

Take-Home Exam # 05 Math 633 Algebraic Geometry Due on: 12 December 2019 Thursday - Class Time Instructor: Ali Sinan Sertöz Solution Key

Q-1) Hartshorne, Example II.3.0.1, page 82.

After reading the three definitions on page 82 of Hartshorne's book, prove the following statements which are quoted in the above mentioned example without proof. Here X = Spec A is an affine scheme.

- (i) X is irreducible if and only if the nilradical nil A of A is prime.
- (ii) X is reduced if and only if nil A = 0.
- (iii) X is integral if and only if A is an integral domain.

Solution:

Throughout the following solutions X = Spec A is an affine scheme where A is a ring whose properties we will investigate.

(i)

(\Rightarrow) X is irreducible. Assume that the nil radical of A, nil $A = \sqrt{(0)} = \bigcap_{\mathfrak{p} \in \operatorname{Spec} A} \mathfrak{p}$ is not prime.

Then there exis elements a_1, a_2 in A such that $a_1a_2 \in \operatorname{nil} A$ but neither a_1 nor a_2 is in nil A. Define two closed sunsets of Spec A as follows.

$$V(a_i) = \{ \mathfrak{p} \in \operatorname{Spec} A \mid a_i \in \mathfrak{p} \}, \quad i = 1, 2.$$

For any $\mathfrak{p} \in \operatorname{Spec} A$, since $a_1 a_2 \in \operatorname{nil} A \subset \mathfrak{p}$, and since \mathfrak{p} is prime, either $a_1 \in \mathfrak{p}$ or $a_2 \in \mathfrak{p}$. Thus \mathfrak{p} is either in $V(a_1)$ or in $V(a_2)$. This shows that

Spec
$$A = V(a_1) \cup V(a_2)$$
.

But since a_1 is not in nil A, there exists a p such that $a_1 \notin p$. This shows that $p \notin V(a_1)$, and hence that $V(a_1)$ is a proper closed subset of Spec A. Similarly $V(a_2)$ is also proper. But this violates the fact that Spec A was taken as irreducible.

Hence nil A must be prime.

(\Leftarrow) X is not irreducible. Assume that the nil radical of A, nil $A = \sqrt{(0)} = \bigcap_{\mathfrak{p} \in \operatorname{Spec} A} \mathfrak{p}$ is prime.

Then there exist ideals $\mathfrak{a}_1, \mathfrak{a}_2$ in A such that the closed sets $V(\mathfrak{a}_1)$ and $V(\mathfrak{a}_2)$ of Spec A are proper, and Spec $A = V(\mathfrak{a}_1) \cup V(\mathfrak{a}_2)$. Hence there exist $\mathfrak{p}_1 \in V(\mathfrak{a}_1)$ which does not contain \mathfrak{a}_2 , and $\mathfrak{p}_2 \in V(\mathfrak{a}_2)$ which does not contain \mathfrak{a}_1 .

Thus there exist elements $a_1 \in \mathfrak{a}_1 \setminus \mathfrak{p}_2$, and $a_2 \in \mathfrak{a}_2 \setminus \mathfrak{p}_1$.

But $a_1a_2 \in \mathfrak{a}_1 \cap \mathfrak{a}_2 \subset \mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Spec} A$. Hence $a_1a_2 \in \operatorname{nil} A$. Since $\operatorname{nil} A$ is assumed to be prime either a_1 or a_2 is in $\operatorname{nil} A$. Say $a_1 \in \operatorname{nil} A \subset \mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Spec} A$. But this contradicts the choice of a_1 .

Hence $\operatorname{nil} A$ is not prime.

(ii)

 $(\Rightarrow) X$ is reduced. Assume nil A is not zero.

Then there exist a non-zero a in nil A and $a^n = 0$ for some integer n > 1. This means a belongs to every prime ideal \mathfrak{p} of A. Now a has a natural image in $A_{\mathfrak{p}}$, but then its image is nilpotent, contrary to the fact that X is reduced.

Hence nil A = 0.

 $(\Leftarrow) X$ is not reduced.

Then there exist $\mathfrak{p} \in \operatorname{Spec} A$ such that $A_{\mathfrak{p}}$ has a nilpotent element. Let a/b be a nilpotent element in $A_{\mathfrak{p}}$. First a/b is not zero in $A_{\mathfrak{p}}$ means that $ra \neq 0$ for any $r \in A \setminus \mathfrak{p}$. To say that a/b is nilpotent means also that a^n/b^n is zero in $A_{\mathfrak{p}}$ for some integer n > 1. This means that $ra^n = 0$ for some $r \in A \setminus \mathfrak{p}$. Then clearly we also have $(ra)^n = 0$, which implies that the non-zero element ra is in nil A.

Hence $\operatorname{nil} A$ is not zero.

(iii)

 $(\Rightarrow) X$ is integral.

Then in particular $\mathcal{O}(X) = A$ is an integral domain.

 (\Leftarrow) A is an integral domain.

Consider the open set $D(f) \subset \operatorname{Spec} A$ for some non-zero f in A.

We claim that $\mathcal{O}(D(f)) = A_f$ is an integral domain. If not, there would be elements a/f^n and b/f^m such that $a^n b^m / f^{n+m}$ would be zero in A_f . But this means there is an integer ℓ such that $f^{\ell} a^n b^m = 0$ in A. This is not possible since A is an integral domain. Hence every $\mathcal{O}(D(f))$ is an integral domain.

Now for any open subset $U \subset \operatorname{Spec} A$ let $D(f) \subset U$ be an open subset. Any zero divisor in $\mathcal{O}(U)$ would be restricted to a zero divisor in $\mathcal{O}(D(f))$. But we just showed that no such zero divisors exist in the latter. Hence $\mathcal{O}(U)$ must be an integral domain too.

Hence X is integral.