Let Y be an affine variety of dimension r in \mathbb{A}^n. Let H be a hypersurface in \mathbb{A}^n, and assume that $Y \not\subsetneq H$. Then every irreducible component of $Y \cap H$ has dimension $r - 1$.

Let B be the coordinate ring of Y and let φ be the prime ideal corresponding to the hypersurface H. By Theorem 1.11A (p7), φ has height 1. The coordinate ring of $Y \cap H$ is isomorphic to B/φ, and by Theorem 1.8A (p6), height $\varphi + \dim B/\varphi = \dim B$. From here it follows that $\dim Y \cap H = r - 1$.

The Segre Embedding. Let $\psi : \mathbb{P}^r \times \mathbb{P}^s \rightarrow \mathbb{P}^n$ be the map defined by sending the ordered pair $(a_0, \ldots, a_r) \times (b_0, \ldots, b_s)$ to (\ldots, a_ib_j, \ldots) in lexicographic order, where $N = rs + r + s$. Note that ψ is well defined and injective. It is called the Segre embedding. Show that the image of ψ is a subvariety of \mathbb{P}^N. [Hint: Let the homogeneous coordinates of \mathbb{P}^N be $\{z_{ij} | i = 0, \ldots, r, j = 0, \ldots, s\}$, and a be the kernel of the homomorphism $k[[z_{ij}]] \rightarrow k[x_0, \ldots, x_r, y_0, \ldots, y_s]$ which sends z_{ij} to x_iy_j. Then show that $\text{Im} \psi = Z(a)$.]
Ex 1.5.2 Locate the singular points and describe the singularities of the following surfaces in \(\mathbb{A}^3 \) (assume char \(k \neq 2 \)). Which is which in Figure 5?
(a) \(xy^2 = z^2 \);
(b) \(x^2 + y^2 = z^2 \);
(c) \(xy + x^3 + y^3 = 0 \).

Let the Jacobian matrix be defined as \(\theta(f)(P) = \left(\frac{\partial f}{\partial x}(P), \frac{\partial f}{\partial y}(P), \frac{\partial f}{\partial z}(P) \right) \). Then \(P \in \mathbb{A}^3 \) is a singular point of \(Z(f) \) if \(f(P) = 0 \) and \(\theta(f)(P) = 0 \).

(a) \(f = xy^2 - z^2 \). \(\theta(f) = (y^2, 2xy, -2z) = 0 \implies y = 0, z = 0 \) and \(x \) is free. This is on the surface. Hence the surface is singular along the \(x \)-axis. **Pinch point.**

(b) \(f = x^2 + y^2 - z^2 \). \(\theta(f) = (2x, 2y, -2z) = 0 \implies x = 0, y = 0, z = 0 \) which is also a point on the surface. Hence the surface has an isolated singularity at the origin. **Conical double point.**

(c) \(f = xy + x^3 + y^3 \). \(\theta(f) = (y + 3x^2, x + 3y^2, 0) = 0 \) This gives two points \((0, 0, z) \) which is on the surface, and \(((-1/27)^{(1/3)}, -3(-1/27)^{(2/3)}, z) \) which is not on the surface. Hence the surface is singular along the \(z \)-axis. **Double line.**

Ex 1.5.3 Multiplicities. Let \(Y \subseteq \mathbb{A}^2 \) be the curve defined by the equation \(f(x, y) = 0 \). Let \(P = (a, b) \) be a point of \(\mathbb{A}^2 \). Make a linear change of coordinates so that \(P \) becomes the point \((0, 0) \). Then write \(f \) as a sum \(f = f_0 + f_1 + \cdots + f_d \), where \(f_i \) is a homogeneous polynomial of degree \(i \) in \(x \) and \(y \). Then we define the multiplicity of \(P \) on \(Y \), denoted by \(\mu_P(Y) \), to be the least \(r \) such that \(f_r \neq 0 \). (Note that \(P \in Y \iff \mu_P(Y) > 0 \).) The linear factors of \(f_r \) are called the tangent directions at \(P \).
(a) Show that \(\mu_P(f) = 1 \iff P \) is a nonsingular point of \(Y \).
(b) Find the multiplicity of each of the singular points in (Ex. 5.1) above.

The Jacobian matrix at the origin is \(\theta(f) = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}) \) evaluated at \((x, y) = (0, 0) \).

(a) \(P = (0, 0) \) is a singular point of the affine plane curve \(Y \) if and only if \(\theta = (a, b) \neq (0, 0) \) if and only if \(f_1 = ax + by \) with \((a, b) \neq (0, 0) \) if and only if \(\mu_P(Y) = 1 \).

(b) In all these examples the singularity is the origin so to apply the definition we will check the degree of the smallest nonzero homogeneous part of the given polynomials: For 5.1-a, \(\mu_p(Y) = 2 \), for 5.1-b, \(\mu_p(Y) = 2 \), for 5.1-c, \(\mu_p(Y) = 3 \) and for 5.1-d, \(\mu_p(Y) = 3 \).
Ex 1.7.2 Let Y be a variety of dimension r in \(\mathbb{P}^n \), with Hilbert polynomial \(P_Y \). We define the \textit{arithmetic genus} of Y to be \(p_a(Y) = (-1)^r (P_Y(0) - 1) \). This is an important invariant which (as we will see later in (III, Ex. 5.3)) is independent of the projective embedding of Y.

(a) Show that \(p_a(\mathbb{P}^n) = 0 \).

(b) If Y is a plane curve of degree d, show that \(p_a(Y) = \frac{1}{2} (d-1)(d-2) \).

(c) Using the formula on page 52 again we have

\[
p_a(Y) = \frac{1}{m} (z + 1) \cdots (z + n),
\]

and \(P(0) = 1 \).

Then \(p_a(\mathbb{P}^n) = 0 \), regardless of what n is.

(b) Y is a hypersurface of degree d in \(\mathbb{P}^2 \), so we can use the formula derived on page 52,

\[
P_Y(z) = \binom{z+2}{2} - \binom{z-d+2}{2} = \frac{1}{2} ((z+1)(z+2) - (z-d+1)(z-d+2)).
\]

Putting \(z = 0 \),

\[
P_Y(0) = 1 - \frac{1}{2} (d-1)(d-2).
\]

The dimension \(r \) of Y is 1. Hence \(p_a(Y) = \frac{1}{2} (d-1)(d-2) \).

(c) Using the formula on page 52 again we have \(P_Y(z) = \binom{z+n}{n} - \binom{z-d+n}{n} \), and \(P_Y(0) = 1 - (-1)^n \frac{1}{m} (d-n)(d-n+1) \cdots (d-1) = 1 - (-1)^n \binom{d-1}{n} \). It follows that \(p_a(Y) = \binom{d-1}{n} \).

(d) Let \(Y = Z(f, g) \) in \(\mathbb{P}^3 \) where f and g are polynomials of degrees a and b respectively. We already know from Proposition 7.6 on page 52 that \(\phi_{S/(f)}(\ell) = \binom{\ell+3}{3} - \binom{\ell-a+3}{3} \), where \(S = k[x_0, \ldots, x_3] \). Consider the short exact sequence of grades S-modules

\[
0 \to S(-b) \xrightarrow{g} S/(f) \to S/(f, g) \to 0.
\]

Then

\[
\phi_{S/(f,g)}(\ell) = \phi_{S/(f)}(\ell) - \phi_{S/(f)}(\ell - b) = \binom{\ell+3}{3} - \binom{\ell-a+3}{3} - \binom{\ell-b+3}{3} + \binom{\ell-a-b+3}{3}.
\]

And putting in \(\ell = 0 \) we get

\[
\phi_{S/(f,g)}(0) = 1 - (1 + \frac{1}{2} ab(a + b - 4)),
\]

from where it follows that \(p_a(Y) = 1 + \frac{1}{2} ab(a + b - 4) \) since the dimension \(r \) of Y is 1.

(e) Let \(x_i, y_j \) and \(z_{ij} \) for \(i = 0, \ldots, n, \ j = 0, \ldots, m \) be the homogeneous coordinates of \(\mathbb{P}^n \), \(\mathbb{P}^m \) and \(\mathbb{P}^{mn+m+n} \) respectively. As in (Ex. I.2.14) \(z_{ij} = x_i y_j \) when restricted to \(\mathbb{P}^n \times \mathbb{P}^m \). In
particular any homogeneous form of degree \(d \) in \(z_{ij} \) restricted to \(\mathbb{P}^n \times \mathbb{P}^m \) is the product of a form of degree \(d \) in \(x_i \) and a form of degree \(d \) in \(y_j \). If \(P \) denotes the Hilbert polynomial, then we have \(P_{Y \times Z}(d) = P_Y(d) \cdot P_Z(d) \). In particular if \(\dim Y = r \) and \(\dim Z = s \), then we have

\[
p_a(Y \times Z) = (-1)^{r+s}(P_{Y \times Z}(0) - 1)
\]
\[
= (-1)^{r+s}(P_Y(0)P_Z(0) - 1)
\]
\[
= (-1)^r(P_Y(0) - 1) \cdot (-1)^s(P_Z(0) - 1) + (-1)^s[(-1)^r(P_Y(0) - 1)]
\]
\[
= p_a(Y)p_a(Z) + (-1)^sp_a(Y) + (-1)^rp_a(Z)
\]
as required.