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ABSTRACT

MONOMIAL CURVES AND THE
COHEN-MACAULAYNESS OF THEIR TANGENT
CONES

Sefa Feza Arslan
Ph. D. in Mathematics
Advisor: Asst. Prof. Dr. Sinan Sertoz
February, 1999

In this thesis, we show that in affine [-space with [ > 4, there are mono-
mial curves with arbitrarily large minimal number of generators of the tangent
cone and still having Cohen-Macaulay tangent cone. In order to prove this
result, we give complete descriptions of the defining ideals of infinitely many
families of monomial curves. We determine the tangent cones of these families
of curves and check the Cohen-Macaulayness of their tangent cones by using
Grobner theory. Also, we compute the Hilbert functions of these families of
monomial curves. Finally, we make some genus computations by using the
Hilbert polynomials for complete intersections in projective case and by us-
ing Riemann-Hurwitz formula for complete intersection curves of superelliptic

type.

Keywords :  Monomial curves, tangent cone, Cohen-Macaulay, Grébner
basis, Hilbert function, genus.
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OZET

TEKTERIMLI EGRILER VE TEGET KONILERININ
COHEN-MACAULAY OLMA PROBLEMI

Sefa Feza Arslan
Matematik Boliimii Doktora
Danmisman: Asst. Prof. Dr. Sinan Sertoz
Subat, 1999

Bu tezde, [ > 4 igin her afin [-uzayinda orijindeki teget konileri Cohen-
Macaulay olan ve bu teget konilerinin minimum tretec sayisi istenildigi kadar
biiyiik olabilen tekterimli egriler oldugunu gosteriyoruz. Bu sonuca ulagmak
icin, sonsuz sayida tekterimli egri ailelerinin ideallerinin tam bir betimlemesini
veriyoruz. Bu tekterimli egri ailelerinin teget konilerini belirlemek ve bunlarin
Cohen-Macaulay olduklarini incelemek icin Grobner teorisini kullaniyoruz.
Ayrica, bu tekterimli egri ailelerinin Hilbert fonksiyonlarini hesapliyoruz.
Son olarak, projektif uzayda eksiksiz kesisimlerin cinslerini Hilbert polinom-
larin1 kullanarak, baz stiperelliptik egrilerin cinslerini de Riemann-Hurwitz
formiiliinden yararlanarak hesapliyoruz.

Anahtar Kelimeler : Tekterimli egriler, teget koni, Cohen-Macaulay,

Grobner bazlari, Hilbert fonksiyonu, cins.
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Chapter 1

Introduction

(Classification of singularities of varieties is an important problem in algebraic
geometry. The tangent cone of a variety at a point and Cohen-Macaulayness are
both important for the purpose of classifying singularities. Tangent cone of a
variety at a point, which gives local information by approximating the variety at
this point, is especially useful when the point is singular. Cohen-Macaulayness,
which is a local property, also gives information about the singularity. Vascon-
celos gives a beautiful characterization of Cohen-Macaulayness by expressing
that although most of the Cohen-Macaulay rings are singular, their singular-
ities may be said to be regular [43, p311]. Also, Cohen-Macaulayness makes
it possible to have connections between geometry, algebra, combinatorics and
homology, and this is a very rich ground for being able to do computations.
Thus, our principal aim is to check the Cohen-Macaulayness of the tangent

cone of a variety at the origin.

Let V be a variety in A" and I(V) C k[zy, 2o, - - -, ;] be the defining ideal
of the variety V. Let P = (0,---,0) be a point of the variety and Op be the
local ring of the variety at P. We have the isomorphism

gre(Op) = klzy, 29, -+, 2] /I(V). (1.1)

where (V). is the ideal generated by the polynomials f, and f, is the ho-
mogeneous summand of f € (V) of least degree. Thus, checking the Cohen-
Macaulayness of the tangent cone of a variety at the origin is checking the
Cohen-Macaulayness of the associated graded ring of the local ring of the va-

riety at the origin with respect to the maximal ideal.

It is an important problem to discover, whether the associated graded ring
of a local ring (R, m) with respect to its maximal ideal m is Cohen-Macaulay,
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since this property assures a better control on the blow-up of Spec(R) along
V(m). Moreover, the Cohen-Macaulaynes of the associated graded ring of a
local ring with respect to the maximal ideal reduces the computation of the
Hilbert function of a local ring to a computation of the Hilbert function of an
Artin local ring [40]. The computation of the Hilbert function of an Artin ring

is trivial, because it has a finite number of nonzero values.

We will study this problem for monomial curves. Our main interest is to
check the Cohen-Macaulayness of the tangent cone of a monomial curve C|

having parameterization

T =t", o =1t", oo, 1y =t™ (1.2)
where nq,ng,---,n; are positive integers. In other words, we are interested in
the Cohen-Macaulayness of gr,(k[[t",t"2, -, t™]]) or klzy, 29, -+, 2] /1(C)s.
The semigroup ring k[[t"*, "2, - -+ t"]] shows the connection between a mono-
mial curve and the additive semigroup generated by ni,ns,---,n;, which is
denoted by < ny,ns,---,n; > and is defined as

l
<np,ng,cc,m >={n| n:Zami, a; € Lo} (1.3)
i=1

where Zs, denotes the nonnegative integers. This makes monomial curves
a meeting ground for geometric, algebraic, and arithmetical techniques. In
literature, there are many results concerning the Cohen-Macaulayness of the
tangent cone of a monomial curve, which depend on studying the semigroup
ring < ng,ne,---,n; >. We prefer to study the problem by using the ring
k[xy, xg, -, 2] /I(C)., since we have the tools to find the generators of 1(C).
and to check the regularity of an element by using Grobner theory.

Our main result is to show that in affine [-space with [ > 4, the minimal
number of generators p(I(C),) of a Cohen-Macaulay tangent cone of a mono-
mial curve can be arbitrarily large. In order to prove this result, we determine
the generators of the defining ideals of infinitely many families of monomial

curves which have Cohen-Macaulay tangent cones.

The associated graded ring with respect to the maximal ideal of a local ring
(R, m) gives some measure of the singularity at R [38]. This is a consequence of
the fact that gr, (R) determines the Hilbert function of R. The Hilbert function
of the local ring (R, m) is Hg(n) = dimp/mm"/m"*1. Thus, we compute the

Hilbert series and polynomials of the families of monomial curves.

We are also interested in genus computations by using the Hilbert polynomi-

als for complete intersections in projective case and by using Riemann-Hurwitz
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formula for complete intersection curves of superelliptic type.

In Chapter 2, we give the theory of monomial curves and mention the
literature about monomial curves. We give the results about the generators of
the defining ideals of monomial curves. We mention the connection between
the semigroup < mnq,ns,---,n; > and a monomial curve, and naturally the
famous Frobenius problem. Then we recall some open problems related with
monomial curves. We also define tangent cone and prove some preparatory
results.

In Chapter 3, we define the Cohen-Macaulayness and the significance of this
property. We give two important checking criteria for the Cohen-Macaulayness

of a graded ring.

In Chapter 4, we mention the importance of the problem of Cohen-
Macaulayness of the tangent cone of a monomial curve, and discuss some entries
from the vast literature about this problem. We first give a checking criteria
for Cohen-Macaulayness of the tangent cone of a monomial curve (Theorem
4.4). We determine exactly the defining ideals of families of monomial curves
(Proposition 4.10) and compute the generators of their tangent cones (Propo-
sition 4.12). Our main theorem shows that all of these families of monomial
curves have Cohen-Macaulay tangent cone at the origin (Theorem 4.7). This

then proves our main claim.

In Chapter 5, we first find the Hilbert series and Hilbert polynomials of
the families of monomial curves found in Chapter 4 by using the Cohen-
Macaulayness of the tangent cone, see (5.2). We also make some genus compu-
tations by using Hilbert polynomials for complete intersections in the projective
case (Theorem 5.2). Lastly, we make genus computations by using Riemann-
Hurwitz formula for complete intersection curves of superelliptic type in the
affine case (Theorem 5.10 and Corollary 5.11).



Chapter 2

Monomial Curves

The main geometric objects we are interested in are monomial curves. These
curves are important since they provide a link between geometry, algebra and
arithmetic. This is a consequence of the relationship between the monomial
curves and semigroups generated by integers. The additive semigroup gener-
ated by ny,ne, -, n; is denoted by < ny,ne,---,n; > and is defined as
!
<Ny,MNo, - +,n >= {n|n:Zami, a; € Zso} (2.1)
i=1
where Z>( denotes the nonnegative integers. A monomial curve C in affine

l-space A! has parameterization

xp=1", o =1t", -,y =1t™ (2.2)
where nqy,m9,--+,n; are positive integers with ged(ny,ng,---,m;) = 1 and
{ni1,n9,---,n} is a minimal generator set for < ny,ng,---,n; >. The defining

ideal I(C) C k[xq,xo,- -, x| (where k is a field) is the prime ideal defined as
I(C)={f(z1,29,- -, 1)) € k[z1, 20, -+, ) | f(E","2,---,t") =0} (2.3)

where ¢ is transcendental over k. The obvious isomorphism with x; mapped to
thi for 1 <i <1

klwy, zo, -, 2] /I(C) = k[t™, "2, -+ [ t™] (2.4)

shows the relationship between the monomial curve and the semigroup. This

isomorhism leads to isomorphism of local rings,

(k[l'l’ :C27 e 7'xl]/[(c))(zhl’27'”aml) = k[tnl7tn2’ T ’tnl](tnl’thu"'7tnl)
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and the completions of the local rings give

k[, xo, -+, )]/ 1(C) = K[[t™, 72, - -, 7). (2.5)

2.1 Generators of I(C)

Herzog, in his paper [21] on generators and relations of abelian semigroups and
semigroup rings studies the relations of finitely generated abelian semigroups
and he shows that [(C') is generated by binomials F'(v, u) of the form

! !
F(v,p) = atas? - a)t — ool -l Z vin; = Z,umi (2.6)
i=1 =1

with v;u; = 0, 1 < ¢ < [. Herzog’s proof is as follows with some slight
modification.

Proposition 2.1 [21, Proposition 1.4] I(C) = ({F (v, u1)}).

Proof: Let J = ({F(v,p)}). J C I(C) is trivial. To prove the converse
part, we grade the polynomial ring k[z1,xs,- -, ;] with deg z; = n; so that
the map ¢ : klxy, zo, -+, 2] — k[t™, "2, - t™] satisfying ¢(z;) = t™ is a
homogeneous homomorphism of degree 0. Let f € I(C) be a polynomial of
degree d with respect to the defined grading. Then f = Y7, ka{"a5? - - /"
such that nyv; +nov+- - -+mry = d and since f € 1(C), o(f) = Z;’;l ktd=0
and >7" k; = 0. Thus,

f — (Z:nll k} :EV“ sz X sz) + k,ml.ll’ml 12/m2 X w;/ml (k?m —_ _ Zﬁ;l k:z)

— E?;ll k (xl’zla;.gzZ . $;’zl _ x’fmlxgwﬂ R x;’ml)

This proves that every f € I(C) is generated by F (v, u)’s. O

By using this proposition Bresinsky gives the following method for checking
whether a given set of polynomials { f1, fa, - -, fn} generates I(C) [8]. If it can
be shown that for all F(v,u) € I(C), there is an element f € (fi, fo, -, fa)
such that F(v,u) — f = (Il 2%)g with ¢ = 0 or ¢ = F(v/, /) with
IF (W, 1)) <O(F(v,p)), then {f1, fo, -, fu} generate I(C). Here O(F(v, pn))
is defined to be (F(v,u)) = Y., vin; = St wn;. This proves that any

binomial F'(v,u) can be generated by {fi, fo, -+, fu}. Thus, {fi, fo, -+, fu}
)



is a generator set for I(C'), since F'(v, u)’s also generate I(C'). Bresinsky uses
this technique to show that in affine [-space with [ > 4 , there are monomial
curves having arbitrary large finite minimal sets of generators for the defining
ideals [8]. He works with the monomial curves in affine 4-space with n; = ¢1¢a,
ne = q1dy, N3 = q1q2 + dy, Ny = qo2d; where g is even and ¢ > 4, ¢ = q2 + 1
and d; = ¢ — 1. He shows that the number of the generators of the defining
ideal of a monomial curve satisfying these conditions is greater than or equal to
q2. Thus, for arbitrary large ¢o, we have arbitrary large number of generators.
He also extends this result to higher dimensions.

Before we finish this section, we want to mention the relation between the
symmetric semigroups and the number of generators of the defining ideals of
corresponding monomial curves in affine 3-space and 4-space. Thus, we need
more information about semigroups. It is well known that for a semigroup <
ni,ng, - -+, ny > with ged(ny, no, - -+, n;) = 1, there is an integer ¢ not contained
in the semigroup such that every integer greater than c is in the semigroup.
This number ¢ = max{Z— < ny,ng,---,n; >} is also known as the Frobenius
number. An integer n €< ni,ng,---,n; >, 0 < n < ¢ is called a nongap, and
an integer n €< ny,ng,---,n; >, 0 <n < cis called a gap [10]. The semigroup
< ny,Ng,---,n; > is symmetric if and only if the number of gaps is equal to the
number of nongaps. In [25], Kunz gives a beautiful algebraic characterization
of symmetric semigroups by showing that < ni,no,---,n; > is symmetric if
and only if k[[t", "2, - - t™]] is Gorenstein. By using the notions of system of
parameters and irreducible ideal, a quick definition of a Gorenstein local ring
can be given as follows.

Definition 2.2 [4] Let (R, m) be a local ring of dimension d. Any d-element
set of generators of an m-primary ideal is called a system of parameters of the
local ring (R, m).

Definition 2.3 [4] A proper ideal which cannot be expressed as an intersection

of two ideals properly containing it 1s called as an irreducible ideal.

Definition 2.4 A local ring (R, m) is Gorenstein if and only if every system

of parameters of the ring R generates an irreducible ideal.

In our case, R = k[[t",t"2,---,t™]] and it has dimension 1. Thus, R is
Gorenstein, if every principal ideal (r) generated by an element r € R with

(r) = (t™,t"2,---,t™) is irreducible. In fact, we can define a Gorenstein
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ring as a Cohen-Macaulay ring, which has a set of parameters generating an
irreducible ideal, and Cohen-Macaulayness is the subject of the next chapter.

Herzog shows that for a monomial curve C' in (4.4) with [ = 3, the defining
ideal I(C) has 2 generators if and only if the semigroup < nj,ng,m3 > is
symmetric [21]. Bresinsky shows that for a monomial curve C' in (4.4) with
[l = 4, if < ny,n9,n3,ny > is symmetric, then I(C) is generated by 3 or
5 elements [9]. For higher dimensions, it is still an open question whether
symmetry always implies the existence of a finite upper bound for the number
of generators of the defining ideal of a monomial curve. Bresinsky has some
results for the monomial curves in affine 5-space [10].

2.2 Frobenius Problem and Monomial Curves

For a semigroup < nq,ng,---,n; > with ged(ny,ng,---,n;) = 1, finding the
Frobenius number ¢ (largest integer that is not contained in the semigroup)
is a very important problem. It is also known as Frobenius’s Money Change
Problem or the Coin Problem. The Frobenius problem has a solution in closed
form for I = 2, ¢ = niny — ny — ny. For n > 2, there are no known solutions
in closed form. There is a vast literature about this problem. Heap and Lynn
were the first to give a general algorithm [19]. In [41], Sertéz and Ogzliik,
and in [28], Lewin proposed algorithms with different approaches. For more
information about the literature, see [1]. Curtis showed that no “reasonable”

closed formula is possible [14].

Morales gives an algorithmic algebraic solution for the Frobenius problem
[34]. He first makes the observation that the Frobenius number of the semi-
group < mqy,ng, - -+, n; > is the index of regularity of the Hilbert function of the
ring A = k[t" t"2 ... t"]. Hilbert function of the ring A = k[t"™, "2 - ¢™]
is H(n) = dimyA,, where A,, denotes the set of homogeneous elements of A of
degree n and thus H(n) is either 0 or 1. Considering A = k[, za, - -, x| /I(C)
as a quotient of the weighted polynomial ring R = k[xy, 2, -, x;] with deg
x; = n;, as an R-module A has syzgies (i.e. free resolution)

0— @iR[—nl_l,i] — @Z’R[—TLZ_QJ'] .- —=R—->A4—-0 (27)
where R[—d] is called a twist of R, and R[—d]; = R;_4. Morales gives the

formula for the Frobenius problem by using this resolution,

!
c=mazx;{n_1,} — Z n;. (2.8)
i=1

7



Example 2.5 Let C' be the monomial curve
I = tG, To = t7, T3 = t8, Ty = tg.

From our computations with Macaulay [6], the defining ideal I(C) = (23 —
ToTy, ToTy — T1Ty, T3 — 2123, 5 — 22) and R/I(C) = klxy, 12, 23, 24]/I(C) with
deg x1 =6, deg xo =7, deg x3 =8 and deg x4 =9 has syzgies

0 — R[—40] @ R[—41] — R[—22] ® R[—23] ® R[—32] ® R[—33] ® R[—34] —
R[—14] ® R[-15] ® R[—16] ® R[-18] — R — R/I(C) — 0.

Thus, from the given formula
c=41-(6+7+84+9) =11

Indeed, < 6,7,8,9 >={0,6,7,8,9,12 + Z>o} and the largest integer not con-
tained in < 6,7,8,9 > is 11.

2.3 Tangent Cone of a Monomial Curve at

the Origin

Tangent cone of a variety at a point is a very important geometric object, which
approximates the variety at this point. This gives local information especially
when the point is singular. Thus, tangent cones are studied for the purpose
of classifying singularities. The monomial curve given by (4.4) has a singular
point at the origin if n; > 1 for all 1 < ¢ < [. Thus, the tangent cone of a

monomial curve at the origin is important for understanding monomial curves.

Let V = Z(I) be a variety in affine I-space A', where I is a radical ideal, and
let P =(0,---,0) be a point of the variety. We denote by f. the homogeneous
summand of f of least degree. For example, for the polynomial f = 22 — 2 +

2® + 2%y, we have f, = 2% — 3%

Definition 2.6 [31] Let I, be the ideal generated by the polynomials f. for
f € 1. The geometric tangent cone Cp(V') at P is V(I,), and the tangent cone
is the pair (V (L), k[z1, -, z]/L).



Definition 2.7 The minimal number of generators of I, which is denoted by
(1) is called the minimal number of generators of the tangent cone at the

origin.

The associated graded ring of the coordinate ring k[xy,xo,- -, 2;]/1(V) of
a variety V with respect to the maximal ideal m makes it possible to study
the tangent cone of the variety V at the origin in a different manner. The
definition of the associated graded ring with respect to any ideal is as follows.

Definition 2.8 Let A be a ring and I be any ideal of A. The associated graded

ring with respect to the ideal I is

gri(A) = @2 /I = (A/D) & (1)) & -- - (2.9)

We generally work with the associated graded ring of a local ring with
respect to its maximal ideal. If a local ring is obtained from a ring by localizing
it at one of its maximal ideals, then the associated graded ring of the ring
with respect to this maximal ideal and the associated graded ring of the local
ring with respect to its maximal ideal are isomorphic and this is the following

proposition.

Proposition 2.9 [31, p72] Let A be any ring and m be any mazimal ideal of
A. If B= A, and n =B, then gr,(B) = &2’ /n™! 2 G2 jm’ /m' !

Proof: We first prove that there is an isomorphism between m”/m* and
n” /nf for all integers r, k, with 0 < r < k, from which the proposition follows
immediately. Let ¢p : A — A,/n* be the natural map such that for any
a € A, gi(a) is the residue class of ¢ in A, /n*. Let us show that the map is
surjective. Let ¢ be any element in A,,. Since m is maximal and s ¢ m, we have
(s) +m = A. Thus, (s) + m* = A because no maximal ideal contains both s
and m*. Then there exist b € A and m € m* such that bs +m = 1. This means
that ¢x(b) is L and ¢i(ba) = ¢, which proves the surjectivity. Now it is time
to find the kernel of this map. If p(a) is 0 in A, /0", then ¢ € ¥, so that we
have a € m* and the kernel of the map is m*. Thus, for all k¥ € Zs, the map

Pr: AfmP — A /nF

is an isomorphism. By using this isomorphism and the exact commutative
diagram:



0— m/m¥ — A/mf — A/m" —0
3 \ 3

0— n/a¥ — A — A" —0,

we obtain the isomorphism between m”/m* and n” /n* for all integers 7, k, with

0 < r < k. This isomorphism proves the proposition. O

Thus, if V' = Z(I) is a variety in affine [-space Al where I is a
radical ideal, and P = (0,---,0) is a point of the variety, then Op =
(k[z1, x2, 2] /1) (21,09, ) a01d from Proposition 2.9 gr,(Op) = @2 gm’ /m"
where m is the maximal ideal in k[zy,---,2y]/I corresponding to P and
n = mOp. With this notation, the following proposition gives the relation-
ship between tangent cone and the associated graded ring with respect to the

maximal ideal of the local ring of V' at P.

Proposition 2.10 [31] The map k[zi, 22, -, 2]/I. — gr.(Op) sending the
class of x; in klxy, xa, - -+, 2] /L to the class of x; in gr,(Op) is an isomorphism.

Proof: m is the maximal ideal in k[zi,---,x,]/] corresponding to P =
(0,0,---,0). Then from Proposition 2.9,

ng(Op) — Zmz‘/mi+1
1=0

o0

— Z(Il’@""’Il)i/(xl’x%'"@l)iﬂ—i—[ﬂ(acl,mg,---,a:l)i
—
’Loo | |

= D (w1,m, ) (w1, wa, ) T A
=0

where I; is the homogeneous piece of I, of degree i (namely, the subspace of I,
consisting of homogeneous polynomials of degree 7). But

(11,29, -+, 1)/ (21,72, -, 7))L + I; = i homogeneous piece of
k[$1,$2, s ,iL‘l]/I*.
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Let C' be the monomial curve given in (4.4). From (2.4), we have
klxy,xo, -+, 2] /1(C) = k[t™,t"2,--- t™], and if Op is the local ring at the
origin, then from (2.5) Op = k[[t™,¢"2,--- t"]]. Let m denote both the maxi-
mal ideal of the local ring Op and the maximal ideal of the local ring Op.

By using the properties of completion [17, p195] and proposition (2.10)

grm(0P> = ng(@) = grm(k[[tnlvtma T 7tnl]]> = k[xhx?v T 7xl]/1(0)*
(2.10)

This isomorphism shows that the tangent cone of a monomial curve at the
origin can both be studied by using the ring gr, (k[[t", "2, - -, t™]]) or the ring
k['rh Ty« - 71:1]/](0)*
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Chapter 3

Cohen-Macaulayness

Cohen-Macaulayness is a very important property, which makes it possible to
have connections between geometry, algebra, combinatorics and homology. In
general, it is important to know whether the local ring of a variety at a point is
Cohen-Macaulay, because these properties can give some rough classification
of singularities (Gorenstein singularities, normal singularities, etc.) and also
varieties all of whose local rings are Cohen-Macaulay have some special prop-
erties [26, p190]. To support our interest in Cohen-Macaulay rings, we can
quote Eisenbud [17, p447]:

“These rings are important because they provide a natural context,
broad enough to include the rings associated to many interesting
classes of singular varieties and schemes, to which many results

about regular rings can be generalized.”

Vasconcelos makes a similar comment by expressing that although most of the
Cohen-Macaulay rings are singular, their singularities may be said to be regular
[43, p311].

Geometrically, Cohen-Macaulayness is also an important condition; if a
local ring of a point P on a variety X is Cohen-Macaulay, then P cannot lie

on two components of different dimensions, [17, p454].

Reminding that Cohen-Macaulay rings include rings of polynomials over
a field, rings of formal power series over fields and convergent power series,
Vasconcelos considers the Cohen-Macaulay rings as a meeting ground for al-
gebraic, analytic and geometric techniques [43, p311]. Thus, Hochster is quite
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right when he says “life is really worth living” in a Cohen-Macaulay ring [11,
p56].

3.1 Definition and Significance

Cohen-Macaulay rings can be characterized in many different ways with differ-
ent approaches. Vasconcelos mentions a theorem of Paul Roberts as one of the
fastest definitions of a Cohen-Macaulay local ring, which says that a Noethe-
rian local ring R is Cohen-Macaulay if and only if it admits a nonzero finitely
generated module FE of finite injective dimension [43, p311]. We prefer another
definition which depends on depth and height of ideals in the ring. Thus, we
need some definitions.

Definition 3.1 Let R be a ring. A reqular sequence on R (or an R-sequence)

is a set {ay,as, -, a,} of elements of R with the following properties:

Z) R 7é (a17a2a e 7an)R7

ii) The jth element a; is not a zero-divisor on the ring R/(ay, as, -+, a;—1)R
forj=1,2,---,n, where for j =1, we set (ay,as,---,a;_1) to be the zero
1deal.

Remark 3.2 For a ring R, every definition and theorem in this section can be
generalized to an R-module M, where M = R is a special case, but we prefer
giving the definitions and theorems only for R, since we are interested in rings.

The lengths of all the maximal R-sequences (where R is Noetherian) in an
ideal I are the same, which is a result of the following theorem. The theorem
uses the Koszul complex and homology of the Koszul complex. Thus, before
the theorem, we recall the construction of Koszul complex.

Definition 3.3 [27, 852] Let R be a commutative ring and let ay,ag,- -, a, €
R. The Koszul compler K(a; R) = K(ay,as, -+, ay,) is defined as follows:
Ko(ay,az, -+, a,) = R;
Ki(a1,ag,- -, a,) = the free R-module E with basis {e1,ea, -+, e,};

13



Ky(ai,aq,---,a,) = the free R-module NP E with basis {e;, \---Nej, }, i1 <
- <lp;

K,(ai,as,- -+, a,) = the free R-module \" E of rank 1 with basis e;\- - - Ne,..

The boundary maps are defined by di(e;) = a; and in general

dp . Kp(a/l,aQ, ce ,an) — Kp—l(a17a27 U 7an)

dp(eiy Ao+ Neg,) =0 (1) ageq Ao Né, A+ Nej,.

Since d,_1d, = 0, we have a complex
0— Ky(a;R) = -+ = Kp(e;R) = -+ = Ki(¢;R) = R— 0. (3.1)

The p—th homology of the Koszul complex is H?(K (a; R) = (Kerd,)/(Imd,+1).

Theorem 3.4 [43, p304] Let R be a Noetherian ring and ayi,as,- - -, a, be el-
ements in R. Let K(ay,---,ay,) be the corresponding Koszul complex and let
p be the largest integer for which Hy(K (a1, - -,a,)) # 0. Then every mazimal
R-sequence in I = (ay,---,a,) C R has length n — p.

Proof: See [43, p304]. O

This theorem gives us the opportunity to define the depth of an ideal of a
Noetherian ring.

Definition 3.5 Let R be a Noetherian ring. The depth of an ideal I s the

length of any mazimal R-sequence in I.

Some mathematicians prefer to use the term “grade” instead of the depth
of an ideal I, and they reserve the term “depth” for the depth of the maximal

ideal of a local ring. We prefer to use “depth” in all cases.

Definition 3.6 Let R be a commutative ring, and p be a prime ideal. The
height of p is the supremum of the lenths | of strictly descending chains

14
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of prime ideals. The height of any ideal I is the infimum of the heights of the

prime ideals containing 1.

In general, we have the inequalities
depth(7) < height(1) < u(I) (3.2)

where p(7) is the minimal number of generators of I. The relation height (/) <
() is a direct consequence of Krull’s theorem, see [4, p13]. For the proof of
the relation depth(/) < height(7), see [4, p108|.

We can now define a Cohen-Macaulay ring.

Definition 3.7 A Noetherian ring R is Cohen-Macaulay if depth(I) =height([)
for each ideal I of R.

Proposition 3.8 [4, 113] Let R be a Noetherian ring. The following proper-

ties are equivalent.

i) R is a Cohen-Macaulay ring,
ii) for every mazimal ideal m of R, depth(m) =height(m),
ii1) for every prime ideal p of R, depth(p) =height(p),

iii) for every ideal I of R, depth(I) =height([).

Proof: See [4, p114]. 0

From this proposition, if R is a local ring, it is sufficient to test the equa-
tion depth(m) =height(m) for its maximal ideal. On a local ring R with max-
imal ideal m, depth(m)=depth(R) and height(m)=dim(R) so that R is Cohen-
Macaulay if and only if depth(R)=dim(R). Let R be a Noetherian ring and m
be any maximal ideal. What makes Cohen-Macaulayness a local property is
the equality depth(m)=depth(R,,), which follows from the properties of Koszul

complex.
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3.2 Checking Criteria for Graded Rings

Being familiar with the notion of Cohen-Macaulayness, we can give some cri-
teria for checking the Cohen-Macaulayness of graded rings, since in the next
chapter, we will be interested in the Cohen-Macaulayness of some graded rings.
We need some more definitions.

Definition 3.9 A graded ring is a ring A together with a direct sum decom-

position
A=Ay B AL & Ay & - -+ as commutative groups

such that A;A; C Aiy fori,j > 0. Elements of A, are called elements of

degree r.

For the rest of this section, let us assume that Aqg = k, where £ is a field

and A is a graded algebra generated over k by elements of degree 1.

Definition 3.10 The numerical function Ha(n) =dimg(A,) for all n € Z>q
is called the Hilbert function of A, and Ha(t) = 3, 7  Ha(n)t" is called
the Hilbert series of A. The polynomial Ps(n) satisfying Pa(n) = Ha(n) for
sufficiently large n is the Hilbert polynomial of A.

The existence of the Hilbert polynomial was shown by Hilbert, and we know
more about the Hilbert polynomial.

Theorem 3.11 [43, p342] Let the graded ring A have dimenson d.

i) Ha(t) = ha(t)/(1 — )4, where ha(t) is a polynomial,

ii) the Hilbert polynomial Pa(n) of A is of degree d—1 with leading coefficient
ha(1)/(d— 1)

Proof: See [43, p342]. 0
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Definition 3.12 With this notation the multiplicity of a graded ring A is de-
fined to be ha(1) and it is denoted by e(A). The polynomial ha(t) is called the
h-polynomial of A.

Definition 3.13 Let A be a graded ring of dimension d. A system of pa-
rameters for A is a set of homogeneous elements ay,---,aq € A such that

dimA/(aq,- -, aq) is 0.

First important criterion for checking the Cohen-Macaulayness of a graded

ring is the following proposition.

Proposition 3.14 [43, p56] Suppose that aq,- -, aq is a homogeneous system
of parameters for a graded ring A. Then A is a Cohen-Macaulay if and only if
ai, -+, aq s a reqular sequence. Moreover, if ay,aq, - -+, aq are of degree 1, and
if Ha(t) = (ho+hit+---+ht")/(1—t)%, then the polynomial ho+hit+- - -+ht"
is the Hilbert series of the Artin ring A/(ay,---,aq). In particular, h; > 0.

Proof: The first assertion can be proved by using the relation between the
notion of flatness and Cohen-Macaulayness. The other assertions can be proved

by using the exact sequence induced by an element of degree 1 which is regular
on A,

0—A(-1) > A= A/(z) =0

which gives HA/(z) (t) = (1 — t)HA(t). O

Vasconcelos also remarks that the condition h; > 0 can be used as a pretest

for Cohen-Macaulayness.

Another useful test for checking the Cohen-Macaulayness of a graded ring
of the form k[zq,---,x,]/I, where I is a homogeneous ideal is the following
proposition.

Proposition 3.15 [6, pl17| Let A = k[zy,---,x,]/I, where I is a homo-
geneous ideal, and let dimA = d. Then A is Cohen-Macaulay if and only
if e(A) =dimgA/(aq,---,aq), for some (and hence all) system of parameters
ai,---,aq of degree 1.
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Proof: We adapt the proof of a similar condition for a local ring to the
graded ring A, see [4, p117]. Let A be Cohen-Macaulay ring and let aq,-- -, aq
be a system of parameters of degree 1. It follows from Proposition 3.14 that
ai,---,aq is a regular sequence. If aq,---,aq4 is a regular sequence, then A
is isomorphic to a polynomial ring R[T},---,Ty| with variables T3,---,T; of
degree 1, and R = A/(ay,---,ay). This can be shown by considering the map
o R[Ty, -, Ty — A with o(T;) = a; for 1 < i < d. This is a map of
homogeneous degree 0 and gives the isomorphism

(Af(ar, -+ aa)[Th, -+, Ta] = A.

Then
dlmk(A ) — ZdinllkA/(al""’ad) n — dz + d—1
. d—1
= (dimpA/ (a1, a0) g + -+
where di's are degrees of the k-basis clements of A/(ar, -+, ay).  Hence,

e(A) =dimxA/(aq, - -+, aq) follows immediately.

The converse part of the proof can be done with a similar approach. Let
ap,---,aq be a set of parameters of the ring A and let ¢ = (aq,---,aq). We
must show that aq,- - -, aq is a regular sequence. Let ¢ : (A/q)[T1, -, Ty — A
be the map such that ¢(7;) = a; for 1 <i < d. Let J = Ker(p). We will show
that if J # 0, e(A) <dimA/q. If J # 0, then it contains at least one form of
degree p. Consequently,

; n—d;+d—1 n—p+d—1
dimy(A,) < Ymed/e _
() ! d—1 d—1
. ’I’Ld7
= (dimzA/q — 1)7((1_11)! +--
From this equation, we obtain e(A) <dimzA/q =dimA/(aq,---,aq), which is
a contradiction. Thus, J =0 and aq, - - -, aq is a regular sequence. Hence, A is

a Cohen-Macaulay ring. O
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Chapter 4

Cohen-Macaulayness of the

Tangent Cone

Our main interest is checking the Cohen-Macaulayness of the tangent cone of a
monomial curve. In other words, we are interested in the Cohen-Macaulayness
of the associated graded ring of the local ring of a monomial curve at the origin
with respect to its maximal ideal. In general, it is an important problem to
discover, whether the associated graded ring of a local ring (R, m) with respect
to its maximal ideal m is Cohen-Macaulay, since this property assures a better
control on the blow-up of Spec(R) along V' (m). The blow-up of Spec(R) along
V(m) is Proj(R[mt]) and if the associated graded ring of R with respect to the
maximal ideal m (gr,(R)) is Cohen-Macaulay, then R[mt] is Cohen-Macaulay
[20, p86]. Also, the exceptional divisor of the blow-up is nothing but the
projective variety associated to the graded ring with respect to the maximal

ideal gr,(R). For more information on the blow-up algebra, see[17, p148§].

The associated graded ring with respect to the maximal ideal of a local ring
(R, m) gives some measure of the singularity at R [38]. This is a consequence
of the fact that gr,(R) determines the Hilbert function of R. The Hilbert
function of the local ring (R, m) is Hr(n) = dimp/mm”/m" ! in other words it
is the dimension of the n-th component of gr,(R) as a vector space over R/m.
The Hilbert function of R measures the deviation from a regular local ring [40].
Cohen-Macaulaynes of the associated graded ring of a local ring with respect
to the maximal ideal reduces the computation of the Hilbert function of a local
ring to a computation of the Hilbert function of an Artin local ring [40]. The
computation of the Hilbert function of an Artin ring is trivial, because it has

a finite number of nonzero values. To see how this reduction can be done, let
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gr(m) = m/m? ®m?/m®@- - - be the maximal ideal of the associated graded ring
gra(R). If gr(m) contains a nonzero divisor, then it contains a homogeneous
nonzero divisor T € m’/m*! for some ¢ > 1 and multiplication by Z is a one-
to-one vector space homomorphism of m"/m"™! to m"** /m" ™! for all n > 0.
Thus, if = is any lifting of T to R, then ¢gr,(R)/(T) = gra(R/(x)), where
dim(R/(z)) = dimR — 1. For the details of these arguments, see [38, Lemma
0.1]. If grn(R) is Cohen-Macaulay and dimR = d, then gr(m) contains a regular
sequence T7, - - -, T4 of length d. By using the argument above, if zq, - - -, x4 are
liftings of 7, ---,Tg, then gro(R)/(T1, -, Tq) = gra(R/(z1, -+, 24)). From
Theorem 3.14, Hr(t) = Hpjy, 2y (t)/(1 — t)* where Hp(t) is the Hilbert
series of the ring R and Hpg/(z,,...z,)(t) is the Hilbert series of the Artin local
ring R/(x1,---,xq).

Thus, it is an important problem to discover which local rings have Cohen-
Macaulay associated graded rings with respect to the maximal ideal. We will

consider this problem for monomial curves.

4.1 Literature

In literature, there are some results considering the Cohen-Macaulayness of
the associated graded ring gr,(R) of a local ring (R, m) having dimension d.
In [37], Sally proves that gr,(R) is Cohen-Macaulay, if u(m) = d, d + 1 and
e(R)+d—1, where p(m) is the minimal number of the generators of the maximal
ideal m of R and e(R) is the multiplicity of R. This result can be applied to Arf
rings such that for any Arf ring (R, m) having dimension 1, gr,(R) is Cohen-
Macaulay because e(R) = u(m) for an Arf ring, [1] and [29]. Sally also shows
that if (R, m) is a d-dimensional local Gorenstein ring and p(m) = d, d + 1,
e(R)+d—3or e(R)+d—2, then gr,(R) is Cohen-Macaulay, see [39] and [40].

We are interested in the problem of checking the Cohen-Macaulayness of

the tangent cone of a monomial curve C' having parameterization

x=1", xo=1t", -+, =1t (4.1)
where ny < ny < --- < ny are positive integers with ged(ny, ns,---,n;) = 1 and
{ni1,n9,--,n} is a minimal generator set for < ny,ng,---,n; >. Let us recall

the notation. I(C) is the defining ideal of C. I(C), is the ideal generated by
the polynomials f, for f in I(C), where f. is the homogeneous summand of
f of least degree, and p(I(C),) is the minimal number of generators of ideal
I(C). which is also called the tangent cone of the monomial curve C. The

20



isomorphism in (2.10) shown as a consequence of Proposition 2.10 makes it
possible to study this problem both by considering the associated graded ring of
R = K[[t™, t"2, - - -, t™]] with respect to the maximal ideal m = (¢, "2, ... ™)
( gra(k[[t™,t™2,---,t™]])) or by considering the ring k[z1,xo,- -, 2]/I1(C)..
In literature, generally gr, (k[[t",t"2,---,t"]]) is studied, because without the
help of Grébner theory, it is very difficult to find the generators of 1(C')., but
we prefer to study the ring klxy, o, -+, 2;]/1(C), with the help of Grobner
theory.

Hironaka was the first, who introduced the concept of standard base in his
famous paper, [23]. In our case, a set of generators fi,---, f; of I(C) is a stan-
dard base, if fi.,- -, fi« is a set of generators for I(C),. Herzog gives a charac-
terization of the standard base by using the concept of super-regular sequence,
and applies this characterization to monomial curves in order to obtain a check-
ing criterion for the Cohen-Macaulayness of gr,, (k[[t", "2, - t™]]) [22]. In
[18], Garcia obtains the same checking criterion by studying the semigroup

< ny,ng,---,n; >. He considers the subsets I'(k) C< ny,ng,---,n; > defined
as I'(k) = {X'_, a;n; such that a; € Zso and 3\_, a; > k}, and he finds crite-
ria for gr, (k[[t",t"2,---,t™]]) to be Cohen-Macaulay in terms of the integers
Ny, N, -+, Ny

Cavaliere and Niesi also attack the same problem by studying the semi-
group ring k[S] where S C N? is generated by (ny,0), (ng, ng —ny1), - - -, (ng, ny —
n1),(0,n1), [12]. This is a consequence of a theorem of Hochster which
says that grp,(k[[t",t"2,---,t™]]) is Cohen-Macaulay if and only if the Rees
ring A = @ _m' is Cohen-Macaulay, see [24] and the isomorphism be-
tween the Rees ring A and k[S]. Cavaliere and Niesi give a simple crite-
rion for the Cohen-Macaulyness of k[S] and thus for the Cohen-Macaulyness
of grp,(k[[t™,t", -+ t™]]) by introducing the notion of standard basis for S.
Molinelli and Tamone use this criterion to show that if nq,no, - - -, n; are arith-
metic sequence, then grp,(k[[t"™,t"2,---,t™]]) is Cohen-Macaulay, [32]. Re-
cently, Molinelli, Patil and Tamone give a necessary and sufficient condition
for grp, (k[[t"™,t"2,---,t™]]) to be Cohen-Macaulay, if ny, ng, - - -, n; is an almost
arithmetic sequence, in other words nq,---,n;_; is an arithmetic sequence.
Thus, for the case of monomial space curves, they determine exactly when
grm(k[[t™, t"2,t"3]]) is Cohen-Macaulay, [33]. In fact, Robbiano and Valla has
determined before exactly when gr,, (k[[t"*, t"2,t"3]]) is Cohen-Macaulay by us-

ing a more complex approach [36].

In [36], Robbiano and Valla give a characterization of standard bases, which
relies on homological methods and is particularly useful while dealing with
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determinantal ideals. They show that if I = (fy,---, f;), then f1,---, f; is a
standard base if and only if all the homogeneous syzygies of fi.,---, fi« can
be lifted through a suitable map to syzygies of fi,---, f;. By using this theory
with Herzog’s [21] description of the defining ideals of monomial curves for
[ = 3, they give a classification of these curves by their tangent cones at the
origin. They prove that a monomial curve C' having parameterization

T = tnl, To = tn2, T3 = " (42)

has Cohen-Macaulay tangent cone at the origin if and only if minimal
number of generators of the tangent cone, that is p(/(C).) is less than
or equal to three.

Our main theorem may be considered as the generalization of Robbiano
and Valla’s investigation for all the higher dimensions. We investigate and
show that in higher dimensions, minimal number of generators of a
Cohen-Macaulay tangent cone of a monomial curve can be arbitrarily
large. In other words, in /-space with [ > 3, there are monomial curves with
arbitrarily large u(I(C),) and still having Cohen-Macaulay tangent cones [3].

4.2 When is gr,(k[[t",t"2, .- t"]]) CM?

In this section, we state and prove a theorem, which we use for checking the
Cohen-Macaulayness of the tangent cone of a monomial curve C' by considering
the ideal /(C),. The theorem checks the Cohen-Macaulayness of the tangent
cone of a monomial curve by using a Groébner basis with respect to a spe-
cial monomial order. The standard reference for material related to Grobner
theory is [13]. Here, we only give the definitions of leading term and reverse

lexicographic order.

Definition 4.1 Let f = Y, cai"a8? ---x)" be a nonzero polynomial in
klxy,xo, -, x]. If for i = i, the l-tuple (ay,,,a,,, -, a;,) 1S mazimum
among the l-tuples (ay;, as;, - - -, a;) with respect to a given monomial order and
ci, # 0, then c;, x{ "™ xy®™ -+ 2" is defined as the leading term of f with
respect to this monomial order and denoted as in(f) = c;,, 27" ™ x5>™ - 2"

Definition 4.2 [13, p57] (Graded Reverse Lex Order) Let a, 3 € (Zso)'. We
say o >grevlex ﬁ Zf
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2?21 a; > 2?21 Bz

or if Y o = Y0, B and in (o — By, -+, 00 — [3), the right-most nonzero

entry is negative.

Example 4.3 The leading term of the polynomial f = 2x1x923+ 52331 + 32313
with respect to the graded reverse lexicographic order with x3 > xo > x1 1S
3x313, because w3roxy > wixy as (1 —0,1—-2,1—1) = (1,-1,0) and x3z3 >
xgrowy as (1—1,2—-1,0—-1)=(0,1,-1).

Theorem 4.4 [3] Let C' be a curve as in (4.1). Let g1,---,gs be a minimal
Grébner basis for 1(C), with respect to a reverse lexicographic order that makes
x1 the lowest variable, then gry, (k[[t™,t"2,---,t"]]) is Cohen-Macaulay if and
only if z1 fin(g;) for 1 <i <'s, where in(g;) is the leading term of g;.

The proof will be given after the following two lemmas.

Lemma 4.5 [5, Lemma 2.2] Let [ C k[zy,---,x;] be a homogeneous ideal and

consider reverse lexicographic order that makes x1 the lowest variable, then
Iizy=1%<in(l):x =1in(I) (4.3)

where in(I) is the ideal generated by in(f)’s with f € I.

Proof: See [5, Lemma 2.2]. 0

Lemma 4.6 gr,,(k[[t"™,t", -, t™]]) is Cohen-Macaulay if and only if t™ is
not a zero divisor in grp, (k[[t",t"2, - t™]]).

Proof: 1t follows from the isomorphism (2.10)

grm(k}[[tnl, tn27 U vtnl“) = ]C[Il, Loy 7xl]/I<C)*7

that ¢"™ is not a zero divisor in gr,(k[[t",t"2,--- t™]]) if and only if
x1 is not a zero divisor in k[zy,xq, -+, 2]/I(C).. For the graded ring
klxy,zo, -, x]/1(C)s, z1 is a system of parameters, since the dimension
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of the ring k[zy, xq,---,2]/I(C), is 1, and the dimension of the ring
klxy,xo, -, x| /(x1, [(C).) is 0 (because x52, - -+, x;" are all elements of I(C),
for some as, - - -, a;, since we have z5' — x7?, z5* — 27® and x}* — 21 in I(C)).
From Proposition 3.14, k[z1,zq, -+, 2;]/I(C). is Cohen-Macaulay if and only
if 21 is regular, which proves the lemma. O

We can now give the proof of our theorem which gives a checking criterion
for the Cohen-Macaulayness of the tangent cone of a monomial curve.

Proof of Theorem 4.4: t™ is not a zero divisor in gr,,(k[[t",t"2, -, t™]])
if and only if z is not a zero divisor in k[z1, 22, - - -, 2;]/I(C),. Combining this
with Lemma 4.5 and Lemma 4.6, gr,, (k[[t", "2, - - -, t"]] is Cohen-Macaulay <

I(C)e : 2y = 1(C)s & in(I1(C),) : 1 = in(I(C),) with respect to the reverse
lexicographic order that makes x; the lowest variable. From the definition of

a minimal Grobner basis,

in(I(C).) = (ingr), -+, in(g,)) and in(g;) [ inlgy) ifi #J.

Thus, grp,(k[[t",t"2,---,t"]]) is Cohen-Macaulay if and only if z; does not
divide in(g;) for 1 <i <. O

4.3 A family of monomial curves in [-space

which have CM tangent cones

In this section, we check the Cohen-Macaulayness of the tangent cone of the

monomial curves C in affine [-space having the parameterization
T =t", wy =1, -, 1 = t“ (4.4)

where a; = 274m(m + 1), ay = 274 (m(m + 1) + 1), a3 = 274(m + 1),
a; =27 (m+1)2+1), a5 =24 (m+1)2+2"% and a; = 2" (m +1)2 + 215 +
Y _g(—1)7277 for i > 6, with m > 2,1 > 4.

Our main result is the following theorem, which we prove at the end of this
section.

Theorem 4.7 [3] The monomial curve CY having parameterization as in (4.4)
has Cohen-Macaulay tangent cone at the origin, with pw(I(CY),) =2m +1—2.
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This theorem not only gives infinitely many families of monomial curves
having Cohen-Macaulay tangent cone at the origin, but also shows that in each
affine [-space with [ > 4, there are monomial curves having Cohen-Macaulay
tangent cone with arbitrarily large p(1(CH),). Our first aim is to give a com-
plete description of the defining ideal I(C[4).

Proposition 4.8 [3] The defining ideal 1(C) of the monomial curve C4

is generated by Gl = {g; = 2P o™ — 28l with 0 < i < m, f; =
m—j Jj+1_m—j

2] — 2w with 0 < j < m and h = 2104 — To23}.

From Proposition 2.1, I(C,,) is generated by binomials F'(v, i) of the form

4
Fv,p) =t -t — - al, Z ving = il (4.5)

with vy, =0, 1 <4 <1, n; =m(m+1),ny = m(m+1)+1,n3 = (m+1)% ny =
(m+1)?2+1 and 9(F(v, n)) is defined to be 7, vin; = S5 pins.

Thus, we can prove the lemma by showing that for all F/(v, ), there is an
element f € (fo, fi, -+ fm: 90,91, *» Gm, b) such that F(v,p) — f =11, 2¥g
with ¢ = 0 or ¢ = F(V/, /) with O(F (v, 1)) < O(F (v, 1)), since this proves
that any binomial F'(v, u) can be generated by { fo, f1, ' fm, 90,91, **» Gm, b}

Thus, the following lemma is crucial for our purpose, since it determines

the polynomials a:Z ZL‘ x%’xy“l in I(CH) with 1 < i4y,49,143,94 < 4 and v;,

minimal. These polynomlals xi — x x%’x with v;, minimal are very useful
for finding polynomials f satisfying f € (fg, fi,o s fms 9o, 915+ Gm, B) such
that F(v,u) — f = [1}, 2¥°g with g = 0 or g = F(/, ) with O(F(V/, 1/)) <

O(F (v, p)).

Lemma 4.9 [3] Let ny = m(m +1),ng =m(m+1)+1,n3 = (m+1)* ny =
(m+1)?+1 withm > 2. Ifvyng, €< ng,, ni,,ni, >, with 1 <y, 9, 13,14 < 4 (all
i ’s are distinct), vy, strictly positive and minimal, then vy = m+1, vo = m+1,
Vs =m, Vg = M.

Proof. For iy = 1, we have the equation

vim(m + 1) = pa(m(m + 1) + 1) + pg(m + 1)* + pu((m + 1) + 1) (4.6)

which leads to
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vim(m+ 1) = (m + 1) (gem + ps(m + 1) + pa(m + 1)) + (2 + pa)

and m + 1 | ps + py follows immediately. Thus, if either ps or py # 0, then
po + g > m+ 1. Also, from (4.6),

vim(m + 1) > pom(m + 1) + psm(m + 1) + pgm(m + 1),

we have vy > s + s + pq and substituting ps + 4 > m + 1 in this inequality,
we obtain vy > m + 1. If yus = puy = 0, then u3 = m and v; = m + 1. Thus,
the minimal positive value for v; is m + 1 and we have (m + 1)n; = mns.

For i; = 2, we have the equation
vo(m(m +1) +1) = pm(m + 1) + pz(m + 1)* + pa((m + 1) + 1) (4.7)

which leads to
vom(m + 1) + vy — pg = (m + 1)(pam + pz(m + 1) 4 pa(m + 1))

from which, vy > py and m + 1 | vo — py follow. Thus, o > m + 1. Since
vo =m+1, uy =m, ug = 1 and py = 0 satisfy the equation (4.7), the minimal
positive value for vy is m + 1 and we have (m + 1)ny = nym + ns.

For i, = 3, we have the equation
va(m +1)* = pum(m + 1) + po(m(m + 1) + 1) + pa((m + 1)* + 1) (4.8)

and m+ 1| ps + py follows immediately. If either po or puy # 0, then pg + g >
m + 1. Thus,

va(m+1)° > po(m(m+1) +1) + pa((m +1)* + 1)
> (p2 + pa)(m(m +1) +1)
> (m+1)(mm+1)+1)

from which we obtain v3 > m. If uy = py = 0, then v3 = m and pu; = m + 1.

Thus, the minimal positive value for v is m and we have mns = (m + 1)n;.

For i1 = 4, we have the equation
v((m+ 12 +1) = mm(m + 1) + pa(m(m + 1) + 1) + pz(m +1)*  (4.9)

If vy > po, then m+1 | vy — pp and vy > m+ 1. If vy = o, then vy =
pim + pg(m + 1) and vy > m. Otherwise, if vy < po, then by substituting
Mo = vy + 1 with ¢ > 0, we have
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valm +1) = pym(m + 1) +i(m(m + 1) + 1) + pz(m + 1)?

and vy > m. Since vy = m, pu; = 1, po = m and pug = 0 satisfy the equation
(4.9), the minimal positive value for v, is m and we have mny = ny + mny. O

From the equations (m + 1)ny = mng, (m + 1)ny = nym + n3, mnz =
m—+1)ny and mng = ny+mne tound 1n Lemma 4.9, we obtain the polynomials
1 d found in L 4.9 btain the poly ial
ot — it — s o — 2P and 27 — 127, which are the polynomials

— fims =90, fm and fo in GI4. We can now prove Proposition 4.8.

Proof of Proposition 4.8: For any F(v, ), if vy = puy = 0, then F(v,p) €
I(C,)Nk[xy, 29, x3]. Since the semigroup < m(m—+1),m(m+1)+1,(m+1)? >

18 Symmetric, ]<Cm)mk[xlvx2>x3] = (gOa fm) C (f07 fla T fm7gO7917 © s Gmy h)
from [21]. Thus, consider the binomials F'(v, u) with vy # 0:

1. If exactly one v; = 0: i) vy = 0 then f = xf1_<m+1)fm, ii) 5 = 0 then

f= xgg_(mﬂ)go, iii) v3 = 0 then f = —25°""f,

2. 11 = vy = w3 =0then vy > m, i) uy = pz = 0 then pz > m and
[=a™" fo— a8 fn, i) iy or pa # 0 then f = 2™ fy

3. 1) vy=13=0, v, #0then f =2 '2* h
i) 1y =1y =0, v3 #0: If gy =0, then f = m’f—(mH)go. Otherwise, if

vy > m, we have f = 522" "™ fy, and if v3 > m, we have f = 257" x* f,n..

The only remaining case is vy, 3 < m. Assume that vy < py. With this
assumption, the equation

vs(m+ 1) +vg((m+1)> +1) = pum(m+1) + po(m(m +1) +1) (4.10)

gives po = vy + k(m + 1) where k£ > 1. Substituting this in the equation
(5.3) and simplifying, we obtain

vs(m+1) + vy = pym + k(m(m+ 1) + 1) (4.11)
But this equation gives

vs+uvy = wpm+k(mim+1)+1) —vsm
> m+mm+1)+1)—(m—1)m>2m—2

which is a contradiction since v3, vy < m. Thus, vy > ps. From equation
(5.3), (m+1) | v4 — p so that vy = po. Substituting vy = s in equation
(5.3), we obtain

27



mim — vsm = V3 + 1y

which gives m | v3 + v4. Thus, f = f; for some j with 1 < j <m — 1.

iii) 1y =v3 =0, 1y # 0 a) If vy > m, then there are two cases: If py # 0,
F=ama2 o, If pg = 0, then pz > m and f = —25 " (s +
x190). b) If vy > m + 1, then f = —J:Z‘*xgz_(mﬂ)go. c) If vy < m,
vy < m + 1, then from the equation

v((m+1Dm+1)+u((m+1)2+1) =vim(m+1) +vz(m + 1)?

m+1|wv+wv and vy + vy = m+ 1. Thus, f = g; for some i with
1<:<m-—1.

We can now give the description of the ideal I(C!) by induction.

Proposition 4.10 [3] The defining ideal 1(CY) of the monomial curve CUY
with | > 4 1s generated by

e . . . . i i i1 —j
Gl = {g; = 2 "al™ — 22l with 0 < i <m, f; = oo™ — o 2l ™

with 0 < j <m, h = x114 — ToT3, T2 — T4T3,"+,T] — Ty_1T-2}
We need the following lemma of Morales in the proof.

Lemma 4.11 [35, Lemma 3.2] Let C be a curve having parameterization
x1=p1(t), s o1 = @a(t), =t (4.12)

where a is a positive integer and @;(t) € k[t] for1 <i <I—1. Let B be a positive

integer such that gcd(a, f) =1, and let C be the curve having parameterization
z1=@1(t7), -+, o = o (t7), 7 =t (4.13)

For any f(x1,---,2) € klz1,---,2], we denote by f the element
[y, 713171,5523) and let f1,---, fs be a set of generators for I(C). Then
f1, e ,fs is a set of generators for [(C’)
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Proof: See [35, Lemma 3.2]. O

Proof of Proposition 4.10. We prove the proposition by induction. The
[ = 4 case is given in Proposition 4.8. Now assume that the proposition is
true for some [ > 4 and that I(C) has the given generator set. By a trivial
computation, it is seen that C*F!l has parameterization,

T =2, 1y =292 .. gy = t2U gy = U@ (4.14)
where a;’s are as in 4.4.

Let C’ be the curve having the parameterization,
Ty =t pg =%,y =t xpy =t (4.15)

Let f € I(C'"). Then f(t®,t%, ... t% t%-17%) = ( and since any f €

klx1, 29, -+, 2, x141] can be written as

flrr, - o) = fl@n, -0, T4 — T8 + 2-17)

= (v —zmw) fi(zn, - ) + faz, - - @),

for o2, - g g-rtan) = (O implies fo(t*, %2, -+, t%) = 0. Hence, any f €
I(C") can be written as f = (2141 — xi_121) fi + fo with fo € I(CH). Thus,
I(C") is generated by the generator set G U {z;,1 — 212}

Applying Lemma 4.11 with C' = €’ in (4.15), C = CI-1 in (4.14) and
B =2, I(CI+Y) is generated by G = G U {27, — 2;_12;}. Thus, the
induction is completed. ]

Knowing the description of the ideal I(CM), it is possible to to compute
a set of generators of I(Cl), by using the following algorithm, known as the
tangent cone algorithm [13, p.467]. We first find a generator set of I(CI1)"
k[t, 1,29, -, x;] which is the homogenization of I(CH). It can be found by
homogenizing the elements of a Grébner basis of I(Cl) with respect to an
any graded monomial order by using the homogenization variable ¢. From
the obtained generator set of I(CIH)" another Grobner basis Gy,---, G, is
computed with respect to a monomial order, such that among monomials of
the same total degree, any monomial involving ¢ is greater than any monomial
involving only 1, 2o, -+, x;. For example, lexicographic order with ¢ > z; >
Ty > - > x; is such an order. Then I(Cl), is generated by the homogeneous
summands of the least degree of G1(1,z1,..,2;), -+, Gs(1, 21, -+, x7).
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Proposition 4.12 [3] I(CWY), is generated by (GH), = {g; = a7 ‘a4 —
oyt with 0 <i <m —1, fi = xéxTﬁj with 0 < 7 <m, h = 124 — Tox3,

x — wyws, - 1 — 1m0 }. In particular, p(I(CY),) =2m +1 — 2.

The proof is a direct application of the tangent cone algorithm with the

following lemmas and will be given after the lemmas.

Lemma 4.13 [3] Gl = {g; = 27" o™ — 2372l with 0 < i < m, f; =
x3x2" Tl with 0 < j < m, h = x124 — To13, T2 — 143,00, T —

Ti_1T—o} 1is a Grébner basis with respect to the graded lezicographic order with

Ty > Tyj—1 > -+ >Tyg > Tog >T3 > T1.

Proof. Let Gl be denoted by G during the proof. For i < j, S(gi,g;) =
) zxéﬂxl —ay ) jxéﬂ =y jx?l(% oy ) xs l) (T41—2223)P1
which shows that S(g;,9;) —¢ 0. S(gi,h) = 2"~ ”133?1 b ”2374 T3 =
T3Gi—1, SO that S(gl,h) —a 0. Also, S(fi, f;) = @ ‘akaP™ — o} "alal™ =
zixy ATl — ’) = (zax1 — wax3)pe. Thus, S(fi,f;) —a O.
S(fi,h) = abap—! :Eg” ey = a5f;_1, and S(fi,h) —¢ 0. For i < j,

S(fi,g5) = 5l — 2 g _j+; which shows that S(f;, g;) —=¢ 0, and the case

—1

t > j is similar. Let p; = x? — xj_127j_2 with j > 5. Then since ged(p;, f) =1

for any f € G, S(pj, f) —=¢ 0. O

This lemma gives us the opportunity to obtain 7(C4)" by homogenizing the
generators of G so that I(Cl)" is generated by (Gl = {g; = a7 "2t —
x;”’+1x4,0<z<m fh—txg;:p TG0 < < m, b= xyw —

2 2
T3, Xy — X4z, ", L] — xl—ﬂl—g}.

Lemma 4.14 [3] (G is a Grébner basis with respect to the lexicographic
order witht > x; > xj_1 > -+ > X4 > Tg > T3 > T1.

Proof. Let (GI1)" be denoted by G" during the proof. S(g;, g;), S(gi, h) and
S(fl, 1) = S(fi, f;) —n 0 from Lemma 4.13. S(fl, g;) = a7 a7 1 4
27 g jom for j > m—i. For j < m—i, S(fZ Lg;) = il Jgo—l—x”lxg e
Thus, S(f!, g;) —gn 0. For i # m, S(f!,h) = xof, and S(fI',h) —gn O,
while S(f! h) —gn 0, since ged(in(fl),in(h)) = 1. Let p; = 25 — x;_12;_9
with j > 5. Then since gcd(p;, f) = 1 for any f € G", S(p;, f) —an O O
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Proof of Proposition 4.12: According to the tangent cone algorithm, we
must compute a Grobner basis from (GI)" with respect to a monomial order,
such that among monomials of the same total degree, any monomial involv-
ing t is greater than any monomial involving only x4, - - -, x;, which is done in
Lemma 4.14. Again from the tangent cone algorithm, I(C!Y), is generated by
{g; = o772ttt — 207t with 0 < i < m, fi= ] with 0 < j < m,
h = x1x4 — To73, x% — T4T3,++, X7 — T_1T_2}. Since g, can be generated
by fi and f/,, we can give a minimal generator set Gl for I(C,,), such that
Gl = {g; = a2t —af M2l 0<i<m—1, fj = a0 < j < m,

_ 2 2
h = T104 — Tox3, T5 — 4T3, -+, Tj — Tj_1Ty—2}. O

We can now prove Theorem 4.7.

Proof of Theorem 4.7: I(CW), is generated by (GU), which is also a
minimal Grobner basis with respect to the reverse lexicographic order with
T > > x> a3 > a3 > a1 (Let (GH), be denoted by G.. S(f, f}) =0,
S(fj;h) —a. 0, S(gi,h) —a. 0, S(gi,9;) —c. 0 and S(f],9;) —¢, 0. For any
f € G, and p; = arjz — xj_12;_9 with j > 5, S(p;, f) —¢+ 0). We can now
apply Theorem 4.4. Since z; does not divide in(g;) = 25"}, 1 < i < m,
in(f;) = Ha ™ 0 < j < m, in(h) = zoxs and in(p;) = x3 with j > 2,
klxy,- -+, 2]/1(CWH), is Cohen-Macaulay. O

Theorem 4.7 shows that the monomial curve Cl4, for which u(1(CH),) =
2m + | — 2 has Cohen-Macaulay tangent cone, where m > 2, | > 4. Thus,
there are monomial curves having not only Cohen-Macaulay tangent cones but
also arbitrarily large minimal number of generators for the ideal defining the
tangent cone in all affine [-spaces with [ > 4.

Remark 4.15 (a) By the same approach, the monomial curves C,, having the
parameterization

gr(nt1)+1 y = g(nt1)+2 t(n+1)2+1

T, = T X3 = | g = T2 (4.16)

with n > 3, can be shown to have Cohen-Macaulay tangent cones and
p(I(Cr)s) = 2n+ 3.

(b) By a similar approach, Bresinsky curves Cy,, see [8], having the param-
eterization

T =t12 gy = tqldl, T3 = 75!11!124-(117 Ty = a2d1 (4.17)
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with g1 = @+ 1, q2 even, go > 4, di = go — 1 can also be shown to have Cohen-
Macaulay tangent cones. The approach depends on checking that x4 s not a
zero divisor in the associated graded ring by considering the generators F (v, u),
since the homogeneous summands of the least degree of F(v,u)’s generate the

I(Coy)s-
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Chapter 5

Hilbert Functions and Genus

Calculations

In the first section of this chapter, we will find the Hilbert series and Hilbert
polynomials of the families of the monomial curves in (4.4). In the second
section, we will make some genus computations by using Hilbert polynomials
for complete intersections in the projective case, and in the last section we will
make genus computations by using Riemann-Hurwitz formula for complete

intersection curves of superelliptic type in the affine case.

5.1 Hilbert Series of I(Cﬂg)

We want to compute the Hilbert series of I(Cl]) in (4.4). By the Hilbert series
of I(C), we mean the Hilbert series of the local ring R = k[[t®,t%, ... t4]],
where a;’s are as in (4.4). The Hilbert function of the local ring (R, m) is
Hgr(n) = dimpm"™/m" ™ where m = (t*,¢% ... t%). We have our famous
isomorphism

ng(R) = grm(k[[t(llvt@» e 7tal“> =5= k[xl’ L2y 7371]/[(0[])*

m

so that they have the same Hilbert function and Hilbert series.

From Theorem 4.7, k[x1, 9, - - -, 23] /I(CH), is Cohen-Macaulay for m > 2,
[ > 4. We first compute the Hilbert series of k[xy, zo, x5, 24]/1(CH),. Since
S = k[xq, x9, 23, 24] /I(Cy,)s is Cohen-Macaulay, from Proposition 3.14, S and
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its Artinian reduction S/(z;) have the same h-polynomial. From Proposition
4.12, the generators of I(CY), is known, thus a direct computation shows that
the Hilbert series H[4(¢) of the monomial curve C,, is given by
moH(2i + 1)t + mt™

1—1

Hy(t) = (5.1)

We can now compute the Hilbert series of S = k[xy,---,;]/1(CW), for
all [ > 5. Since Gl obtained in Proposition 4.12 is a Grébner basis with
respect to the reverse lexicographic order with x; > x; 1 > -+ > x5 > x4 >
Ty > x3 > 11, k[T, -+, 2]/ I(CY), and k[zy,---,2;]/in(Gl ) have the same
Hilbert series, where in(Glll ) is the ideal generated by the leading terms of
the elements of the generator set GL@L* with respect to this order. (This is
a well known result going back to the famous article of Macaulay [30].) We
have in(Glx) = (252l 0 < i <m — 1, [ = a0 < j < m, zoxs,
22,---,x}). To compute the Hilbert series of k[z1,---,z;]/in(Gll ), we need
the following proposition.

Proposition 5.1 [4, Proposition 2.4] Let I C A = k[zy,- -+, x;] be a monomial
tdeal. Suppose the variables xq,---,x; can be partitioned into disjoint sets Vi U
---UVj such that each generator of I belongs to subring k[V;] for somei. Define
I, =1nNk[V;]. Then

Har(t) ==y Hay, ().
Proof: The proof is a consequence of the tensor product decomposition

A/l =kW/L Q- Qi k[V;]/1;.

The ideal m(GLﬂL) satisfies the assumptions of the above proposition. Thus,
the Hilbert series H!Y(t) of the associated graded ring of the monomial curve
Cl for [ > 4 is given by
(14 )42 (20 + 1)t + mt™)

Hll(1) = =

(5.2)

From Definition 3.12, the multiplicity is the integer obtained by evaluating
the h-polynomial at t+ = 1. Thus, the monomial curve CY has multiplicity
2=4m(m 4+ 1). Moreover, the Hilbert polynomial of the monomial curve Cl is
also 2'=4m(m + 1).
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5.2 Hilbert Polynomial of a Projective Com-

plete Intersection

Let S denote the homogeneous coordinate ring, k[xo, - --,x,| of P} where k is
an algebraically closed field, usually C. We assume that there are hypersurfaces
Hy,---, H, of P of degrees dy,---,d, respectively such that X, = Hyn---N
H, is a complete intersection. The hypersurfaces Hi,---, H, correspond to

homogeneous polynomials f1,---, f,. € S of degrees dy, - - -, d, respectively.

5.2.1 The Hilbert Polynomial of X,

Theorem 5.2 [2] The Hilbert polynomial H,(z) of X,. is given by the following
formula
Hi(z)=p(z)+ > (D" > ¢lz—dy—-—d,) (5.3)
m=1 1<iy <<t <r
where

gp(z)—i(z+1)(2+2)--~(2+n): ( Z+n).

Proof: From [15, Theorem 2], the Koszul complex K(fi,---, f,) defined
in Definition 3.3 is a free resolution of S/(fi,---, f.). Namely, we have the
following exact sequence

0—= A"(S) = - = A}(S") =S =S — S/(fr, -, f) = 0. (5.4)
In [16], in order to grade
AT (ST) = &y Sei, N Ne;,, (1<m<r), (5.5)
1<i1 < <im<r
a degree d;, +- - -+d;,, is assigned to a basis element e;, A---Ae;, , so that (5.4)
is an exact sequence with maps homogeneous of degree zero. Now imposing

the additive property of Hilbert polynomials on the exact sequence (5.4), the

formula given in (5.3) is obtained. O

Corollary 5.3 The arithmetic genus, g.(X,), of X, is given by the formula

T

ga(Xr) = Z (_1)m+n—r Z @(_dil - dim)' (56)

m=1 1<i1 < <im<r
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5.3 Genus Computations of Complete Inter-

section Curves of Superelliptic type

5.4 Affine Case

In this section, we compute the genus of a complete intersection curve C' in
A%H given by,

yit = (z—an) - (x — aum)
yy: = (z—an) - (z — amm) (57)
yar = (x = apm) - (= apm)

where 2 < d; <--- <d,, <m —1 and all a;;’s are distinct, with a;; € C.

This is a smooth affine curve and its projective closure C in IP’(?:H is singular.
Let C' be a resolution of C'. The genus of C' is then defined to be the genus of
C. In the following subsections we will in turn describe the projective closure
of C, describe a finite map from C to P!, count the ramification indices of the
points of C' under this map and finally apply the Riemann-Hurwitz formula to
this map to calculate the genus.

5.4.1 Projective Closure of C

We first consider a complete intersection curve C; of a special type in A%
defined by,

v = 2™+ aa™ ot apaz +a, = Fi(z)

(5.8)
yd = 2™+ b 4+ by + by = Fy(2)
with 2 <d <m — 1. Let f; = y? — F;, i = 1,2, and define the ideal I as

I'=(f1, f2).

We show in what follows that the ideal I and a Grobner basis of it contain
a certain polynomial. As a consequence of this the projective closure of the
curve (' can be explicitly defined.

Lemma 5.4 The ideal I has an element of the form

(y! — 43)" + f (2,91, 2) (5.9)
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where f(x,y1,y2) has degree less than or equal to pd and if deg f = pd, then
the leading term of f(x,y1,ys) is divisible by x.

Proof: The proof consists of a series of straightforward and tedious calcu-
lations which we summarize below. Note that for any ideal I, if a—b, c—d € I,
then a™ — b", ac — bd € I for any integer n > 1. Thus, y* — FF (with leading
monomial %) and (y¢ — y§)! — F! (with leading monomial x(™~9") are both
in /. Hence the polynomial

yit [y —3)' — Fs] + Filyi™ — FY]
is in I, which simplifies to a polynomial of the form,

fk;,l = yfk(yf - yg)l - F{CF?f

with leading monomial z*"+(m=9_ The degree of fy; is km +1(m —i) and this
number belongs to the subsemigroup of nonnegative integers generated by m
and m —i. It is well known that if ged(a,b) = 1, then the semigroup generated
by ac and be, for any nonnegative integers a, b and ¢, contains all the integers
which are divisible by ¢ and are greater than N = c¢(ab — a — b). Hence for
every n > N, for some N large enough, and divisible by ged(m, m — i) there is

a polynomial in I with leading term x".

Fix an integer p > m divisible by ged(m,m — i) satisfying pd > N and
consider the polynomial

¢ = (Wi—w)P—Fel (5.10)

Its leading monomial is 2P(™~% which can be eliminated by subtracting a suit-
able constant times the polynomial f,,—; ,—n. Since pd > N, for every integer
n divisible by ged(m, m —i) and in the interval [pd, p(m — )] there are nonneg-
ative integers k, and [,, satisfying k,m + [,,(m — i) = n. Dividing both sides of
this equation by m — ¢ and observing that n < p(m — i) and m/(m — i) > 1
we obtain the crucial inequality
kn+ 1, <p.

This inequality now assures us that the degree of the y{* (y¢ — yd)t part of
fn 1, has degree less than pd. Thus if a; denotes the leading coefficient of ¢,

and ky =m —1, l; = p—m, then
deg(dp — a1 fr 1) =n2 < p(m —i) = dego,
and
(bp — 1 fry )0, y1,0) = (y& — y$)P + lower degree terms.
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Let m = ac and m — i = bc with (a,b) = 1. We then have two cases:

Case 1: ¢=1 If deg(¢, — afi,1,) = n2 > pd then we can find nonnegative

integers ky and ly such that kom + lo(m — i) = ny and

deg(¢p - alfk'hh - O@fkmlz) =ng < N2

where oy is the leading coefficient of ¢, — a1 fi,;,. Continuing in this manner
we eventually obtain a polynomial whose leading form is (y¢—yd)?+ f (2, y1, y2)
where z|LT(f) as claimed.

Case 2: ¢ > 1 If ny < pd, then we are done. If ny > pd and is divisible by

¢ then we continue as in case 1 above by subtracting suitable polynomials of
I and thus reducing the degree. Therefore we might assume without loss of
generality that ny > pd and is not divisible by c.

Let ¢; = (ac, be, ng). Observe that ¢;|c since (a,b) = 1. So ¢; < ¢. However
c1|ns but ¢ fng, so ¢ # ¢;. Therefore ¢; < ¢, which assures the finiteness of the

following procedure:

We can write

Op — 1 fry, = H<x7 Y1, y2) - F4($>

where degFy(x) = ny and degH (z,y1,y2) = (k1 + 11)d < pd.

The subsemigroup of N generated by m = ac,m — i = bc and ny contains
all the integers which are greater than some N and are divisible by ¢;. Fix an
integer p divisible by ¢; and is such that pd > N. Define the polynomial ¢, as
in equation (5.10) (with the new value of p). Define polynomials

Jim = ijiik(yf - yg)z - FZFfFé el
with j, k,0 > 0. As before if degf;r; < p(m — 1), then j+k+1 < p.

We are now again at the stage where a suitable constant multiple of the
polynomial f;; is subtracted from ¢, to remove the leading z-term of ¢,
and since 7 + k 4+ | < p the resulting polynomial is of the type which allows
further reduction of z-terms without introducing any y; or y, terms of degree
higher than the degree of (y¢ — y9)?. And how we will continue is going to be
determined according to whether ¢; = 1 or ¢; > 1. Since ¢ is strictly less than

¢, this process must stop after finitely many steps.

This then proves that there is a polynomial of the form (5.9) in the ideal
1. O
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Corollary 5.5 A reduced Grébner basis for the ideal I with respect to the

graded lexicographic order with y, > yo > x contains an element of the form

(v — u5) (i — v3)' — Fla, 41, 92) (5.11)

where
7) k>0,1>0,rld
i1) degl' < kd + rl
iti)  IfdegF = dk +rl, thenz|LT(F(x,y1,y2)).

Moreover the leading term of any other element in the reduced Grobner basis

18 divisible by x.

Proof: The ideal LT (I) of leading terms of I contains a certain y"* coming
from (5.9). Therefore the Grobner basis G of I contains an element g whose
leading monomial is y} for some k < d. Homogenizing g with respect to z and
setting z = 0, x = 0 gives a homogeneous form g(y1,y2) of degree k. (To see
why we also need x = 0 for the points at infinity see the proof of Corollary
(5.7).) The zero set of I" and G" must be the same. Moreover since the curve
C1, (recall equation (5.8)), has points at infinity the system

(yi —y3)" = 0 (5.12)
h(yi,y2) = 0 (5.13)

must have at least one solution with (yi,v2) # (0,0). Let g(y1,%2) =
¥ oy, where oy € C. All the solutions of the first equation (5.12)
are of the form y» = ay;, where a? = 1. To find a common solution of the
system substitute y» = ay; into the second equation (5.13). This gives

k
(Z OéiOél)ylf = 0.
i=0
Since y; # 0 we must have -, aya® = 0 for all d-th roots a of unity.

Hence g(y1,y2) = (v¢ — y9)'g1(y1, y2) for some integer [ and for some poly-
nomial g (y1,y2).

If there is an element h in the reduced Grobner basis whose leading term

is yd* for some integer k, then h is of the form
W,y ys,2) = Ayl — 2™ — )+ By — 2™ — )
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for some polynomials A and B. The degree of h must also be dk since y; >

yo > x. We now start guessing what terms should A and B contain: B must

=1 term so that we can have ydk as the leading term in h. But

(k1)

d
have a y,

this gives a term of the form yg 2™ which should be cancelled by having a

term of the form yg =1 in A. This however will give y‘fyg =1 which should be
cancelled. To cancel it B must have y‘liyg(k_Q). Continuing in this manner we

(k—1) (k=1) _m

see that B should eventually contain a yf term but to cancel the yf x

term arising from the multiplication we must have a yf(k_l) term in A. This
gives y{¥ as a term of h and it cannot be cancelled. This however contradicts
the assumption about the leading term of h since y; > y». Hence we conclude
that the leading term of an element in the Grébner basis is either of the form

y¥ or is divisible by z.

We now return to g. It is now clear that any point at infinity will be con-
tributed by g alone. After homogenizing g with respect to z and setting = 0
and z = 0 we have g(y1,y2) = 0 giving all the roots for the points at infinity.
Since any root of g is in the common solution set of I", then it must also satisfy
(y¢ — yd)? = 0 so it must be an r-th root of unity where r|d. This then proves
that the structure of ¢ is as claimed. O

Conjecture 5.6 In equation (5.11) of Corollary (5.5) we actually have I = 0.

In our calculations with Maple V we always obtained [ = 0. However here we

neither need nor see a way of proving this conjecture...

Corollary 5.7 Let Cy be the curve defined by (5.8). Its projective closure has
only the following points at infinity:

[0:1:a:0] where a® = 1.

Proof: ~ Homogenizing the ideal I with respect to z and setting z = 0
gives the description of the points at infinity. Note that f; is in [ and
i,y 0, 2) = yizm=D — (2™ + ay2™ 2 + - + ap2™). Setting z = 0
gives f"(x,y1,92,0) = —a™
finity are zero. To find the y; and ys components of the points at infinity we

. Hence the x coordinates of all the points at in-

consider the homogenization with respect to z of a reduced Grobner basis and

set x = 0 and z = 0. From corollary (5.5) we see that the only surviving
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element is g and setting ¢"(0,v1,2,0) = 0 gives the points at infinity in the
claimed form, where ¢" denotes the homogenization with respect to z. O

Corollary 5.8 Let Cy be the curve in A® defined by,

d _
yit = 2" ax™ 4t @ A

d . - (5.14)
Yy = "+ b 4+ by + by

with di < dy < m — 1. Then the projective closure Cy of the curve Cy in P? is
the union of Cy and the point

[y :y2:2]=1[0:1:0:0]

Proof: With the same approach used in Lemma 5.4, we can show that the
ideal generated by the above polynomials has an element of the form,

(yfl - yglz)p + f(iL', Y1, y2)

where f(x,y1,y2) has degree less than or equal to pd;, and deg f(0,y1,y2) <
pd;. Homogenizing this with respect to z, we obtain

(ZflilZindl - ygb)p + fh('ra Y1, Y2, ’Z)

Setting z = 0 gives yo = 0, since z = 0 follows from homogenizing one of the

generating polynomials and setting z = 0. This proves the corollary. O

Combining Lemma 5.4 and Corollary 5.8 we generalize these two results to
the curve given by (5.7).

Corollary 5.9 Let C be the curve in A" defined by (5.7), with d; < dy <
... <d,. Assume that for some s the first s d;’s are equal, i.e. d =d; = dy =
oo =dy, < dypy < -+ <d,. Then the projective closure C of the curve C in

Pt is the union of C' and the points of the form,
[Ty i Ys Yss1 o Y2 =0:1iag s tag 01 0
where af = -+ = a? = 1.
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5.4.2 A Finite Morphism to P!

In order to compute the genus of a nonsingular model C' of the projective
closure C of C we first define a finite morphism from C to P'.

There exists a finite morphism
p:C — C
(xvyla"'7yn) =

C is embedded into P"*! the same way C embeds into P'. The morphism ¢
extends to C algebraically by defining

0:C — P
[Ty oty 1] = [z 1]
O:y:-:y,:0] — [1:0]

See also the parametrization (5.16) for a justification of this definition. If C'is
a resolution of C then C' and C are isomorphic everywhere except at finitely
many points which correspond to the points at infinity and ¢ extends over to
C' by sending all the points at infinity to [1 : 0] as above.

Thus we have a map

0:C — P!

which is a morphism of degree dyds - - - d,,.

5.4.3 Ramifications of ¢

We first examine the n = 2 case with d = d; = d. Consider the curve C} given
by equations (5.8). For the points in the affine plane we can take x as a local
parameter. When x is not equal to any of the a;;’s then the ramification of ¢
at = is 1. When z = q;;, then the ramification of ¢ at z is d. (For the general
case of equation (5.7) the ramification at a;; is d; - - (il -+ +d,, where dAZ denotes
that the term should be omitted.)

To examine the points at infinity choose a local parameter ¢ with x = 1/t.
Then we have

d -1
Yy = 2"+ ax™ ot apar +an
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= (/)" +a(1/ )™+ A a1 (1/t) + am
= (L+at+ -+ apt™ " 4+ ant™)/t™.

Let

d=ac

m=be, (a,b)=1, ¢>1. (5.15)
Define a new local parameter 7" such that
T =t.
Then the above parametrization of y¢ becomes
Y = (14 ar T+ - - + an ) /T,
Similarly we have
yse = (14+bT+ -+ b, T%) /T

Let H,(T) and Hy(T) be power series such that y§¢ = H(T*)/T% and y5¢ =

H$¢(T*) /T, Then the points around infinity are parametrized as
T oL Ho(T) T

OélTaH1<Ta) o (03] H1<Ta) . OélHl(Ta) ’

P(oy, a0, T) (5.16)
where a; and «ay are d-th roots of unity. Note that H;(0) = Hy(0) = 1 and
thus the points at infinity are of the form [0 : 1 : as/ag : 0] as claimed
in Corollary (5.9). In the T-plane let T} and T, be two points such that
Ty, = ATy where ) is an a-th root of unity. We have T¢ = T¢ but T} # T¢
since (a,b) = 1. Hence P(ay, a9, T1) # P(ay,as,Ty). As T ranges in the T-
plane P(ay,an,T') describes a branch of the curve at infinity. There are then
d*/a = dc branches at infinity. Since there are d points at infinity, around each
such point there are then ¢ branches making the total of dc branches. Each
branch corresponds to a different point on the resolution so there are dc points
on the resolution corresponding to the points at infinity, i.e. the cardinality of
the set o~ '([1:0]) C C is dec. Total ramification index for the preimage of any
point under ¢, i.e. the degree of ¢, is d>. This gives a ramification index of a
for each point in the resolution corresponding to the point at infinity.

In the general case when d = d; = --- = d,,, the total ramification index of
@ is d", there are d"~1c branches at infinity each having ramification index a.

This is the case for the curve define with the equations (5.18).

In the most general case, see equations (5.7), when d = d; = --- = d, <
. < d, there are d*~!c branches at infinity each with ramification index

43



~

adsy1 -+ dy. In this case the cardinality of o '([a;; : 1]) is dy---d;---d, and
the ramification index of each such point is d; — 1. The total degree of ¢ is
d°dgiy -+ dy.

5.4.4 The Genus Calculation

The Riemann-Hurwitz formula for the map ¢ takes the form

gc = 1—degp+ %erc(ew —1)

. . (5.17)
= 1- degSO + b) Z$E¢71([*:1])(6$ - 1) + 2 erg&’l([lzm)(er - 1)7
where e, denotes the ramification index.
Theorem 5.10 [2] Let C' be the complete intersection curve given by,
yi = (@ —an) - (z - aim)
ys = (v —an) (v — am) (5.18)
yi = (z—au) (¥ — anm)

where d +1 < m, and all a;;’s are distinct. The genus of C is given by the

formula
1
go = 1-3 (d — mnd 4+ mn + ¢) d"! (5.19)

where ¢ = (d,m).

Proof: The degree of ¢ is d". The ramification index at finite points x
such that ¢(x) # a;; is 1 and for each point z € C for which ¢(z) = a;; the
ramification index is d. There are d"~! points in p(2) = a;; and the number of
a;;’s is mn. This gives mnd"~!(d — 1) for the first summation in (5.17).

There are d" !¢ points on the resolution of the projective closure of C cor-
responding to points at infinity. Each such point has ramification index a. This
then gives 2d" *c(a — 1) for the second summation in (5.17). Putting these in
and simplifying gives the seeked formula. O

Remark 5.11 Putting in d = 2, ¢ = 1 we recover Stepanov’s formula 1 +
(mn — 3)2"72, see [42, p37, Lemma 1]. Stepanov arrives at this formula by
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constructing an explicit basis for the differential forms of the curve. He works
over a finite field Fy, of characteristic p > 2.

We also have an explicit “counting the differentials” method for the genus of
the curve C of equation (5.18). See also the equations (5.15) for the conventions
in use. For any point in the affine space let x be a local parameter and consider

the regular 1-form
dx

(jla---lvja)
jl jcr
Yi, ~ Y,

i1y sl

w

where 1 <o <n,1 <4 <---<i, <nand 1<y, ....j, < d—1. By checking
(J15--de)

the order of vanishings of x and y;’s it can be shown that the form w;;" 7" is
regular at any point in the affine space. Let x,, be any point at infinity on the
projective closure of C'. Let v, denote the order of vanishing of a function at

Too. Choosing ¢t = 1/x as a local parameter around z., we observe that

UVso(Z) = —a
Vsol(yi) = —D.
Let @Z(f ’1_’_'_'7;’5") denote the expression for wz(fllj *) around ZToo. We then have
v @) = (it b —a—
(jl)'“‘)jo‘)

and if P(x) is a polynomial then P(z)w is regular at z., if and only if

114 eslo

degP(z) < ((j1+---+Jo)b—a—1)/a. We can then give a basis for the regular
differential 1-forms;
{x’”wff}_ﬁj;'i’j") | o=1,..,n, 1<i; <---<i, <n,
1<71,00J0 <d—1,
0<r<((h+-+j)b—a—-1)/a}.

The cardinality of this set then gives the genus of the curve C. It turns out
that the required formula is

n d-1  d-1

9(C)=>" > ZZ[WL (5.20)
o=1 1<i1<<io<n J1=1 Jo=1

where | || denotes the greatest integer function. Note that this formula now

works on any algebraically closed field of any characteristic, when a # 0.

Stepanov has calculated this sum for d = 2 and ¢ = 1 over a field of
characteristic p > 2, [42, p372], (in that case d = a = 2 and m = b is odd).

We finally give the formula for the most general case.
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Corollary 5.12 [2] Let C' be the complete intersection curve given by (5.7),
with dy < dy < ... <d, and with the first s d;’s equal to d. The genus of C is
given by the formula

1 1
go = 1— 3 (d—mnd+ms)d* deyy - d, — §ds_lc

dS n N
B S Ay ody - dy, (5.21)
2 i=s+1

where ¢ = (d,m).

Remark 5.13 This corollary can be proved in the same way as Theorem
(5.10). The ramification values required for the formula are given at the end
of section (5.4.3).

Remark 5.14 Note that when we put s = n in the above formula (5.21) we
recover the formula (5.19) of Theorem (5.10). However this is only an alge-
braic phenomena since geometrically the two formulas are derived from different

configurations at infinity.
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Chapter 6

Conclusion

We have shown that in affine [-space with [ > 4, minimal number of generators
of the tangent cone of a monomial curve (u(I(C),)) can be arbitrarily large,
contrary to the case | = 3 shown by Robbiano and Valla. Thus, in higher
dimensions there is a more complex phenomenon, which is closely related with
the structure of the corresponding semigroup. The logical continuation may
be to use the determined families of monomial curves having Cohen-Macaulay
tangent cone to give a sort of classification of semigroups and thus classification

of monomial curves.

We studied the problem by using the ring k[xq, xo, -+, 2;]/1(C)., since we
tried to use Grobner theory to find the generators of I(C'), and to check the
regularity of an element. This computational aspect helped us a lot; this result
would not have been obtained by considering the semigroup ring for checking
the Cohen-Macaulayness of the tangent cone of the monomial curve because it
does not tell anything about the number of the generators of I(C'),. Cohen-
Macaulayness of the tangent cones of the families of monomial curves made
Hilbert series and Hilbert polynomial computations possible. Thus, it is a joyful

example of using computational methods in solving geometric problems.
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