n+1 = 0 for n ≥ 1.

Next we can verify by straightforward simplification the following identities.

f(z) =
z

2
coth

z

2
tanh z = 2 coth 2z − coth z

z tanh z = f(4z)− f(2z)

tan z = −i tanh iz
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Hence we have

tan z = −i tanh iz

= −i
(

1

iz
[f(4iz)− f(2iz)]

)
=

∞∑
n=1

(−1)n−1
22n(22n − 1)B2n

(2n)!
z2n−1

where the series converges for |z| < π/2 since this is where f(4iz) converges.
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