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PREFACE

The basic facts in the theory of algebraic surfaces were discovered, in the
latter half of the nineteenth century and the beginning of the twentieth, by Max
Noether, Picard, Poincaré and in particular by the members of the classical Ita-
lian school of algebraic geometry, Castelndovo, Enriques and Severi. Their re-
sults were the starting point for the next stage in the development of algebraic
geometry, which was based on the application of topological, analytic and alge-
braic methods.

During this stage it became clear that the results making up the “"classical’”
theory of algebraic surfaces fall into two fundamentally different classes.

Some of them are special cases of general theorems about algebraic varieties’

“tor schemata) of arbitrary dimensionality. The clearest examples are provided by

the theory of Picard varieties or of abelian varieties or by the Riemann-Roch the-
orem. It is interesting to note that almost all the results in the classical sur\ey -
of Zanskl [16] are exactly of this kind. At the present time there are in existence - -
many excellent expositions of the theories relating to this part of the subject.
The results of the second class deal specifically with algebraic surfaces.
Here belong such basic features of the subject as the criterion for whether an

alg,ebralc surface is rational or ruled, the solution of the problem of Lurdth, the

theory of minimal models and the great complex of results which are grouvped to- el

gether by the Italian algebraic geometers under the heading of “‘classification of
algebraic surfaces” "

It seems that none of these results can be extended to varieties of higher
dimension without the most essential changes, and at the present time even the
very nature of such changes remains entirely unknown. Some attempts have been
made to provide thiese results with proofs that are rigorous from a modern point of
view and are based on present-day techniques, and also to extend the results as
far as possible. The first (and basic) publications in this direction are the prodf
‘presented by Kodaira [48] for the criterion of rationality and the articles and - book . :

of Zariski [19] on the problem of minimal models. The purpose of the pieéént-"

. book is to give a connected account of this whole range of questions. Below we

give a short description of the contents of the book.

il
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The entire theory is based on the connection between rational mappings of a
variety into a projective space and the classes of divisors on the variety (see,
for example, [30]). For élgebraic curves it is well known that “'almost every-
where’’ (for nonhyperelliptic curves) the mapping that corresponds to the canoni-
cal class is birational and defines the so-called canonical model of the curve
uniquely up to a projective transformation. Thus the problem of birational classi-
fication is reduced to questions of the projective classification of curves in space.

A mapping corresponding to a canonical class of multiplicity two or three
plays the same role for all curves other than rational and elliptic ones. ‘For those
curves a mapping corresponding to a canonical class of any multiplicityiv\:will not be
birational. This method is in general inapplicable for their description, which,
however, is éasily obtained from other considerations.

~The question is whether one obtains an analogous situation for algebraic

surfaces. One first coansiders the class of those surfaces for which a canonical
class of any mulriplicity gives a birational mapping. It turns out that it is always
sufficient to take a canonical class with a multiplicity not larger than nine (but

a multiplicity of three, which plays the same role in the theory of curves, may be
insufficient, as is shown by examples). The surfaces of this kind may be charac-
terized in a simple manner: they are those nonrational surfaces for which the in-
dex of selfintersection of the canonical class is positive. '

The rest of our task is the description of the remaining surfaces, those for
which-no canonical class of any multiplicity defines a birational mapping. These
surfaces are analogous, from this point of view to the rational and elliptic curves.
Their constructive description is also to a great extent analogous to the descrip-
tion¥sf those curves. Namely, the surfaces we are coasidering fall into the fol-

lowing five groups: (1) rational surfaces; (2) two-dimensional abelian varieties;

ed surfaces, i.e., surfaces made of families of rational curves; (4) surfaces

i
made of families of elliptic curves; and (5) certain surfaces that are similar to

abelian varieties in that their canonical class is zero, but which, unlike abelian
varieties, have their first Betti number equal to zero.

In order to examine all these algebraic surfaces, we divide them into four
groups on the basis of the value of an important invariaat, which we denote by «.
The symbol « stands for the maximal dimension of the image of the surface under
rational mappings comesponding to different multiplicities of the canonical class.
Itis clear that k is always less than or equal to two. If the linear systems cor-
responding to all the mulriplicities of the canonical class are empty, then we set
k =—1. Thus « may take on the four values ~1,0, 1 or 2. The goal of the clas-
sification is to give the character of the surfaces with a given value of « with

the aid of the so-called numerical invariants (the index of the selfintersection of
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a canonical class, plurigenera defined by the formula(11), and the irregularity de-
-fined by the formula (12)) and to give a constructive description of them. The re-
sults of the classification are given in the table at the end of the introduction.

The book also contains results outside the above mentioned theory, which
are, however, related to it.

We shall discuss in detail the following: the theory of birational transforma-
tions of surfaces, the theory of minimal models, and Noether’s theorem.

The theory of birational transformations of surfaces is based on the concept

of the ¢-process. This is a birational transformation
f: VoV
of nonsingular surfaces V and V', which is biregular e\cr)“here except at a
point P € V and a curve € C V', where, moreover, f is regular and [~ 1(C) P.
The following are basic results:
(1) if ¢ is a birational mapping
¢ V- |

of nopsingular surfaces such that ¢ 1 maps V' regularly onto V, then ¢ is the
product of a finite: number of o- processes, ‘ - .

(2) any blratlonal transformation of a nonsmgular surface onto a nonsingular
surface is the producr of a finite number of o- processes,_and a finite number of
transformations ‘inverse to o- processes ‘ ' ‘

The theory of mmrmal models studies those surfaces I (called minimal)
which are such that any regular birational transformation f: V—V'is biregu-
lar.- Every surface is birationally equivalent to a minimal one, from which it is
obtained, consequently, by a finite number of o- processes The basic theorem
says that in the class-of surfaces brratlo'lally equivalent to- ‘each other, there is

- only-one minimal-oneif the strfacés are.not ruled.
The minimal models of ruled (in particular, ratronal) 5u_rfaces are all described.
Finally, Noether’s theorem relates to the structure of the group of all bira-
" tional transformations of a projective plane (or, what is the same, of the group of
the antomorphisms of the field of rational functions k(x, y) of two variables). It
shows that this group is generated by the so-called quadratic transformations:
, _axtbyto o asx L by - ¢
“axtbwta’' YT axtbyte

The classical results presenred in this book may almost all be found in the
survey of Enriques [59]. The present work is very closely connected with Eariques’
book. The proofs of a large part of the theorems are based on ideas of Enriques.

At the same time, it ‘would hardly be possible to carry out the details of Enriques’
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proofs, for example, following the customs of the time and his school, he fre-

‘quently limited himself to the consideration of a **

general’’ case, not choosing
the most unpleasant cases that might be examined. On the other hand, for certain
questions we can supplement the classical results with new ones. This is true,
for example, of certain results in Chapters V, VII, and IX. Finally, there are a
few divergences from assertions of Enriques.

We do not aim for the greatest possible generality in the conditions imposed
on the base field. All results are true if this field coincides with the field of
complex numbers. The majority of arguments, however, retain their validity if the
base field is algebraically closed and has characteristic 0, and some‘l’;arguments
remain valid for any algebraically closed field. These considerations are dis-

cussed in more detail in each chapter.

v+ The present book is based on reports on seminars in the theory of algebraic
sutfaces held in 1961-1962 and 1962—1963 uader the leadeérship of I. R. Safarevit.
The texts of the reports were then worked over, and certain parts were rewritten.
The individual chapters were written by the following authors: Chapters I, II
and IIT by A. B. ‘Z’i‘i‘c'enko; Chapters IV and VII by I. R. Safarevi¥; Chapter V,
§§1 and 2, by Ju. [. Manin §§3—6 by Ju. R. Va\fnberg and Ju. I. Manin, §7 by
A. N. Tjurin; Chapter VI by B. G. Mo‘f‘s’ezon;‘Chapters VIII and X by B. G. Averbuh;
Chaprer IX by G. N. Tjurin.* '

* Translator’s note: In a more recent article, On special types of Kummer and
Enriques surfaces, lzv. Akad. Nauk SSSR 29 (1965), 1095—1118, Averbuh filts out some
gaps in the classification which he began in Chapters VIII and X. This article has been
translated as the Appendix to the present volume.
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INTRODUCTION

The present book uses many facts from the theory of algebraic varieties,
mostly from the theory of algebraic surfaces and curves. We shall list the basic
results, knowledge of which is indispensable for the reading of this book, with
references to the literature available to the reader. Moreover, we shall introduce
below certain definitions and the proofs of some results which, although included
in periodicals, may not be considered general knowledge.

All preliminary definitions and results (the definition of an algebraic variety,
the field of functions over it, etc.) will be found by the reader in’the’ books of
Hodge and Pedoe [55) and Lang [30]. »

We assume the knowledge of the well-known'basic definitions and facts of
the theory of rational and birational transformations: the definition of a rational
and of a birational transformation, the concepts of exceptional and fundamental

subvarieties under birational transformations, the basic properties of fundamen-

‘tal and exceptional subvarieties, the concept and basic properties of a regular

(rational) mapping, the concept of a normal vanety, of normalization (Hodge and
Pedoe [55], Lang [30]) ' o

" An algebraic correspondence T between algebralc varieties V and V'
patticular a rational or birational mapping, is defined by the graph UcVx V'
We shall say that the pair (x, 2'), x € V, 2" € V' belongs to the correspondence
if xx x' € U; also, the point x' € V' will correspond to x € V,if xx ' € U.
If W CV is some subvariety of V and T is-an algebrzuc correspondence between
V and V', then by T (W) we shall’ mean the set of pomts in V' corresponding to
the points of W; thus, x' € T-(F) 1f there exists a point % €W such that x x ‘
x' € U. As is known, T(V) will be an algebraic set [55] We shall call T(¥) a

‘complete image (or total transform) A rational mapping T: V. — V' induces a

homomorphism of the function fields E(V"Y — E(V); this homomorphlsm will be
denoted by T*. ‘

The concept of divisor of a function, the definition of the linear and alge-
braic equivalence of cycles, the construction of the group of classes of linear
equivalence and of the group of classes of algebraic equivalence for cycles, the
concept of the space of functions associated with a divisor, may all be found by
the reader in the books [8] and [11] and in the article {123,

The basic facts about these groups (in particular, the finiteness of the rank

of the Néron-Severi group of the classes of algebraic equivalence for divisors)



2 INTRODUCTION

o i B LA

are given in the book of Hodge and Pedoe [55) and in [8).

The theory of the intersection of algebraic cycles on algebraic varieties is

set forth in Serre’s article [51], and for algebraic surfaces, in Zariski's book [231.

The possibility of using intersections to introduce multiplication in the
group of the classes of linear equivalence, thanks to which this group acquires
the structure of a model ring (Chow ring of an algebraic variety), is proved in the
article of Samuel [43] and in thfe notes of Chevalley’s seminar [46]

The definition of linear systems of divisors on an algebraic variety and their
conpection with rational mappings is inclu\ded in Lang’s book [39] '];he theorem
of Bertini on this subject is given in §3, Chapter I, of the present wdrk

This work uses many facts from the theory of algebraic curves. 'The Riemana-
Roch theorem, the formula for the genus of covering of a curve, the formula for
the arithmetic genus of a curve on a surface, and the Riemann-Roch theorem for
a curve with singularities, may be found in the books of Chevalley [38] and Serre
[497.

The Riemann-Roch theorem for a surface and the formula for the arithmetic
genus of a surface is found in the book of Serre [49], the article of Zariski [21],
and the article of Borel and Serre [921.

The basic properties of differential forms on algebraic varieties and their be-
havior under regular mappings is set forth in Lang's book [30].

Finally, the basic properties of abelian varieties, Albanese varieties, etc.,
are inclu_ded in Lang's book (313,

The concept of the local ring of a poiat, of a subvariety, and theorems about
the behavior of local rings under birational transformations may be found in the
books of Hodge and Pedoe [55] and of Lang 1301,

The basic method used in this work is the method of coherent sheaves. The

description of this method, its connection with the classical method of linear
systems, and also the basic theorems about cohereat algebraic sheaves is found
in the articles of Zariski [217 and Serze [so1.

We now introduce two definitions which are not well known.

Let there be given a rational mapping T. V — V' and let C be some division
on V with a generic point x. Since the fundamental points of T have dimension
not exceeding n — 2, the mapping T is regular at the point %, and consequently
the point y = T(x) is defined when k(y) C k(x), where clearly E(y) Ck(V). We
consider a subvariety C' on V' with a generic point Y-

Two cases are possible:

L dimC' = dim C, i.e., trFOV/F =y (IE

We denote by n. the number [k(x): k(y)]; then we call the divisor nCC'

the image (proper, algebraic) of the divisor C.
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2. dim €' <dim C, i. €., wrk )/ k < trk(x)/k in this case we shall say that

the image of C is null (it is convenient to say in this case that n- =0) oris a
point (T (x), since such a point is defined). When dim ¥ = dim V', a mapping thus
defined gives a homomorphism of the group of divisors D(V) into the group D, :

which we shall indicate by T: D(V) DY,

The image of the divisor T(C) (sometimes written T[C] to distinguish it

" from the total transform) under the mapping will be called an algebraic (or proper)

transform.

If the mapping T is birational, then, as easily follows from the properties of
birational mappmgs nc will be either 0 or }.

We consider in this case the inverse mappmg T-L oy, V, and let D' be
a divisoron V'. - ‘

The image (T~ (DY) is defised. 1f (T~ 1)([)) D#0, DC V
sot difficult to verify, T(D)=T{T" l)D ) =

¥hen T is a regular birational mapping wuhom fundamental points on' ¥,

thep, as is

the mapping T is clearly an epimorphism:

onto

T: D(V) — D(V').

Nowlet T: V—V'bea regular mappmg of V onto V' (possxbl) bxrauouﬂj;i

In this casé we shall define a mapping T*: D(V') — D(V) in the following man= "
ner. »

" Let C' be a divisoron V', P' € C'. As is known from [55], the divisor C'
is then, in a neighborhood of the point P', alocal P'-component of a divisor
(gP)) of some function gp, € k(V) (V' is nonsingular). The equation gpr =0
will be called the local equation of the divisor C' at the point P'. Now let P
be some point on V corresponding to the point P’ € v’ (it is possible that P

-~ does. not correspond to a single point, but perhaps to scme divisor of V)
" The function gP, may be regarded as a certain function on V (since the in< 7

- ¢lusion k(V' ) C E(V) exists). Iris.not difficult to see that, since the point P

belongs to a zero divisor of the function gp, on V', the point P belongs to a
zero divisor of the function gp, on V, where, moreover, if the divisor D' on' V
corresponds to the point P’, then that divisor D will be included in a zero divi-
sor of the function gp, with multiplicity equal to the multiplicity of the point P,
as a point of the divisor C' (see Hodge and Pedoe [55]).

Considering an affine covering {U'} of a variety V' and a system of local
equations {gps =0} for a divisor C' in this covering, we obtain upon passing to
the variety ¥ a system of local equations {gp, =0 corresponding to some cov-
ering {U} of the variety V. It is possible to show that the system {gp, =01} in

the covering {U} will be consistent; i.e., that we obtain some divisor C on V.
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The divisor on V thus determined is denoted by T7(C') and is called the pre-
image of the divisor c'cv.

It is well known that when T: V — V' is regular, the mappmgs T and T*
take linearly equivalent divisors into linearly equivalent oaes, and algebraically
equivalent divisors into algebraically equivalent ones, and also they induce homo-
morphisms of Chow rings (see the articles of Borel and Serre [9] and Samuel [430.

Besides these general remarks, in certain chapters reference will be made to
several special facts from the theory of algebraic and analytic varieties {for ex-
ample, in Chapter IX). Exact indications to the appropriate htex;a’ture will be

hese pl
given in these places. 7

We now introduce basic symbols and certain basic formulas to whxch we shall
frequently refer in the text. i

() D~ C, D L € -linear equivalence of the cycles D and C (on V);

(2 D= C, D Z; C —algebraic equivalence of the cycles D and C, and also
the’ homology of the cycles D and C (on V);

“(3) D >0 —an effective divisor;

(4 (N, (), —a divisor of the function f oa the variety V;

(5) £(D) —space of functions such that (f)+D>0o0n V;

(6) |D| —a linear system of divisors (linearly) equivalent to D;

(7) Op —the local ring of the point Pel;

(8) C D —the intersection cycle of the two cycles D and C;

(9) (C - D) —index of intersection of the curves C and D on a surface;

(10) K, KV _the canonical class of the surface V (sometimes also an arbi-
trary representative of that class);

(11) P = [{nK) —n-genus, Pg= LK) —geometric genus;

“(12) g, q(lf) —the dimension of the space of one- -dimensional forms of the
first'kind on a surface, irregularity of the surface v,

";(13) P, (V) —the arithmetic genus of the surface V, according to the defini-

tion p, (V)_l—q-rp ;o

(14)y S(V) —the \eron Severi group of the surface V (the factor group of the
group of divisors of V over the subgroup of divisors algebraically equivalent to
0);

(15) A(V) —the Albanese variety of the variety V, dim A (V) = ¢(V), and
ay: V- A(V) the canonical mapping, everywhere regular on V;

(16) p(¥) —Picard number of the surface V, the rank of the group S(V) (this
number is finite [8], [16]);

(1I7) x> X (V) —Euler characteristic of the surface;

(18) F(D) —coherent sheaf on the surface corresponding to the divisor D
(sometimes also 0[D], Q(D)) (Zariski [21]).
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The numbers P, ¢, and p, are birational ipvariants.

To see this, let T: V— V' be a birational mapping of ¥ onto V'. Each
element € £ (n.KV,) can be considered as a differential form b (dx A dy)-",
regularon V' ' ‘ ' -

The inverse image of this form of V, a form & (dx N\ dy)", where b, %, ¥ €
k(V), will be a regular form on ¥ - § (S being the set of fundamental points of
T on V). Since dim S < n — 2, this form will be regular everywhere on V, since
the set of poles of the form is a divisoron V. Thus P_(V) > P _(V'), and con-
versely, i.e., P (V) =P (V'). One shows in exactly :h: same wnay that ¢(V) =
q(V". :

" BASIC FORMUL AS

If D is a'divisor on the surface D,‘ and pa(D) is its arithmetic genu§, then -
[49] '

D-(D+ k) ' '
pa(D)= LD 4y M

The Riemann-Roch formula on the surface V for the divisor D is .

1Dy =LC=K) | o) — 1K —D) + Ap, @
where Ap) is the superabundance of D and is equal to dim H(V, F(D))>o0.

The Riemann-Roch inequality is -

D(D— R
l (D) + L(K— D) > L(—ZKL)‘F Pa (V). (3)
The formula for the arifhme‘}ic ‘g’enus :of a surface [9]is
= 2 .

The formula for the arithmetic génus of ar.x. irreducible curv.e '.C' is __
pa(C) =g+8, = 8§=X26, . (5)
, P

where g is the genus of the nonsingular model of C (the geometric gemis of C);
Zap is extended over all singular points of the curve C, 5p >0 and 8P is not
smaller than the number of points of the nonsingular model of C that map into P

under the canonical projection (Serre [49]),
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Table of Types of Algebraic Surfaces

K Ina:atrsl_ Class?;(g”lde'j Types of surfaces Chapters, §8§
q=0, PZ =0 Rational Ch. I
-1 P12=0 (g>1, p=0)<= Ch. V, §4.
=>(KH <0 Ruled Ch. 1V; Ch. V, §7.
g=1, P12 =0 :
Py=1,p=0,9=0 Enriques surface, 2K =0. Ch. V1II, §1; Ch. x
P2 =1,p=1,¢=0 Regular surfaces with K =0. éh. Ix
P4 =1,p=1,4q=2 Two-dimensional abelian Ch. \ﬁll, §4.
varieties. ) .
0 [12k=0|P,=1g=1 Surfaces with a bundle of Ch. IV, §§7, 8;
elliptic curves. The basis of Ch. VII, §9.
the bundle is a projective line.
All fibers, except for a finite
number of mulriple fibers, are
isomorphic.
2K =0, or 3K =0, or 4K =0,
or 6K =0.
Surface with a bundle of Ch. VIIL.
(Kz) -0 elliptic curves, with the ex-
1 12K ;O ception of those that belong to
- the above type.
A linear system 191(‘l gives Ch. VI.
‘1 5 (K2) 50 'fx bifational mapp'u:lg int'o a pro-
| 7 jective space of dimension
;‘ e <P9 -1

‘Minima! models of surfaces are uanderstood in this table. The first column
contains the value of the invariant x. The second has the characteristic of the
class of surfaces in terms of the other invariants: Pn, q, (Kz), and K. The third
columa, where filled in, contains a division into narrower classes of surfaces,
while the fourth has the constructive character of the same surfaces. Finally, the
last column shows the chapters and sections of the book in which the surfaces

are described.

* Translator’s note: See also the Appendix.
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Schema of Dependence of the Chapters

* Translator’s note: The Appendix depends on Chapters VII-X.






CHAPTER I

BIRATIONAL TRANSFORMATIONS

In this chapter the description of one important type of birational transforma-
tion—the o-process, is given. The application of a finite sequence of o-processes
makes it possible to annihilate the fundamental points of a birational transforma-
tion. It'is proved that the application of a finite number of o-processes leads to
the resolution of the singularity of a curve lying on a surface. A proof of Zariski’s

theorem on multiple linear systems is presented.

§1. o-processes

In the sequel an essential example of a birational transformation will be the
so-called o-process (other names: ‘'local quadratic transformation, " ”blowmg
up a point,”’ “‘local modification,”” “local dilatation™). .

By a o-process at a nonsingular point ‘Q of the a.lgebraxc surface (varrety)

V we will understand a birational transformation o: V — V* satisfying the fol-
lowing conditions: o ’

(Dois regular everywhere on V except at the pomt Q

(2) 6 ° is regular everywhere on V*, '

(3) to the point corresponds some’ lrne L (respectively, space LT
dim ¥ = d) on V*; . e |

(4) all the points of the line L (space P 1) are nonsingular on V*.

Thus a transformation o is a biregular mappmg of V- Q onto V* - L, where

o~ XL) = Q. We will show that it is possible to introduce a o-process at any non-
smgular point of a surface V Thus, let . Q be a nonsmgular point on a surface

¥ and let {U} be a covering of the surface with affine sets. From this covering

‘we will construct a new collection of affme sets {U'} and will show that this will

be a covering of some surface V* such that a certain mapping 0: V — V* will
satisfy all the conditions of a o-process at the point gev.

If an affine set U € {U} does not contain the point (), then we include it in
our collection {U'}. If Q € U, then it is possible to choose local parameters x, y
at the point  (which is nonsingular) such that x and y are regular functions on
all of U. v

We consider the direct product U x Pl of a set U and a projective line Pl

We designate by (¢, ¢;) the projective coordinates of P! and consider the

9
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subvariety U C U x Pl defined in the following manner:
U' =1y ¢, L‘l) cUxPl, toy(u) - tlx(u) =0}.

It is clear that the projective line Q x pl- L, lies on U'. It is easy to see that

the mapping (projection)
oy (u; by, t]) —u

will be an isomorphism outside of Lu; the line Lu is itself ptoj‘e_‘cted“ into the
point Q. ) N

The subvariety. U’ is the union of two affine coverings of sets Ui') and U};
U(') consists of the poiats of U' such that f £ 0, while Ull of the pfbints of U'
such that ¢, # 0. We note that at points Q' =(Q; ¢, L‘l) € U(') nL, the functions
x and y/x ~c* (where ¢t = tl/to) will serve as local coordinates, while at
points Q' =(Q; ty> tl) € U'1 n Lu the functions y and x/y — b* will serve (here
b* = to/tl). In the first case the local equation of the line Lu at the point Q'
has the form x =0, while in the second case it is y = 0. The sets U(') and U'1
will be called the preimages of the set U € {U}. It is possible to show that the
points of the line Lu are in one-to-one correspondence with the set P of tangen-
tial directions at the point Q. To see this, let a be some branch of a curve on

U with center at the point Q. This branch has a parametric representation

@ y=B1151—]—-..-=‘p(T)v

where the tangent to this branch is defined as the ratio of the numbers r; and
sl(r1 >8, 1 < s,), and when r| = s, as the ratio a: 8.

To this branch will correspond some branch a*: (¢s (r, (,lr(r), ¢.(r) x,[l(r)) on
U’, the center of which will be either the point (0, 0, 1: 0) (if $,> ry), ot the
point (0, 0, 0: 1) (if ry> sl), or the point (0, 0, u;: "1) (if = sl). Thus the
center of the branch a* is uniquely determined by only the tangential direction
to the branch a at the point Q; it is also easy to see that to each point of L
there corresponds some tangential direction. This cormespondence will be denoted
by p,: L,—P. '

We wish to show that the collection of affine sets {U'} forms a covering of
some algebraic surface V*.

For this it is sufficient to show that the elements of the covering {U'} can
be patched together in such a way so that as a result we obtain some algebraic
surface V*. We first note that it is possible to choose the original covering {U}
of the surface V such that the point ¢ will be included within only one element

of this covering; for the sake of definiteness, let us say Q€ U. If now U’ and

o i



Cpni

o-PROCESSES : . .1

W' are two elements of the covering {U'}, then three cases are possible. First of
all, U' and W' can be simply two elements of the covering {U] that do oot con-
tain the point (). Then we patch them together in the same way that they were
patched together as elements of the covering {U}. If W' € {U'} is  an element W

of the covering {U}, while U’ is one of the preimages of the set U for exa.mple
UO, then we may patch U’ and W' together in the following way. We write U
,ﬁ(U ). The mapping 0,[\], will clearly be a biregular mapping of U - U(') n Lu

onto No — Q. Inasmuch as U0 nw $ Q, we identify the point 8 € Uy N ¥ with
the point 0,;},1(13) € ’l\/" Finally, we pafch together the sets 'l\/" and ’l\jll in cor-

respondence with. the natural way they are patched together as affine subsets of
the vanety U'elUxPlitis clear that such an identification w1ll be consistent,
i.€. as a result we obtain an algebralc surface V*. v ‘

There is thus constructed an algebraic surface V* satisfying ail the condi-
tions of a g-process (the birational equivalence of ¥* and V is clear in view of
the fact that V* — L is biregularly equivalent to V.- Q).

The following fact was proved in passing: the points of the line L into
which () was blown up are in one-to-one correspondence with the set of tangen-
tial directions at the point’ . In exactly the same way we may construct a o-
process for blowing up varieties of any dimension. ' | _

If the variety V is imbedded in a projective space PV, then the variety V¥
obtained as a result of the o-process will also be unbedded in some projective
space PN,

This fact may be proved directly. However, there exists another description
of a o-process for imbedded varieties, for which this fact.is trivial. Let us as-
sume that the variety V is imbedded in pN ,and let Q@ =(1,0,---,0). Then
every point R € ¥, R £ (, is projected: from Q:oato the surface- EN =0; let S be
the corresponding point. If R = (xg> %15 %) -then S=(xp,-- -, “N) The
pairs of points (R, S) fill out the algebraic variety V*; the correspondence o:
R— (R, 9), 6: V— V" is the desired one. It is not difficult to establish the
(local)-isomorphism of these two descriptions of the o-process. -

Thus, we have a birational mapping 0: V — V* such that the inverse map-

1

ping o~ ': V* — V is regular. In this case there are defined two homomorphisms

of the groups of divisors D (V) into the group D(V*):
o: D(V)— D(V*),
o,: D(V)— D(V*),

*

where ¢(C) is the proper (algebraic) transform of the divisor CCV, and 0,(0)

is the total transform of the divisor C C V. We shall write these homomorphisms



12 BIRATIONAL TRANSFORMATIONS

similarly, for this will be important in the future. Let C be an irreducible curve
on V. Ina neighborhood UP of an arbitrary poiat P € V the divisor C is given
by the equation yp =0, where yp is a rational {meromorphic) fuanction on V. In
view of our condition (that C is an irreducible curve), the function yp will be
holomorphic in Up, only on the curve C and having on it a zero of the first order
(all in the neighborhood Up). The equation yp =0 will be the local equation of
the curve C in the neighborhood Up. If P3 € UPI N UPZ’ then the function
Yp inz is a unit at P;. When P £ () there exists a neighborhood,vf{fp fuch that
the mapping ¢ is biregular on Up. The curve C* given by the eq\I‘édogfs cr*yP =0
in the neighborhoods UP* = a(UP) of the points P* =o(P), P £0Q, wii;{‘l clearly
be a curve on V* — L that is biregularly equivalent to the curve C- Q on V- Q.
Now let Yo = 0 be the local equation of a curve in a neighborhood UQ' Let
Q be a point of multiplicity m of the curve C. This means that the decomposition
of the functions YQ ac‘cording to the powers of the local parameters (%, y) at the

point Q begins with the m th power:
. .l
}/Q=y’5+'y6 + ey,
where '
76 = aox"’ + alxm_ 1y I

and not all the a; are equal to 0.

Now let P* = (ta, t;) be some point on the line L € V*. We will assume
that tS £ 0; then local coordinates at the point P* will be the function x; =%
and ¥y = tl/to —c* = y/x - c*, where ¢* = t‘i/ta. The local equation of the line
L in the neighborhood UP* will be x; =0. The function a*yo in this neighbor-
hood:can be written in the form cr*yQ =x Tlay + a,ly, + M +eeeva ly + P LR
from-which it follows that the function a*yQ has a zero of multiplicity m on L
in théneighborhood UP*'

We con;ider the function a;yo = U*yQ/xT in the neighborhood UP*' As we
have just explained, this will be a holomorphic function in this neighborhood.

We coansider the local equation ain =0 in the neighborhood U_.. Itis not
difficulc to verify that the set of local equations {a*yp =0 if P #Q, and, con-
sequently, a(P) éi L, and oin =0, if P* € L} will be a consistent set of equa-
tions (i.e. in the intersection of two arbitrary neighborhoods the catio of corresponding
functions will be a unit), and, consequently, will determine Some Curve C* on V*.
Here C* — L | C* will be biregularly equivalent to € - Q, and, in view of the
fact that it does not contain L as a component, it will be irreducible. If X is a
divisoron V, X = 2k,C,, then, setting X" = ZkiC:, we obtain a mapping of the
group of divisors on V into the group of divisors on V*(@: D(V) — D(V*Y),
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which is clearly a monomorphism. It is obvious that the mapping thus constructed
is also the mapping o.

In connection with the above; we note also that if g is a function meromorphxc
on V and (g)V = X = 2k,C,, then, considering the same function on V* (or, which
is the same, con51dermg the function ¢”g), we obtain (g) « = (a" g) = X"+
3k,m.L, where m; is the multiplicity of the point ¢ on tbe curve C The map-
ping o, is obtained from the mapping 0 = o in the following way. '

We associate with the curve CC V, Q ¢ C the curve C* =o(C)CV*. 1f Q
is a point of multiplicity m of the curve C, we associate with this curve the curve
C* + mL C V*. With the divisor X = Zk;C,, we associate the divisor o, X) =
Sk,C; + ZkmL, where m; is the mult1p11c1ty of the point Q. on the curve C,
the future we vull desxgnate the number Zk;m; by - X(Q).

Lemma 1.1f X~ Y then o ,(X) m a, (Y) and conversely, if o, (X) ~ o, (Y) '
then X ~ Y Moreover, (X Y)V—(a Xy - U(Y)) e

Proof. Let XmO i.e. X =1(g)}. We consider .(g) + Since
(g) *—X* + X(Q), L=0,X),

the first (both the direct and converse parts) statement of the lemma is clear.

‘Now let X and Y be two divisors on V. If X and Y do not pass through
the point @ (and do not have' common components), then the index of the intersec-
tion (X - Y)} is determined and the equality (X Yy =(0,(X) - a*(Y))V* is
clear, for the mapping o is biregular at each point of the intersection of the
divisors X and Y. o ‘ 7

In the general case we replace the divisors X and Y by divisors X' and
Y’ linearly equivalent to them that do not pass through-. Q and which do not have -
common components. This lemma is of course a simple corollary of the properties

‘of the homomorphism o, listed in the Introducuon .From this, in part it easily .
follows that (L2)=-1. i

S2. Fundamental poi_nts and the vo‘-ptoce'ss

Let us assume that T: V' — V' is a birational mapping of a nonsingular
surface V onto a surface V', and let P € V be a fundamental point of the map-
ping T. We apply a o-process to the surface V.at the point P; we obtain a new
surface V| = 0,(V) and a birational mapping T;: V, — V'; where T, Ta"1

The mapping T can have fundamental pomts on the lme Ll =0 (P) let
PD be one of these points. We apply to V, at P a o- process, obtammg a
surface V, = UZ(VI) and a birational mappmg T V — V!, where T =T, 0-1
p(2)

denoting a fundamental point of T2 on L2 (if sucb a point exists) by , We
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applying to V, a g-process at the point P(2) and so on. As will be shown in
this secton, this process breaks off after a finite number of steps, i.e., after a
certain finite number p of steps we shall obtain a surface V_ such that there
will be no fundamental points of the transformation TP on the line LP c Vp' The
next basic theorem follows easily.

Theorem 1. Let T: V — V' be a birational mapping of the nonsingular sur-
face V onto V!. Applying to V a finite sequence of o-processes o= o, -

c cee0, we obtain a surface V = o(V) such that the birational mapping T =

n=1
Vs

To~l. V —» V' does not have fundamental points on V. ;éJ"

Proof. Let P € V be a fundamental point of the transformation Tf If (x, ¥)
are local parameters at the point P, then the transformation T can, in/_a neigh-
borhood Up of this point, be written in the form

L _ fl(x’ y)

b Zl = m ,

where g(0, 0) =0 and fL(O, 0) =0 (since the point P is fundamental). We con-

sider

(for simplicity we will omit the index ¢ in the future). Let

‘;* f(x7 )’):fp(x, y)+fp+1(x, y)+...’ . (1)

S glx, y) =g, Y + g e ) 4 ey (1a)

e .
where f>\(x, y) and g"(x, y) are homogeneous polynomials of x and y of degrees

X and p respectively.

We denote by F the curve in the neighborhood Up given by the equation
f(x, y) =0, and by G the curve g(x, y) =0. The point P =(0, 0) will be a point
of multiplicity p of the curve F and a point of multiplicity & of the curve G.
We express the condition that the point P =(0, 0) is fundamental in a geometri-
cal form. The curves F and G canbe represented in the form of a sum of locally

irreducible components (**branches’’):

It is possible to show that some of the components of the curves F and G
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coincide; we isolate all these components:
Fj=Gj’ j=1,---, 1, I<v, w, |
' v .
F=k1F1+"'+lel+2 k]F], (2)
v j=1l+1
w
G=m1F1+---+mlFl+'2 ij].. . (2a)
]=l+1 .

Moreover, we shall asume that

kp2my oo ko2my kyy<mo g, ky<my

We call the curves

Falhy-m)Fys-ios(h-m)F 4+ 3 kF,

]—-I‘i‘l ]
- w
= (mr+1 _-kr‘+ 1) Fr+l Tt (ml - kl)Fl + j_§+1m]-6j,

the reduced pair of curves associated with the curves F and G. The curves F
and G have no common components it is clear that the point P will be funda-
mental only if both Fand G pass through it.

The curves F and G are determined by the numerator and denominator of z

to assume from the beginning that f and g are relatively prime in the neighbor-

hood Up; in the future, however, it is going to be convenient for us not to sim-
P) b 3 g g

plify and to consider the ‘‘complete’’ curves F and G, rather than the reduced

FandG

The equation fAx, y) = 0 defines a curve whose components are tangent to

after all possible simplifications have been made. Of course it would be possible

F at the point P = (0, 0); the equatlon .g (-x, y) =0 is that of the curve whose - :

components are tangent to G. Here distinct branches of F and G can have coin-

ciding tangents, and the point (0, 0) can be singular on some branches. A branch .

that has the point (0, 0) as a regular point is said to be linear at that point. We

shall assume that the curves G and F do not have the line x =0 as a tangent. .

Therefore

}fp(x, y)=(y - alx)czl ceely - arx)a’, Ea}. =p, 3

)

| ga(x, y)=(y— blx)ﬁl cee(y - btx)ﬁt, EB]. = 8. (3a)

We apply a o-process to V' at the point P; as a result we obtain a surface
V, with aline L, = ol(P). Local coordinates on ¥V at the point D2 (¢, ) €L,
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will be either the functions (xy, y,) = (x, (y/x) - ¢) (at the point P( Ne, DE L s
or (x, yl) = (x/y, y) (at the point P(l) =(1,0) € L)) The buanonal mapping
T, = 'Tcrl in the neighborhood of the point P( ) is written in the form

f-s[(l - al;,.cl)aLl e {1 - arxl)a’+ vl

3]
It

3’

8
(1-byx )Pt -bx ) v

from which it follows immediately that the point PS) is not a fupdamental point

o

5

;"‘,‘9

of the transformation T1 &

¥

At any other point P(l) the birational transformation T is wfitten in the

form
~ '/’
;_x’lo[()’l—al+c)al vy, —a, e fp+1(x1, yp) + -]

ch[(yl—b1+c)ﬁ1 (y -b, +c) 1+x (xl, y1)+ -]

.-The equation
gl(xl,y1)=(y1—b1+6)ﬁl ey, = b+ o) t+x1 Hlla,yp+-0=0 4

is the local equation of the curve Gl, the algebraic image of the curve G uander

the o-process; the equation
R R S R AL PN PRI IO

is the local equation of the curve F!, the image of the curve F under the -
process.

"“To each tangential direction to the curve at the point P =(0,0) on V, there
corfespoads a point of intersection of the image of this curve under the o-process
with'a projective line L, = ¢ (P) where the multiplicity of this point of inter-
section on the image of the curve is equal to the multiplicity of the corresponding
tangent (this is immediately clear from formulas (3) and (4)). Therefore, if the
curves F and G had distinct tangents at the point P, then, when p =, F1 and
Gl will not intersect on Ll and consequently, T will not have fundamental
points on L The general case is more comphcated but reduces in the end to

this case. Along with the curves F1 and Gl, which we will denote by 0’ (F)
and 0 (G) where the index *‘c;”” indicates that the curves are consxdered in

the nelghborhood of the point P € L, we shall consider the curves
*01(F) =0l )+ pL

*01(6) = U (C) + 8L1,
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defined by the numerators and denominators of z. We shall call these curves the
total transforms of the curves G and F.

Applying a o-process at the point Pl1 €L, c ol(V) we obtain at some point
PEZ € L, Co,0,(V) the curves F@_ O'CZ(F(I)) = ocz(qu) and G? =

052(6(1)) = 032(0‘1:10) and also the complete images

o’ (F)=F2 +pa§2(L1)+ P1L2 - F2 PL(12) + ple,

*cz

02,,(6) = 6D 4 852 LD+ 81Lg - =6 4 8LP 4 5Ly

where the number Py» as itis not difficult to verify, is equal to the multiplicity
of the point Pl on the curve a (F) B, is defmed analogously. It is clear

that the curve UZ(L ) will pass through only one point-of the line L2 and will.

determine at it a linear branch; in general
)
oF, (F)=F™ 4 3p, LW,

where F(™ is the algebraic local image of the curve F under the sequence of
o-processes 0, °0, _4 ©--- 9g, and L( ") is the algebraic. local image of the
line under the further o-processes g, °0, _; ©++-°0,,, beyond the i th step;

all the L(") will determine linear branches at an arbltrary point P cp O0 L

Thus, at each step some multiplicity of linear branch is added to the curve
F, where, since a linear curve is taken into a linear curve under a o-process, as
a result of the sequence of o-processes, we obtain an algebraic image of the
curve F under the sequence of o-processes along with some collection of linear
branches. We shall first show that the algebraic. image of the curve F at each

point P" € L will cons1st only of linear branches i.e., a finite sequence of

o- processes permits one to "lmeanze branches For this we shall show that
each point of the mtersecuon of L with F(") will be a simple point on each
branch F(™ starting with some 7. To see this, we compare (2a), (3a) and (4a).
The point P is a point of multiplicity p of the curve F; the point Pl € L
will be a point of multiplicity a; of the curve F! , as follows 1mmed1ately from
these formulas. Thus, if 7> 1, then each point of the intersection of F! with
Ll will have a multiplicity less than p, and we obtain the desired statement
arguing by induction. Thus the only difficult case is when =1, i.e., fAx, y) =
(y — ax)”; then the curve F has at the point P a unique tangent of multiplicity
p- ,
Without loss of generality we can assume that fx, y) = ¥ and f(x, y) =

yp+ f’o+1(x, y) 4+ -++. The curve F1 will then have a unique point of intersectirm
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Pl = (0, 0) with the line L of the same multiplicity p:
[GpyD=y{+ 2 f Gy e

Among the terms of f (x, ¥) — y” we choose one of least degree in y: yx"y",

v+p>p. Itis clear that p<p and v + p > p; for otherwise flx, y) = yPl1 + |
and the curve F is equivalent to the curve yP =0, i.e., the point P is a simple
pointon y =0, i.e., on an irreducible component of F, which is what we want to

show.

Thus. there exists a term yx“y”, p<p, v+ p> p. Then XV BT il
) Yy s p<p H-p Y*i ,{h
occur in the decomposition of f,(x;, y,). Applying a o-process at theﬁoinc
(0,0 on L, C Vi we find that y1;+2‘u—2py‘; will be in the decoq:npo‘si'tion of

[27 and so on. Itis clear that after a finite number of steps we obtain 4 term of

degree less than p, while by the same token we reduce the multiplicity of the
singularity.

Our first statement has thus been proved.

Now let Hq: [hq(xq, yq) =0} and Eq: {eq(xq, yq) =0} be two distinct (lo-
cally) irreducible curves passing through the point Pg(xq =0, Yq = 0) € Lq on
Vq' where the point Pg is a simple point of Hq and Eq'

We apply a o-process to Vq at the point Pg:

LV - q
O'q. Vq Vq+1, Lq+1 0q+1(P0).

The curves Hq+1 and Eq+1—the images of the curves Hq and Eq under the
o-process—will each intersect Lq+1 in one (simple) point; if the tangents to Hq
and Eq at the point Pg were distinct, then the points Hq+1 . Lq+1 and Eq+1 .
Lq+1 will be distinct; while if the tangents coincide, Hq+l . Lq+ L= Eq+1 .
thiﬁ It turns out that after several applications of o-processes, these curves
will separate, i.e., the points Eq+u . Lq+u and Hq+u . Lq+u will become dis-
tinct. Thus, since the point Pg is noansingular on Eq and Hq’ one can choose local

coordinates such that

-y — q.h

hq(xq, yq) =7, izzl di %o (5)
-y - 9 '

eq(xq, yq) =Y, i=21 li % (5a)

and, since the curves Eq and Hq are distinct, there exists a least i such that
7419
dj # 1]
It is easy to see that after i o-processes these curves will have separated,

e Egyyo Loy #H

g+i’ Lq+i‘ Theorem 1 follows from these two statements.
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To see this, by the first statement, we obtain after the application of a finite

sequence of g-processes that, at each point

n
Pr €L, Coo, -0V,

the curves a:cn(F) and o:cn((;) will have only linear branches.
Let ‘

n _ n V
a*cn(F)—ijFj, ~
n N n
a*cn(G) = Em]. G].,

where F]. and C]. are linear branches at the
point P7 . By means of further applications |
: n

of g-processes we obtain that all the different
branches will have distinct tangents; we note

that a linear branch blown up under some later

process does not touch the images of preceding

'LP branches. Thus we obtain that

P (F)=kPFP 4 ... kP FP PFP

a*cp(F)‘ ERFE + +klPF1p+ ._l2+ k]F] +ppr, 6

I=tp 1
w0, .
P =mPFP 4 ... 4 PGP
o*cP(G) mEFR 4 + mprfP + j_ZZ o mk G] +_5PLP, (6a)
’ B

where all the branches are linear and have distinct tangents. If we now apply a

o-process to the point PP € L cv p’ then we see that through each point

Pf ++11 € Lp+] not more tha.n two lmear branches of the curves of A (F) and -
P
I::l+ 1(6) will pass namely the branches -
+1 (p+1) ‘ . ‘
o'fc +1(F) EF'PTY 4 p +1LP+1’ Fp*1
+1 ( +1)
agcp+1(G) mF\P +3P+1 P+1’
pp*l
where £, Ppt1s M 5P+1 >0. cp+1

Two cases are possible:
1. k>m, Pp‘i;l > 8P+1' In this case the

corresponding reduced curves will be such that

oPtl
*c +1

p+1 . L

+1
*cp+l p

(F) passes through the point P

while o’:cp+1(G) does not, or DEItheI curve passes through the point; i.e., this
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point is not a fundamental point Tp+ ;- The case k<m, Pp+1< 5p+1 is com-

pletely analogous.

2. k>m, p <8 (or symmetrically k < m, p>5). In this case the corresponding

i.e. this pointis a fun-

reduced curves will both pass through the point Pg :pl+ v

damental point for TP+1'

If we apply a o-process to the point P}::PI*’ v then the line Lp+2 will cor-
respond to this point on the surface V ; two points interest us ofn L R, —
P p+2 p L Bpe2r T
the center of the transformed branch FP*1 and R, —the point of intersection

. ’ 2 1% ) ,
of the transfitzmed line Lp+ L with LP+2' ‘ < é’

Let FP*2 be the image of the branch FP*1 and L;+1 the i[{igge of Lp+1
under 0,45’ Vp+1 — Vp+2. It is clear that Tp+2 can have fundamental points
on LP+2 only at the points R and R,.

oAt the point Ry

2
'02;1(1:) = KFPT2 4 (o Pp+1)[‘p+2’

(7
2
| 0€+1(G)=me+2+(M+5p+1)LP+2;
and at the point R, v
+2
O'{:RZ(F) =pP+2LP+1 + (k+ pp+1)Lp+2,
(7a)

+2
ang(G)=5p+2Lp+1 w(m+8, )Ly

Since k> m, p <3, then either
(@) k+p2m+8,or p+2
_t,(b)k+p<m+8. er
_In case (a) the point Rl will not be a fundamen- / :

tal point for the transformation Tp+2; in case (b) the

poiht R, will not be a fundamental point for Tp+2' In

the case of equality, there will be no fundamental

points of TP+2 on LP+2' Thus, Tp+2 will have no R, I
N ——— ’
more than one fundamental point on Lp+2' LP+1
In general, if the decomposition of the curves L..s
P

O'£+2(F) and 0€+2(G) at an arbitrary point of the

line Lp+2 can be written in the form
+2 .
crg (F)=k1D+pp+2LP+2,

o€+2(G) = mlD + 5p+2Lp+2’

then we see that

it A e

PR ORI

LA s
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Ikl_’"rl\"‘ !Pp+2 p+2|<|k m| + IPP+1—5P+1|-.
Thus, using induction on the sum _
lki = mil + |PP+,- - 8P+il’

we obtain that at some step p this number has become 0, from which follows im-
mediately the nonexistence of fundamental points for TP 4y 0N Lp o
The theorem is proved.
We note that from the statements about the possibility of the *‘linearization”’
of branches and about the *'separation’ of branches immediately follows
Theorem 2. Any curve E of a surface V can be transformed into a non-
- singular curve by means of the application of a finite sequence of o-processes
1o the surface V. ‘ : _
Clearly these o-processes must be applied at points of V that are singulat

points of the curve E:

$3. Theorems of Bertini

First Theorem. Let V be a d-dimensional algebraic variety in P". We con-
sider on V the linear system I]()\O, - )\s) without fixed components that is

given by the system of hypersurfaces
- Q) =Apfp + -+ A f =0 ' (1)

A rational mapping of V onto a variety W C P cofreéponds to this linear
‘s;stem (cf. the Introduction). If dim W > 2, then the generic member ofthe linear
sgstem is an irreducible subvariety V' C'V of multiplicity 1.

Proof. Let (1, £;,+++, £) be the nonhomogeneous coordinates of a genenc
point of ¥V and let us assume that o4, &y .f )740 Then ‘

GOV [V A

will be a generic point of W.
Suppose that dim W = 2; then we can assume that 7, = fl(«f)/fo(«f) and
N, = fz(f)/fo(f) are algebraically independent over the field £.
We will first show that if A is an independent parameter, then the element of

our linear system cut out by the hypersurface
fi+efy =M

where ¢ is some element of the field %, has the form mS, where S is an irreduc-
ible subvariety of V.

For this it is sufficient to show that for some ¢ € k the field k('ql + en,)
will be algebraically closed in the field k(V) = k(1, &, ---, &) (i.e. the field
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k(V) is a regular extension of the field k(n; + cp)).

Thus, in this case the point (1, fl, ceey, rfn) determines some (absolutely)
irreducible variety V* over the field k(ny + C’lz)’ whose dimension is equal to
d - 1, where d =dim V [53]. Since the point (£) lieson V, V*C V.

On the other hand, V* will lie on the hypersurface of Il defined by the equa-
tion

f+cfy=tfy,

where ¢ = TP is some transcendental element over k. Itis aLso easy to see
that each point of the intersection I+ V belongs to V*, for one ol{tauﬂs from the
generic point (£) the variety V as a specialization over k(nl + crlz)f

Thus, to prove that V - Il = mV*, it remains for us to show that it is possible
to choose a ¢ € k, such that the field k(y; + c7,) will be algebralcal(y closed
in ‘k(£). This statement is a well-known lemma of Zariski (cf. Hodge and Pedoe
[55]; pp- 93-95 of the Russian translation).

We have thus shown that the common element of our linear system H(/\O, .oy )\S)
cutout on V by the hypersurface @) =0 where (/\0, -+, A,) are independent
parameters, has the form H(/\O, ceey /\S) =mS, where S is a (irreducible) sub-
variety of V. We now show that m =1, i.e. that the hypersurface (1) cuts out on
V the subvariety S with a multiplicity of one. v

For this it is sufficient to show that the hypersurface (1) is not tangent to V
at a generic point of the subvariety S.

Let us consider a generic point ({) of the subvariety S that is contained in
the intersection of the subvariery V with the hypersurface (1); this will be some

potft over the field k(/\o, -++, A) satisfying the equation

. D) (L) = 2 fpld) + -+ + A f(£) = 0. ' (2)
Extending the differentiation dA; effective in the field EQgseees Ay o
some differentiation Di‘ in the field k()\o, N AS)(C) and applying it to (2), we

obtain:

af0<¢) ) O b, "
ag, g TRk

If f is an arbitrary element of an ideal determining the variety V, then

f(CO!°"an):07 i (4)

f(C)+

since () €S V.
Applying to (4) the differentiation D, we obtain

d d .
Logywfhng -0 ien

(5

1]



THEOREMS OF BERTINI : 23

This means that the point (DiéO’ ceey, Dién) is contained in the subspace tangent
to V at the point ({).

Now let the hypersurface (1) be tangent to V at the point ({). Then, as
easily follows from a calculation of dimensions, the subspace tangevnt o Vis

contained in the tangent hyperplane

=0 (6)

to the hypersurface (1) (one can assume the point ({) to be nonsingular on V).

Then the point (Diéo” cee, DiCn) satisfies equation (6) and

3, (&) of (L) 3% (g)

>

D¢ = (7)

Comparing (3) and (7), we obtain the equations
fr(c)z()v r=0,-.-,s.

This means that the subvariety S with generic point ({) is a fixed compo-
nent of our linear system, which is a contradiction. The theorem is proved.

We now assume that there corresponds to the linear system @) a mapping 7
of the variety V onto a curve C with generic point () = (fl(_f)/fo(f), ey, fs(f)/fo(tf))
We write k(£) =K, ‘K(r]) = Kl' The field K/K1 is the field of functions on the
subvariety V, =7 1(7;) C V. The subvariety V, can be reducible.” We then
consider the field k-l = E]_), the algebraic closure of the field K| in the field K.
If dim V = 2, then dim V1 = 1. We denote by C a nonsingular model of the field

E(np) = I_( ; let 6 be a generic point of C.

The inclusion K, CK determmes a rational mapping 7: ¥V — C. Since the

field Kl = k(7) is closed m K the curve V =7 (r;) will have. tbP form mS,
where S is an irreducible curve. Exactly as in the proof of the preceding theo-
rem, we can show that m = 1.

Moreover, since l»(ﬁ) C k(3), there exists a covering E — C.

Thus, one may make a commutative diagram of the rational mappings

V.G |
7:\ /r (Tl)
C

where r is a covering, and a generic fiber 7 1(7]') of the mapping 7 is an irre-
ducible curve. )
When a mapping of a surface V onto a curve C corresponds to a linear sys-

tem, we will say that this system is composed of a pencil. Each linear system .
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that consists of a pencil consists of an irreducible pencil in the sense that there
exists for it a diagram (Tl) with the properties given above. ‘

Let ® be an irreducible pencil (not necessarily linear) of curves on V. There .
corresponds to it a rational mapping m ¥V — C such that C is a curve and a
generic curve of the pencil E =7 (x), where x is a generic point of C. The
curve C is usually called a base of the pencil. Clearly, the field of functions on
V, E(V), is equal to K'(Ex), where K' = k(C). We will assume that the curve Ex
is rational (has an arithmetic genus of 0) over the field K'. Then, as is known
[58], the field K'(Ex) will be a field of functions on a curve of se’conf'l order
d)(u, v) =0 with coefficients in the field K'. Lf
' will be
quasi-algebraically closed and the curve qS(u, v) =0 will have at 1eas(6ne rational
point over K' [52]. But this means [58], that the field £ (V) = K'(E ) will be a

pure transcendental extension of the field K"
EV) = K'(0) = k(C)(2),

from which it follows that the surface V is birationally equivalent to the direct

If the original field Ak was algebraically closed, then the field K

product C x Pl of the curve C on the line Pl. Such a surface is said to be

ruled. The result obtained belongs to Noether.

Theorem of Noether. [f there exists on the surface V a pencil, a generic
“curve of which is nonsingular and rational, then the surface V is ruled. Moreover,
if C is a base of the pencil, then V is birationally equivaleat to Pl x C. In par-
ticular, if C is a line, i.e. if the pencil is linear, then V is birationally equiva-
lent to Pt x P'Y, iie. V is rational.

" Second Theorem of Bertini. 4 generic element of a linear system Iy onan
algebraic variety V cannot have singular points that are not base points of the
system I, or singular points of V.

Let a linear system [y be given by the system of hypersurfaces (D).

We reduce the general case to the case of the pencil

My + pf=0. (8)

3

Thus, adjoining (Ag,---, ) to the original field & and considering the system
given by the pencil (8) (where pf = Alfl + et )\sfs), we see that if the point P
is a singular point of a generic elemeat of the system and is not & singular point
of V, then fO(P) =0, assuming that the second theorem of Bertini is true for pen-
cils. Analogously fl(P) = e = fr(P) =0, i.e. the point P is a base point of the
system (1).

Thus we consider the pencil )\fo + pf=0. Itis clear that the singular points

of the subvarieties that are elements of this pencil satisfy the equation
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Dfy - fyDf =0, 9)

where D is any differentiation in the field k(£) over k, and (£) is a generic
point of V.

These equations determine some algebraic subset' W on V, W = EWI., where
the ¥; are irreducible subvarieties on V.

Let (x;) be a generic point of W,. We can assume that f(x,) £ 0; we con-
sider v=A/p=- fl(xi)/fo(xi)'

Applying the differentiation D. to

vfplé) + [(6) =0
we obtain

fol6)D ) + VD(fO(f))+D(f1(f))=0.. o (10)
Since (x,) satisfies equations (9) and (10), 5 _
vD ([O(xi)) +D(fix)) =0 : (11)

and from (10) and (11) it follows that D (v) = 0. for any differentiation in k(&)

over k (in particular, for any differentiation D in L(x) over k). Thus v is alge-
braic over k, and this means that there exist only a finite set of elements of the
pencil (8) having singular points’that are not base points of the pencil and not »

singular points of V. The theorem is proved. The proof given belongs to Akizuki

(2}
- $4. Zariski’s theorem on multiple linear systems

Theorem. Let T be a rational 'mappi'ng' of a nonsingular surface V onto a
surface V'. This mapping can be given by a linear system L of curves on the
surface V that do not have fixed components. Then fér a sufficiently large num-
ber h, the complete linear system {hL| does not haue base pomts, i.e. Lhe map-

ping corresponding to this system is regular. -

Proof. Since a mapping on the surface corre‘sponds to the system L, a generic
member of this system is an irreducible curve {cf. the proof of the first theorem of
Bertini). Let C be some irreducible curve of the system L. We will show that
(€?) >1. Now dim L > 2, for a mapping on the surface corresponds to this system.
Thus, for any point P € C, there exists a curve C' € L passing through P and
distinct from C. Since the curves C and C' cannot have common components
(C is irreducible), (C - C)> 1, i.e. (CZ) > 1

We consider the exact sequence of sheaves

0 — F((h—l)D’)—»F(hD')—»FC(hD' - 0)—0, (T)
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where D' is some divisor (not necessarily effective) linearly equivalent to the
curve C and not passing through the singular points 01’ -, Qs of the curve C.
The sheaf FC(hD' - C) is such that

the set of rational functions ¢ on C such that

FC(hD' . C)x _ {(#)+ C - ED' >0 if x is a simple point of the

curve C: the set of rational functions on C regular

in x, if xeﬁQl,---,Qs}.

From the sequence (T ;) we obtain the exact cohomology seéﬁeng{e

@&

0 — KO, F((h = 1)D") = KO, F(hD) — H(C, FlhD' - CN = 7

/
W HYY, F{h=1)D")) — HYY, F(hD")) » HXC, FAD" - C) — . (T

Sicice kD' - C = hC2 > k and the divisor kD' - C does not contaia singular points
of the curve C, by the Riemann-Roch theorem for a curve with singularities,
H_I(C, gc(hD' -C) =0 if RC?> 27 — 2(1), where = is the arithmetic genus of
the curve C. From the sequence (T,) we see that for numbers h satisfying con-
dition (1) the numbers r, = dim HI(V, £(hD")) form a nonincreasing sequence,
and consequently there exists an integer mg such that r = const for all & > m.
From this it follows that HI(V, F(AD") ~ Hl(V, F({(h=-1)D") for h> my + 1,

and we obtain the following exact sequence:

0 HOW, F(Uh—1)D) — BV, FGD) S HOC, FhD' - O) =0, (Ty)
In this sequence

H (V,F (h—1)D)) =Zv (. — 1) D),
H° (V, F (hD")) = Zy (hD"),
H°(C, F (hD'-C)) = Z¢ (hD’-C).

Our goal is to show that the system |hD’|, i.e. the system of divisors D¢ =
(@) + kD', where & € gv(hD'), does not have base points, i.e. poiats generic for
all D¢. For this purpose it is sufficient to show that the system of divisors
|hD" - Clc, i.e. the system of divisors % =(¢) + KD’ - C,; where (,{)ESEC(/LD' - 0),
does not have base poiats on the curve C. Now if some point L€ V is a base
point of the system |hD’|, thea p € C, for hC € |hD’|, and, consequently, passes
through . From the fact that the mapping r¢ is an epimorphism it follows that
each divisor of the system |AD' - C|. cuts out on the curve C some divisor of
the system |kD'|. From this we quickly obtain that the existence of a base point

e of the system |hD'| implies the existence of a base point of the system
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kD' - Cl;- We now show that for large h the s;‘stem |kD" - Clvc does not have
base points. It is clear that if C is a nonsingular curve, then for kD' - C =

hC2 > 27 -2 (in this case 7 = g(O), the geometric genus of the curve C), the
system of divisors |hD' . Cl¢ does not have base points and everything is proven.
There remains to be considered the case when C is a curve with singular points
Qg Q We write S =J;0,. Let € be a normalization of the curve C, and
let p: C-—> C be a regular mapping of C onto C such that pu: C S C- S,
where §' = p~ (S) is a biholomorphic map. We denote by O’ the sheaf of local
rings on C, by 0 the sheaf of local rings on ¢ and by O, the direct image of the
sheaf 0: O = p(O) As follows from the propernes of a normalization, the sheaf
O is such that

0;, Co i 2 €S

n5m, ifx=Q, Q€S;

Pi € p-l(Q) in this case OQ is the complete closure of the
ring Ob in the field of functions K = k(C).

0 -

x

Clearly 0D 0" .

We consider the annihilator & of the sheaf of modules 0/0’, i.e. the sheaf
whose fiber at the point % € C is the ideal 8 C 0, consisting of all elements
f€0, ‘such that - g € 0' forall g€ O0,. Since O and O' are cohérent alge-
~ braic shea‘es 8 will hawe these properties.

If x is a simple point of the curve C, then O =0, a.nd 8 —Ox’ if x=0Q,
Q € S, then 0 # 0 and QQ C OQ’ for OQ is a ring w1th 1dent1ty Moreower in

this case QQ cannot contain 1, and consequently

-1.e., in particular, dunO /Q >1
The condition for an element f€ OQ to belong to the ideal 89 can be ex-
pressed in the following form, which will be convenient for us in the furure.
Since the ring OIQ is the intersection of a finite number of regular local rings
0 , P€E ( ), the intersection of the ideal 2, with any rin 0 will again
P # Q y g Yp g
be an 1dea1 QQ If we denote by fp alocal umfor[mzmg at the point P of the
curve C, then it is clear that any ideal of the ring 0 has the form tPOP’ in
particular, Q = POP

We consider the divisor QQ =3 P on the curve C. Itis clear

Pex~LQ)"P
that a function f€ OQ belongs to QQ if and only if f= 0 mod 8g, i.e. if f=

tPPu where u € OP for each P € pu I(Q) In other words, a necessary and suf-

ficient condition for a function f€ OQ\ to belong to the ideal QQ is for it to
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vanish to order less than np at each point P e p._ 1(Q). The degree nQ =
z . . ; . M M '-
PeEum 1(Q)np of the divisor ZQ ,.:S equal to the dimension of OQ/QQ The di
visor 8= EQ €S@Q on the curve C is usually called the conductor of the curve
C. The degree of the divisor 2 is denoted by ng ng= EQe sno- It follows from

the above that 8~ F,E(— 8).
We now consider the exact sequence of (coherent algebraic) sheaves

0 — %-»O'-;MC — 0,

where M is the factor sheaf Op/8 Since 39 = O'Q at points Q,C C’é—- S, the
sheaf M is concentrated on S. Moreover, in view of what has been 5 id, at each
point Q € S the group MQ = O’Q/@Q is a finite k-module of dimen’sicfn‘z 1. Let
D (ia our case D = LD’ - C) be some divisor on the curve C,DNS£P Toit
corresponds a divisor ’5 =p L(D) on E that clearly has the same degree as D.
Moreover, since the sheaf 8 is isomorphic with the sheaf F,E(— 3), we obtain the

exact sequence of sheaves:

0 F.(D-8—FsD)—Ms—0
B8 — FelD) — e

(it is essential here that DNS= #). From this we obtain the exact cohomology

sequence:

o s HOE F.(D - 3) = HOC, F (D) — H(C, M) —
c
— H(C, FE(B_@))_,.... (T

If the degree of the divisor D is sufficienty large (if RD' - C—ng= hC? - ng>
25~ 2, where n is the arithmetic genus of C = the genus of -C), then

Hl'(%‘, F?f X (B — 8)) =0 and the linear system of divisors \5 — 3] on C does not

ha\},vre“ fixed points. From the second proposition and from the exact sequence (T 9
it follows that no simple point of the curve C can be a base point of the system
|kD* - Cl(; from the first statement and from the properties of M it follows that
also no point Q € 5 can be a base point of our system. The theorem is proved.
Zariski’s theorem is proved in 122], The present proof comes from an idea of

Kodaira [25].

|




CHAPTERI1

MINIMAL MODELS

In this chapter a theorem about the decomposition of a birational transforma-
tion into' a sequence of o-processes is proved and minimal models of surfaces
are studied. It is shown that each birational class of surfaces has a relatively
minimal model. It is also showa that all classes of surfaces except for classes
of ruled surfaces have (absolute) minimal models. v

Let V bea nonsingular projective algebraic surface. Then it is possrble to
introduce a partial order in the class {¥'} of the birational nonsingular surfacés
equivalent to it. We shall say that a nonsingular surface V' € {V} dominates the
surface V" € {V} if there exists a regular birational mappmg T: V' V" We
will denote this relation V' > V". '

If the mapping T is biregular, we shall identify the surfaces V' and V"
thus, we shall consider surfaces up to brregular equualence

A minimal model of the class {V} will be a nonsingular surface V € {V}

such that 17 < V' for any VeV, V' £ V. If a minimal model exists it is unique.
In this chapter we explain which classes {V] of surfaces have minimal
models. ’ ' v

The following is a basic result.

All classes of surfaces, except for ruled surfaces have minimal models.

We shall call a surface V' €{V} a relatively minimal model (r.m.m.) if there
does not exist a surface V" € {V} such that V' > V" ‘ :

We shall show that in each class' {Vl there exists at least one relanvely
minimal model.

Thus, let V', be an arbitrary surface of a class {V} Then either there does
not exist a surface V € {V}, V < Vl’ and the surface V is itself a relatively
minimal model, or such a surface V, does exist. The surfacc V, either is arela-
tively minimal model or there exists a surface V3 € {V} such that Vy> V3. Re-
peating this argument we either obtain a relatively minimal model Vn, n <+ o Or
we obtain an infinite sequence V; >V, > V3 > ... of surfaces of the class {V}.
We shall show that the existence of such a sequence is impossible.

Thus, since each regular mapping T V;— ¥, is not biregular, there
exists on Vi an exceptional curve Cl-, (an irreducible curve such that Ti*(Ci) = Oi’

where (J; is a point of the surface Viet (cf. the Introduction, [55])). The regular

29
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mapping Ti induces an epimorphism (mapping) of the groups of divisors
Ti*: D(Vl) inasd D(I/L+ 1)’

and also, since algebraic equivalence is preserved by a regular mapping, the epi-

morphism

T W) — S,

Since the homomorphism Ti* has a nonzero kernel (since it includes the class of
algebraic equivalence of the cucve C)), while the rank of the group ?(Vl) is
finite, there cannot exist an infinite chain of surfaces V> Vzé V§'> ceel

Thus there exists in each class {V} at least one relatively mij' mal model.
Moreover, for any surface V' € {V}, there clearly exists a relatively/minimal
model V' € {¥} such that V'’ <.V'. 1t is also clear that if a minimal model does
not exist in the class {V}, then there exists in this class at least two relatively
minimal models for which neither V| >V, nor V,> V. We consider the bira-
tional mapping T: V; — V,. Since T is nonregular, there exists a point ¢, €V,
fundamental for T, i.e., such that T(Ql) is some curve E on the surface V,.

We now consider the mapping T™1. If this mapping, which necessarily has
fundamental points on VZ’ did not have fundamental points on E, then there would
be a surface V3 € {V} and a regular mapping T" Vy— V3 such that T'(E)
would be a point on V3 (cf. Lemma 2, §1). This would mean that V2 is not a
relatively minimal model, contrary to the assumption. Thus, from the nonexistence
of a minimal model in some class {V1 it follows that there exists in the class a
relatively minimal model V with a curve E lying on it which has the following
properties:

: (1) the curve E is the total preimage of some point Q € V' under the bira-
tional mapping T: V — V', E= T~ 1Q);

(2) the mapping T has at least one fundamental point on the curve E.

Such a curve E is said to be an exceptional curve of the second kind; these
curves will be studied in detail in the sequel. From the preceding arguments it
is clear that each relatively minimal model of a class {V} without a minimal
model carriés an exceptional curve of the second kind.

We shall show later that if an exceptional curve of the second kind lies on a
relatively minimal model, then an irreducible exceptional curve of the second
kind lies on it also.

The basic proposition of this chapter will follow from the following theorem
{cf. Theorem A, S 4):

If an irreducible exceptional curve of the second kind E lies on a relatively

minimal model V, then this surface is ruled if (E?) =0, and is rational if (EH)>o0.
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It is also possible to show that if a class {V'} does not have a minimal model,
then any surface V' € {V} carries an exceptional curve of the second kind; this

statement, however, will not be needed.

S1. Exceptional curves of the first kind

An algebraic curve E on a nonsingular surface V is said to be an exceptional
curve if there exists a birational transformation T: ¥V — V' of the surface V
onto a nonsingular surface V' such that E is the total preimage under T of some
point Q' € V' ie. E= T_I(Q').'

If the transformation T is a regular mapping at every point of the curve E,

then this curve is said to be an exceptional curve of the first kind; in the con-

- trary case, it is called an exceptional curve of the second kind.
, ( g

In this section we shall study exceptional curves of the first kind. We shall
show that in some sense the exceﬁtional‘curves of the first kind are exhausted by’
the lines obtained from the surface as a result of applying o-processes to it.

We first prove a lemma about regular transformations.

Lemma 1. Let T: V' — V be a birational transformation of a surface V'
onto V that is regular at some nonsingular point Q' € V', let Q= T(Q" b? a
nonsingular point of the surface V, and let OQ’ > OQ (i.e., Q is a fundamental
point of the transformation T~ 1Y), We consider further the surface V* = (V) ob-
tained from the surface V as a result of the application of a o-process at the
point. Q.. And we consider the birational transformation T': V' — V*, T' =0T,

then T' will be regular at the point Q'.

T
V-V
T\ /0

\%

Proof. Let Q* be some pointon V* corresponding to Q'€ V' under the
transformation T'. From the definition of T’ and ¢, and also from the regularity
of T at the point Q, it easily follows that Q* € L =g ((Q). Let (%, ¥) be local
parameters at the point Q*. The functions %, ¥ can be chosen (cf. the descrip-
tion of a a-process) such that =%, ¥ = 3'/;\', where (x, ¥) are local parameters
at the point Q. It is clear that x, y € N’ where {I' is the maximal ideal of the
local ring OQ" To prove our assertion it is sufficient to show that x, 5 € OQ"
Let us assume the contrary, i.e., that the point Q' is 2 fundamental point of the
transformation T'. Then, as follows easily from definition, only the line L =0(Q)
can correspond on V* to the point Q'. The local equation of L in a neighborhood
of the point Q% is T =0, If one denotes by vL(gS) the order of the function q5€lz
on the line L, then VL(x) = 1, from which one obtains that x €I 2 (the point Q'
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on V' corresponds to the curve L [55]). Since the point @ is a fundamental
point of the transformation T™ 1, there exists on the surface V' a curve (irreduc-
ible) C’, such that T(C') = Q. Itis clear that x and ¥ vanish on C', and, since
x ¢ S‘Il’z, x =0 can serve as a local equation of the curve C' in a neighborhood
of the point Q'. From this it follows that x divides y in the local ring OQ” i.e.

y/x € OQ” which contradicts our assumption. The lemma is proved.

Lemma 2. Let V be a nonsingular surface and let E be an exceptional curve

of the first kind on V. Then there exists a nonsingular surface G and a birational
mapping T: V — G which is everywhere regular on V and bireg;l‘ilargm V- E,
where, moreover E = T~ XP) for P a point on G.

Proof. By the premise of the lemma there existsa nonsingula(z:grface V'
and a birational mapping T': ¥ — V' that is regular at all points Q& ECV,
where E =(TY YR, for 'P' a point of V'. The transformation (T)"! can have
fundamental points on V' distinct from P'. Applying a finite sequence of o-
prowc(‘esses (at points # P"), we obtain a new nonsingular surface v = TO(V')
such.‘rchat the birational mapping T" = TO T'. V— V" is regularon E, (Tt
has a fundamental point only at P" = TO(P'), and F = (T")-I(P"), i.e. (T")_1
is regular on V" — P" (Theorem 1, $2, Chapter I).

Let L be the linear system on V {without fixed components) corresponding
to the transformation T". We consider the complete linear system |ALY for a suf-
ficiently large h and consider the corresponding transformation T and the sur-
face G = T(V). We shall show that the normalization Gy of the surface G (Gy=
N™(C)) and the transformation Ty = N™ LT corresponding to it satisfy the re-

v quirements of the lemma. First of all, the transformation T is everywhere regular
on V (by a theorem of Zariski). )

““The transformation T may be considered to be composed of two transforma-
tions: the transformation T|L| of the surface ¥V corresponding to the complete
linear system |L!, and the transformation T, of the surface VlLl = T]Ll(V) cor-
responding to some complete system of sections of the surface VlLl with the
hypersurfaces of degree h. Since the surface V|L| is obrained from the surface
V by the transformation T|;| corresponding to the system |L| 2 L, V\Ll is bi-
rationally equivalent to V (since V" was birationally equivalent to V; this im-
mediately follows from the properties of mappings comresponding © linear systems,
cf. the Introduction). Thus, the mapping T: V — G is everywhere regular on v
and is birational. .

Let D be some curve on V, D # E, and let £ be a generic point of the curve
D. Then, since tr [T"(£)/k} =1 (since T" does not contract the curve D into a
point) and since E(TEND E(T"(£)), for the transformation T corresponds to
the linear sys'tem ‘ihLl, we have o [E(T(EN/k) =1, i.e., the curve D£Eis




A EE—— -

EXCEPTIONAL CURVES OF THE FIRST KIND 33

taken into a curve by the transformation T, and is not contracted into a point.
The linear system L consists, by definition, of effective divisors D)\, such

that

Dy =(F\)+ D, F) =xgFy +---+ 2 F,,

where Fy,- -+, F, are linearly independent rational functions on V¥ and D is a
divisor on V such that (F]-) +D>0, j=0,---, d The mapping of the surface V
corresponding to the system L is given in the following manner in the neighbor-
hood U;:

™ . ;
V=P—(FRS(P), . . ., FaRD (P)),
where Ri) is a local equation of D in the neighborhood U,.

It is clear that in order for the curve E to be taken into a point under a bira-
tional transformation S corresponding to a linear system M (without fixed compo-
nents), it is necessary and sufficient that (E - M) = 0, where Misa generic curve
of the system M. From this we obtain immediately that since (E - E) =0,
(E - kL) =0, the curve E is transformed into a point by T. Thus the mapping
T: V — G regularly transforms the curve E into some point P € G, and does -
not contract any other curve D # E into a point.

Along with the surface G we consider its derived normal model Gy and the

commutative triangle (T,) of birational mappings, where T and N are regular

" mappings, and Ty = NTIT.

T
V—G
TN 7N (TP
Gy “

In the future we shall need two basic facts from the thevory of normalization
of surfaces:

(1) for any point Z € G, N~ Y(Z) is a finite set of points;

(2) if the mapping T;TI is nonregular at a point R € Gy, then a curve on ¥
corresponds to the point R under the mapping Ty ! (analogously, if Ty is non-
regular at a point ¢ € V, then a curve on Gy corresponds to the point O.

The proof of these facts is given, for example, in the book of Hodge and
Pedoe ([55], Theorem III).

From this and from the properties of the mapping T it immediately follows
that: (a) the mapping Ty is regular everywhere on V; (b) the mapping Tﬁl is
regular on GN - N_I(P), where P = T(E); (¢) TN(E) =N YP)=R (as an image
of an irreducible curve). ’

Thus V — E is biregularly equivalent to Gy — N~ 1(P). It remains to show

that R = N™1(P) is a nonsingular point of the surface Gy. For this we consider
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the triangie of birational mappings (T5), where we denote by T the mapping
=1
TSk -

L’ e VIY

T\J\ T T (T Z)

We shall show that the mapping T is biregular at the point R € Gy, from
which will imnediat"iv follow that che point R is simple. From the dehmuou of
f it follows that 1 T(R)=P", i.e. [ is regular at the point R. 1f \IS 1 were
non'eouiar at the poiat P" theu there would exista curve E, Cf‘/ Elé" T-HP",

R R. We consider the curve D=Ty 1(5) DCE Ttis clear that D :-Jf; (DOTEO VET,
since T = T"Ty 1, and 1y is regular, 7"(D) = P", which contradicts the assump-
tion (that E is a roral preimage of the point P" under the transformation ™.
The lemma is proved.

. These jernmas make it possible to describe the exceptional curves of the
‘uqr kind. Let V bea nonsingular surface, and let E be an exceptional curve of
e first kind or it. This meaas that there exists a birational mapping T of the
surface ¥V onto some nonsingular surface V' such that T is regular atall the
soints cf £, T(£) = Q.

Then, as follows from Lemma 2, there exists a bx.at'c, nal mapping T of the’
surface V onto a nonsipgular sufafe ¥ which is regular everywhere on ¥V and
biregularon V = E, such that £ = 1((,_/) where. Q € V. Applying a g-process
to the surface V' at the point Q we obtain a norsingular surface V* with a line
I oa it such that L = o(0). We consider the (brlttonal) mapping T* = ¢T of the
sutface V onw V7. From Lemma 1 it follows that T" is regular everywhere on

E and, consequently, on ali of V, and is biregular on V-E

T _
V-V
T*\/s
e

T'
V — E=~V' —L).

Here (T7)” (L) = E. 1t is clear that the cuive E will consist of the (algebraic)
image of the curve L under the transformation (T*)"! and of exceptional curves
of the transformation T* that correspond to fundamental points of the transforma-
tioa (T*)71 on the line L. If E is an ureducxble cutve, the transformation
Y 1 4oes not have fundamental points on L ie THisa bicegular mapping
of V onto V*. Thus, the following theorem has been proved:
Theorem 1. Any irreducible exceptional curve of the first kind is obtained

(up to a biregular transformation of the surface) as a result of the application of
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a o-process at some point of the nonsingular surface.” We obtain from this, in par-
ticular, that if E is an irreducible exceptional curve of the first kind, then (E%)=
-1, p(E)=0.

In thé rest of the section we use the notation of the preceding proofs.

Now let E be a reducible exceptional curve of the first kind. We denote by
EO =(T*)" l[L] the algebraic inverse image of the line L under the mapping T*.
Since EO # E, there exist on the
line L points Q,--+, @, thatare o{Q)
fundamental points of the transfor-
mation (T*)-l. If we write Ei = . )
(T*)—I(Qi), then, clearly each curve . : ‘ o] efLl

E; is again an exceptional curve of I

the first kind. Applying a o-process

e L. 1 *
at each point Q; of the surface v,
we obtain a surface V’;, on which

~

there lies the line L1 depicted in the figure,
=olLl+30/Q). .

As follows from Lemma 1; there exists a regular mapping T =0 = T*
of the surface V¥ onto V], such that (T3 1l YA ) =E. Repeatmg th1s process

we find that any exceptional curve of the flrst lund E has the form

——

™

of a tree consisting of irreducible rational nonsingular curves Li' The curve E

has only double singular points formed by the intersections of the Li; the curves

Li and L]. have no more than one point of intersection. This tree is connected;
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of the sheaf FL(L . Em) will be 1 and a function  that has a unique zero on

L (cf. the preceding argument about the system lEm+1\). We denote the inverse

images of these functions in HO(v, F(Em—l)) by x; and xo; this means that

in U,
13

: ; :

x1ehlp =L Xaem-1lL =¥

(Clearly, in some U]-, j# 1, it is possible that

X1%m-1lL =¥ xg¢m-1lL = 1) v
We consider the (global) functions {"1 = Xl/fq’ ‘52 = Xz/fq. Since fqei;ﬁllL =1
in any neighborhood Ui’ and since e:n 1= e:n_ 1 I}, where [ is va/l’ocal
equation of L in U, the functions &, and &, are holomorphisms in'a neighbor-
hood U(L) of the curve L and vanish on L. ‘

Our goal is to show that the functions 51 and {"2, considered on I7, are
local parameters at a point P € V. In other words, we will show that there exists
a biregular mapping U(fl, {"2) of a neighborthood O onto U(P)=d(U(L) C V.

First of all, there exists a biregular mapping of U(L) - L into U-0:

x. 2 —->(§1,(z), 52(3))

For, if the point ¢ € L, ¢ € U, N U(L), then either &€ =x1/x; of £,/¢, =
XI/XZ can serve as a local parameter on L; let the first case be true. Then,
clearly, (£}, fz/fl) is a system of local coordinates ot V' in the neighborhood
u; N U(L). But in this case (fl, {:2/{"1) are local parameters at any point z €
U, n U(L) - L. For this it is only necessary to repeat the arguments given during
the discussion of the o-process (the neighborhood Ui N U(L) is itself obtained,
as may easily be seen, from the neighborhood U(rfl, 52) with the aid of the o-
process &t — £ty = 0).

We now consider the mapping @ in the neighborhood U(L). In uiyn vy,
the function fq . et £0, and therefore @ is written in nonhomogeneous coor-

m+tl
dinates in the form

; fo (2 foos(® o ]
o= (22, el e, {@.1),
() fq(z)r ’ fq(z) vgl() E_()
where all the fk(z)/fq(z) are holomorphic functions of z € U(L)y N U; and, con-
sequently, are holomorphic functions of fl and {:2 if ‘fl’ 62 ev (rfl, fz). But
then all the functioas fk(z)/fq(z) are holomorphic functions of fl and {"2 in all

of U (fl, {"2), since they cannot have isolated poles.
Thus the mapping @ o+~ ! is a biholomorphic mapping of U(&), £,) into
®(U(L)) = U(P)C ¥V, which is what we needed to show.
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$3. Exceptional curves of the second kind

We now turn to exceptional curves of the second kind. Let T: ¥V — V' be a
birational transformation of 2 nonsingular surface V onto a nonsingular V', let
Q'€ V', and let E=T"1Q") be the total preimage of the point (', i.e., an ex-
ceptional curve. We consider a so-called ‘‘dominating”’ surface G, i.e., a non-
singular surface birationally equivalent to ¥ and V', such that there exist
(birational) mappings f: G — V and f: G — V' that are everywhere regular on

G. Such a surface can be constructed using the method of Lemma 2, §1.

/\

V——bV"’

The triangle of mappings is commutative. It is clear that E=T" 1(0)
fUf™HQN), from which it follows immediately that an exceptional curve of the
second kind is connected, for E- (f"° I(Q ) is an exceptional curve of the first
kind (and thus connected), and f is a regular mapping.

Now let D be an irreducible component of the curve E. The algebraic inverse
image f 1[D] of the curve D is an irreducible curve on G, and, moreover,

/- pic - I(Q )= E. But the curve E is an excepuonal curve of the first

kind, and thus all its irreducible components are rational curves. Consequently

the curve D is also rational. . v
We introduce a g-process at the point Q' € V'; we obtain a surface V) with

the line L on it. We consider the triangle of mappings T, =0,7T.

. T

V-V

TN L%

v,

It is clear that E=T, 1{L). Let us assume that there exists a point Qi €L
such that E = T-I(Q') Then we introduce a g-process at the point Q'l €V,
obtammg a surface VZ’ and so on. Thus we obtain a sequence of points Q" <
Ql < 02 . lying respectively on the. surfaces v, Vl’ -+- and such that
the curve E is the total preimage of each of these points under the cotresponding
mapping. Burt then, as follows from §3, Chapter I, this sequence breaks off at a
finite step, i.e., there exists a surface V' and a point 6' on it (called the ‘‘max-
imal contraction"’) and also a birational transformation T: V — V' such that
E=T" I(Q ), where the following conditions hold: if we introduce a ‘g-process
at the point Q'€ V', then no point Q €L*- cr(Q ) C V* can have the curve E
as a total preimage. It is clear that E= (T )-I(L ); here I—/* = a(i/_'), T* = OT.
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T _
V-V
N L °
7
Now let the curve E be reducible and have ¢ > 1 irreducible components.
Since the curve L* is irreducible, the transformation (T*)™! must have (at least
one) fundamental point P' on L—*. Let E1 = (?*)_I(P'). In view of the choice of
the surface V' and the point é', E1 will be an exceptional curve stfictly in-
cluded in the curve E, i.e. consisting of s < ¢ components. Two cases may arise:
either E1 is an exceptional curve of the second kind, or it is one o/f.évfhe?irst
kind. In the second case there exists a birational everywhere regular mdfping
Tg: V— [—/-OL under_which E| = Ty 1(QO). We consider the curve Ej = ‘;0.(E). '
Then EO = (TO)_I(Q'), and, since the transformation T :

Ty
V——sV,

A
1%

was not regular on E, the transformation TO will not be regular everywhere on
EO’ i.e., EO will be an exceptional curve of the second kind, where the number
of componeats of the curve EO will be < ¢ (it will be equal to g — s, where s is
the number of components of E ;). Thus, in both the first and second cases we
obtain an exceptional curve of the second kind (lying, pethaps, on another surface
of the same birational class as the original surface V) with a number of compo-
nents less than g. We summarize all the results obtained.

Theorem 1. An exceptional curve of the second kind is connected and all its
irreducible components are rational curves. Moreover, if an exceptionﬁl curve of
the second kind E lies on a surface V, then there exists a (nonsingular) surface
of the same class containing an irreducible (and, consequently, rational) excep-
tional curve of the second kind. In addition, it follows immediately from the proof
of the last statement, that if V is a relatively minimal model, then there already
exists on it an irreducible exceptional curve of the second kind (in fact, the
above described curve E| will necessarily be an exceptional curve of the second
kind with a smaller number of components than E).

Lemma 1. Let E be an irreducible exceptional curve of the second kind on
the surface V, and let T: V — V' be a birational transformation such that E =
T-YP"), P' € V'. Let, further, the point P € E be a fundamental point of the
trans formation T (such a point always exists, since E is an exceptional curve
of the second kind) and let o: V — V be a g-process at the point Pe€E. Then
olE] is also an exceptional curve (perhaps of the first kind).

|
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Proof. We consider a commutative triangle of mappings. Let L = g(P). Then

T
Vv’
ol /7
TP (P)YC o [E] + L.

We will show that T~ L(P') = ¢[E]. In view of the fact that P is a fundamental
point of the transformation 7, there exists an (irreducible) curve E' on V' pass-
ing through P’, and such that T~ YE7 = P. We consider some point Q' € E’,
Q' £ P', at which the mapping T°1 s regular. But then the mapping ™1 win
also be regular at this point (Lemma 1, §1), we denote the corresponding point
(clearly lying on the curve L) by Q. Then OQ' > OP’ Q2 OQ If we now as-
.sume that T[L] =P/, then it is possible o suppose ‘without loss of generah‘y
that T is regular at tbe point Q, and consequently O'O>> OP" From this it would
follow that OQ' > Op, which is clearly impossible. The lemma is proved.

If the curve o[E] is again an exceptional curve of the second kind, we again
apply a o-process at the point P' = 6[E], a fundamental point of the transforma-
tion T, and so on. It is clear that after a finite number of steps we obtain a curve
E which is an exceptional curve of the first kind. The following theorem is thus

proved.

Theorem 2. Let E be an exceptional curve of the second kind on V. Then
there exists a surface G obtained froni V by an entiregular birational trans forma-
tion g2 G — V that is a product of a finite number of a-processeé, such that
g UE) is an (irreducible) exceptional curve of the first kind, i.e., a rational
curve without singularities. From our argufnents it f‘ollows in particular that all
the singular points of an irreducible exceptional curve of the second kind E are
necessanl; fundamental points of the correspondmg transformatmn .in the proc-
ess of transforming the exceptional curve of the second kind into an exceptional
curve of the first kind by applying o-processes to the surface V at the singular
points of E, we resolve these singularities (i.e., we desingularize the curve E).

From these properties of irreducible exceptional curves of the second kind
we now obtain, using the Lemma of §1, Chapter I, certain numerical characteris-
tics of such curves. .

Let E be an irreducible exceptional curve of the second kind on V. We
write E2 = k, g(E) =0, n(E) = p. If E is a nonsingular curve, then p = 0. For
the transformation of E into an exceptional curve of the first kind, one needs
n>0 o-processes with centers at the points @y € E, Q; € E; = o,lE], .-
s Q _ €E,_ =0, [E,_)}; E'=0[E,_ ) Wehave (E?) = (E'2)+n
(Lemma 1 $1), and since (E’ 2)——1 (EZ)——1+n>O -(KE)=1+n2>2.1f
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the curve E has singular points Pl’ SR Pr of multiplicities s, S then in
the process of transforming it into an exceptional curve of the first kind we must
resolve all the singularities with the aid of o-processes.

Using Lemma 1, 81, it is easy to find the numerical characteristics of such

a curve:
r
(E3)=-1+n+ X slz, : (1)
i=1
r . R q
a(E)= X (s -1, £ f *(2)
”212 12 13 —‘Vf
r 7,
_(KE)=1+n+ X s, where n+r>0, n,r20. ./ (3)

i=1
We obrtain the following proposition about irreducible exceptional curves of the
second kind.
Theorem 3. An irreducible exceptional curve of second kind E is a rational

curve, (E?) >0; if (E?) =0, then E is a nonsingular curve and #(E} =0.

§4. Basic theorem

We now turn to the proof of a basic theorem (cf. the introduction to Chap-
ter I1), namely we will show that if some class B of nonsingular surfaces does
not have an (absolute) minimal model, then this class consists of ruled surfaces.
First of all, the absence of an absolute minimal model means that an irreducible
exceptional curve of the second kind lies on any relatively minimal model of this
class (Theorem 1, §3), where (Ez) >0 (Theorem 3, §3). We will now prove the
following theorem, from which the basic one will follow.

Theorem A. If an irreducible exceptional curve of the second kind lies on a
relatively minimal surface V (i.e. a surface without an exceptional curve of the
first kind), then the surface V is ruled if (E®) =0 and is rational if (E¥) > 0.

‘When (Ez) — 0 the curve E is nonsingular (Theorem 3, §3). This case is
not difficule to examine. The proof of the corresponding theorem presupposes the
following lemma, which will be used frequently in the future.

Lemma. If an irreducible exceptional curve of the second kind C whose in-
dex of selfintersection (C*H >0 liesona nonsingular algebraic surface V, and
if (C-K)<0 (where K is a canonical divisor on V), then all the plurigenera
P of the surface 'V are equal to 0.

Proof. We assume, to the coantrary, that some Pn - 1(nK) > 0. Then there
exists an effective divisor D (or 0) such that nK ~ D (~ 0). But then (D-O)>0.

In fact, if one represents D in the form of the sum of irreducible curves Znici,
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n; >0, then (D0 =2n(C,;- (), where (C- C;)) >0 if C;#C and ;- C)>0
if C; =C, since (€?) > 0. From this we have (D - C) >0, which contradicts the
assumption of the lemma (D - €)=n(K - €)< 0). Thus, all the P_=0.

Corollary. If an exceptional curve of the second kind lies on the surface V,
then all the plurigenera are equal to zero (cf. formula 3, S3, and Theorem 1).

From this, on the basis of results of Chapter IV, it already follows that the
surface V is ruled.

Theorem. Let V be a nonsingular algebraic surface which contains a non-
singular irreducible rational curve E such that (E2)=0. Then V is birationally
equivalent to a ruled surface. ‘ ’ ’

Proof. Since 7(E) =0 and E2 =0, from the formula 7(E) = (EY+(E-K)/2+1
we immediately obtain that (E - K) = — 2; hence, by the preceding lemma,

I{n - K)=0, n>0. We apply the Riemann-Roch thf:orém to the curve nkE:

1 (1E) > (e E) — 5 (K-@B) + 14 pg — [ (K —nE);
since ((nE)?) = n2(E?) =0, (K - nE) = - 2n and I(K - nE) < L(K)(E >0), we ob-
“tain the inequality . :

l(ﬁE)Zn+ Pa : (1)

From the exact sequence of sheaves

0 — F((n = 1)E) — F (nE) — Fg(E - nE}— 0
we obtain the exact cohomolo-gy‘sequence: '
0 — HO(V, F(n = 1)E)) — HO(V, FGE)) = HUE, FE(E - nE)) = - (2)

Since (E :nE)=n(E - EY=0, and E is a nonsingular rational curve,
dim HO(E, Fp(E - nE)) = lE(O) =1, and from the exact sequence (2) we ha&e

I((r=1E)<1@E)<l(n -1 E) + L. (3)

Comparing inequalities (1) and (3), we obtain that, starting with some 7, I(nF) =
n + C, where C is some constant, and, consequently, for sufficiently large n

IrE) =1+ 1((rn - 1)E). (4)

Since the curve E is irreducible, (4) means that for sufficiently large n the
linear system |nE| does not have fixed components. At the same time 2 generic
curve of this system is reducible. In fact, let D be a generic curve of the system
|nE| (n sufficiently large) and let P be a point on D. Then, as follows from the
inequality of (1) there exists a curve D' € |nE|, D' #£ D, passing through the point
P. By assumption (D' - D) =@E - nE") = 0, from which it follows that the curves
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D and D' must have a common component (passing through the point P). Conse-
queatly, by the theorem of Bertini, the system |nE| is composed of some irreduc-
ible pencil of curves; we denote this pencil by L. We will show that the curve E
is itself a curve of this pencil. In fact, the number n can be chosen from the be-
ginning large enough so that the system |(n — 1) E| does not have fixed components.
This means that the system |[(n — 1) E| contains a curve D such that D does not
have E as a component. Therefore the system |nE| contains a curve D'=D+E
that has E as a simple component. In view of this the curve E must be a curve
of the irreducible pencil of which the system [nE| consists. Thus iweg jave found

on the surface V a pencil L, a member of which is the ireducible nonsingular

raticnal curve E. From this, by the theorem of Noether (§2 Chapter I))Jthe sur-
face V is ruled. The proof of the second part of Theorem A is more difficult.
The proof will follow from a theorem of Castelnuovo which asserts duat if a

nonsingular surface V is such that P, =0, and p_ = 1, then the surface V is
rational (Chapter IIT).

The genus P2 of our surface V containing the irreducible exceptional curve
of the second kind E with (E?) > 0, is equal to 0 by the corollary to Lemma 1.

We will show that pa(V) = 1. First of all, since the geometric genus Pl =0,
it is sufficient to show that-the irregularity ¢ of the surface V is equal to 0, for
p, =P - g+ L. The irregularity of the surface is the dimension of its Albanese
variety 4. We consider the canonical mapping cp: V — A, and let V' = O.V(V).
Since V is a nonsingular surface, the mapping @ is regular on V. The image
a(E) of the éxceptional curve of the second kind will be a point, for in the con-
trary case there would exist on 4 a rational curve a(E) (since E is rational),
which is impossible. From this, in particular, it follows that any effective curve
U ~ mE, where m >0, is taken by the mapping @ into a point P =alE) € A.

In fact, a(l) will be some effective curve on 4, where all) & a(mE) = 0.
This means that, finally, a(lU) = Q € A. On the other hand, since (U-E)=
m(E%) >0, i.e. since the curves U and E intersect, ¢ = P. From this we imme-
diately obrtain that CLV(V) = P, for, if m is sufficiently large, the linear system
|mE| has a positive dimension (since (E?) > 0, this follows immediately from
the Riemann-Roch theorem), and, consequently, through each point of the surface
V there passes an effective curve U~ mE. Since alV) generates A, dim4 =0,

and our assertion is proved.




CHAPTER III

CRITERIA OF RATIONALITY

$1. Adjoint systems

We consider a linear system |D| of curves on a surface V corresponding to
a linear space of functions £(D). This system consists of (effective) curves C
such that D ~ C > 0. A system adjoint to |D| is the system |D + K| where X is
a canonical divisor on V. The system |D + K| will'also be called the first sys-
tem adjoint to the system |D|; along with it we will consider second, third, etc.
adjoint systems: the nth adjoint system is the sys‘ie‘m ID + nK|. We now give
some conditions that assure the emptiness of the nth adjoint system of a given
system |D| for a large n. ‘

‘We denote by K an anticanonical divisor on V i.e. the divisor — K. The
linear system |K | = l—- K| is called an anticanonical system on V. We will say
that a linear system £ exists, if there can be found a divisor D >0, D € L.

Lemma 1. If an dnticanonical divisor on V is positive, then for any divisor
D on V, the nth adjoint system |D +nK| does not exist for a sufficiently large
n. :

The existence of an anticanonical system means that there exists a divisor
Z~-K, Z>0. : : :

Let H be the hyperplane section of the surface V. Then (H-K)=-(H.2) =
r<0. We write (H - D)=s: Then (D + nK) - H) = s+ nr<0 if n>-s/r. Hence,
clearly, the divisor D+ nK ‘cannot be linearly equualent to any effective divisor,
i.e., the system |D + nK| does not exist.

Lemma 2. Let V be a surface on which there.exist no exceptional curves of
the first kind, and let there exist on V an effective curve & such that (& - K)<0.
Then for any divisor D on V, the nth adjoint system |D + nK| does not exist
for a sufficiently large n.

Let &= 3n,C;, where the C, are irreducible curves and n; > 0. Then, since
(& - K) < 0, one can find a curve C; such that (C; - K)=-r<0.

From the formula for the arithmetic genus

(€hH+(C;- K

x(C) = 5+ 1

45
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it follows that, since 7(C;) >0, there exist two possibilities:

(a) #(C) =0, (CH=(C;- K) =~

(b) 7(C) >0, (CH 0.

Case (a) is impossible, because we have assumed that there are no excep-
tional curves of the first kind on the surface V.

We consider the index of intersection ((D + rK) - C)). Since K-C ) =-r<0,
(D +nrK)-C ) <0 if n is sufficiendy large. Thus there cannot exist an effec-
tive curve C ~ D + nK, for (C - C. ) >0 (in vxew of the fact that (Cz) > O)

Corollary 1. Let (K%) <0. Then for any divisor D there exists“an ’i such
that the system |D + nK| does not exist. A

Proof by coatradiction. Assume that the system |D + nK| exists foyall n.
This system cannot coasist of only 0 for large n, for if that were true, then
D £7K ~ 0, i.e. (D?) = 22(K?) for large n, which is impossible for n 25 (D3, (K32).
Thus for any sufficiently large number n there exists an effective curve &~
D + nK. Itis clear that (& - K) = ((D + nK) - K) <0, if n is sufficiently large.
Therefore, in view of Lemma 2, the system |D + nK| does not exist.

Lemma 3. Let a'curve D >0 on the surface V be such that the adjoint sys-
tem |D + K| does not exist. Then #(D)<1- pa(V).

In fact, the nonexistence of the system |K + D| meaas that (K + D) =
dim £ (K + D) =0. Applying the Riemann-Roch theorem to the divisor - D>0, we

obtain:
1D 22D + 3D - K) + p, (V) - 1K + D). (1

From (1) it follows that: 7 :
(D% + (D - K) .
. #(D) s ¢ 1<1=-p (W),
since (K + _D) =0 k

Corollary 2. If C is an irreducible curve on the surface V with PN =1

and the system |K + C| does not exist, then w(C) =0

In this case 7(C) <0. Since the curve C is irreducible 7{C) > 0, hence
7(C)=0

§2. A theorem of Castelnuovo

The theorem of Castelnuovo we prove is the following: every nonsingular
surface with pa( N=1, PZ( V) =0 is birationally equivalent to a tational surface.
Since p, and PZ are birational invariants, we can assume from the beginning

that our surface V is a relatively minimal surface, i.e., there does not exist an
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exceptional curve of the first kind on it, i.e., an irreducible curve X such that

A =-1, z(X)=0

By Noether’s lemma, to prove this theorem it is sufficient to find on the sur-
face V a linear pencil L of curves, a generic member of which will be an (irre- -
ducible) curve with an arithmetic genus of 0, i.e., an irreducible rational nonsingular
curve. '

Let the surface V contain an irreducible curve C such that #z{(C) =0
(€?) > 0. Then, using the Riemann-Roch theorem, we obtain that I{C) > (c% -
7(C)+2 = (Cz) +2 > 2, since pa(V) =1, (K- C)< I(K) = P1 =0. Thus, one can
find on the surface V a curve C such that: (1) #(C)=0, (2) I{(C)>2.

The second condition guarantees the existence of a linear pencil of curves
on V of which the curve C is a member. There exists an f € £(C) f#0, since
1(C) = d1m£\C) > 1. ‘We'consider the mapping of the surface V onto a pro]ecuve'
line P! given by the function f. With this we define a linear pencil of curves L
on V of which the curve C will be a member. A generic member of this pencil is
the curve C)‘ = f—l()\) = (f— )\)o, where A is a generic point of the line Pl, is
clearly an irreducible curve (since the curve C is irreducible), and n(CA) =0,

* since C) ~ C, and, consequently n(C)\) = 7{C). Therefore, by the theorem of
Noether, the surface V. is rational.

Thus, to prove the theorem it is sufficient for us to find on the surface V an
1rreduc1ble curve C satlsf)mg the conditions #(C) =0, (C2)> 0.

We have to consider three cases: (1) (Kz) 0, (2) (Kz) <0, (3) (Kz) >0.

(1) (K?) =

By the Riemann-Roch theorem, in this case [(~ K)> 1. 1f D € |- K|, then

D £0, since otherwise

P,=102K)=1(0) =1.-

Thus, an anticanonical system exists. Let E be a sufficientdy high mulaplicity
of a hyperplane section of ‘the surface V. Then [(E +K) > 1, and by Lemma 1
about adjoint systems: I(E + 1K) =0 for a sufficiently large 7> 0. Thus, one
can find a-number n > 1 such that
’ I(E +nK)>1,
IE+@m+1K)=
Let D' € lE + nK}|, D Ya,C,. where the C; are irreducible curves and
a; >0. The index of intersection (K D) =(K - (E + 1K) = (K - E) + (nK?) =
- (F - D) <0, from which it follows that at least for one curve Ci; the index of
intersection (K - Ci) <0.
Since C; < D',
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WK+ C)<lK+DY=UE +(n+ 1DK)=0

from which we have, by Lemma 3 about adjoint systems, that ﬂ(Ci) =0. Thus we

have found on the surface an irreducible curve Ci such that

By the formula for the virtual genus,

(€ +(K-C) S
P(C)-—— L, ‘¥
’ !
we obtain that (C‘z) >~ 1. Since the case (Clz) = — 1 is impossible (w"‘e assumed

from the beginning that there exist no exceptional curves of the first kind on V),
we have (Clz) > 0, which is what we wanted to show.

A2 (KD <o.

.Let E be some multiplicity of a hyperplane section of the surface V, where
I(E + K) > 2. By the corollary of Lemma 2 about adjoint systems, the system
|E + sK| does not exist for sufficiently large s. One can find, consequently, a

number n > 0 such that
I{E + nK) > 2,
HE+(n+ DK <1,

From the first inequality it follows that there exists on the surface V alin-
ear pencil L of curves. A generic element D of this pencil is represented in the
form D=4+ ECL-, where A4 is the fixed component of the pencil, and the Ci are
irreducible curves with (CE) > 0, and where moreover there exists at least one

curve Ci' By the Riemann-Roch theorem
7(C)< UK +C) <LK +D) < L.

If 7(C ) = 0, then the theorem is proved (since (CZ) >0).

Let us assume that a(C ;) =1, from which it follows that (K + C ) =1, and
let 0 < De |K + C|. The divisor D #0, for otherwise K ~ — C; and (K ) =
(CZ) >0, which contrad1cts our main assumption ((K )y <0). Thus we have found
adivisor D >0, D~ K + C Since n(C)—I (X - C)——(C2)<O and (D - K) =
(K +C. ) K) = (Kz) +(K . C ) < 0. This means that at least one of the irreduc-
ible components of D, a curve G, has a negative index of intersection with K:
(G - K)<0. At the same time (G - Ci) =0 since

(D.C)=(K+CY-CH=0, (CH>0.

Thus we have found an irreducible curve G such that (G - K) <0 aad (CZ) <0
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(since (G -D)=(G . (K + Ci)) <0). This is possible only whea (G - K)=-1,
(6% =-1 and #(6) = 0, i.e., when an exceptional curve of the first kind exists
on V. Therefore the case "(Ci) =1 is impossible, and the theorem is proved.

3) (K> 0.

By the Riemann-Roch theorem I(- K) > 2, i.e., there exists a pencil L of
curves D, D~ -K, D=4+ ECi where 4 is the fixed component of the pencil
L, and (Cz) > 0.

If D is areducible curve, then D — C >0 a.nd r(C)<l(K+ C)<I(C -Dy=0o,
which is what we need to show. Let D be an irreducible curve, i.e., D =C,,
(D?) >0.Then, since D ~ ~ K, 7(D) =1, and by Lemma 1 about adjoint systems,
for any hyperplane section E corresponding to some imbedding of V in a projec-

tive space, there can be found a number ng such that

l(E + (nE + 1)K) 0.

‘Let GE |E + ngK|. We assume first that G £0. Then (G - K) <0, since K~-D
and (D?) = (K?) > 0. Therefore one can find an irreducible component C of the
curve. G such that (€ . K) <0. v

Smce a(OY< K+ CO)Y<l(K+G)=0, (Cz) +(K - C)=-2, and either
(C. . K) <0 and (Cz) >0, i.e., C is the desired curve, or (K. C) =0, (€% =-2.

In the second case, by the Riemann-Roch theorem
- 0-1-k-0>2) 16k, 0),

.and, since (2K + CY < (K + C) =0,
ID-0)>1.

Thus there exists a curve H €|D ~ C|; since €+ D, (€% ==2, (D?) >0), then »
H>o0. Because (H-KY=-(C -K) - (Kz) <0, one can.find an 1rreduc1ble compo-
nent HO of the curve H, such dat (H - K) < 0. Since the case (H )=-1is
impossible, and = (H )S IK+H )S l(H K)=1(-C) =0, (Hz) == 1 then the
curve H, is the desired curve. ‘ :
It remains to consider the case, when, for any hyperplane section E of the
surface ¥, a divisor G € | E + ngK| is null. We will show that this assumption
leads to a contradiction. In fact, this means that any hyperplane section E ~ ngK,
and since each divisor D of the surface V can be represented in the form of a
difference D = E, - E,, where E, and E, are hyperplane sections of V' corre-
sponding to two (distinct) imbeddings of V in a projective Space [24], the group
of the classes of divisors of V is isomorphic to the group of integers Z, and a

hO, 2

divisor (curve) D is a generator of this group. Since, moreover, B%0 = =p=0,
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this group is isomorphic to the group H2%(V, Z) and the curve D, as a generator of
this group, has an index of selfintersection of £1. On the other hand, by the form-
ula of Noether-Enriques |
(KD +x
—
since Pg=0= 0 and y =2 - 4q9 + b, =3. This contradiction completes the proof

=1+p,—¢ ie (KH =9

of the theorern It is clear that all of the proof given by Kodaira [48] will remain
valid when the base field is any algebraically closed field of characten uc 0, with

the exception of the last argument. There exists a proof by Zariski of the theorem

of Castelnuovo for the case of an algebraically closed base field of ct racferistic
p >0 [18-20], S

_The converse theorem, that if a surface V is raticnal, then p, (V) =1 and
p (V) 0, is obvious. In fact, on the projective space Pz a canonical divisor
K = - 3E, where E is a line on p? . and therefore P (Pz) =0,n=1, 2, . In
exactly the same way ¢(P?) =0, and hence p, (P?) = p(P?) - q(Pz) +1=1. From
this it follows that, since the numbers P and p, are birational invariants,
pa(V) =1, PZ( V) = 0 for any rational surface V. Thus, the theorem of Castelnuovo
gives criteria for the rationality of an algebraic surface.

The theorem of Castelnuovo provides a solution of the problem of Liiroth for
poles of algebraic functions of second degree of transcendency over a base field.
The problem is the following: let K be a field isomorphic to the field of rational
functions of two independent variables, and let K’ be a subfield of the field K of
finite index:

L K'<K, [Ki K']<e.

Will the field K' be isomorphic to a field of rational functioas of two independent
variables? .

“The theorem of Castelnuovo permmits a positive answer to this question.
Thus, the field K is a field of algebraic functions on a rational surface V; the
field K', a field of algebraic functions on some surface V'; t the inclusion
K' C K corresponds a rational mapping T: ¥V — V'. Since P, (V) > P,(V)), ¢(V)>
q(V') (cf. the Introduction) and V is a rational surface, PZ(V') = q(V') =0, from
which it follows, by the theorem of Castelnuovo, that the surface V' is rational,
and, consequently, the field K' is isomorphic to a field of rational functions of
two variables.

A variety V' such that there exists a rational mapping T of a rational var-
iety V onto V' is said to be unirational. The result obtained may be formulated
in the following way: every unirational surface is rational. It is unknown whether

the analogous statement for varieties of dimension greater than two is true. The
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examples constructed in [63] of unirational varieties do not decide the question,
for the proofs that these varieties are nonrational are unconvincing (cf. [64]),

We note also that there are examples of surfaces V with P,V =1, Py (V)=0
P (V) # 0 (and thus not rational).

These surfaces were constructed by Enriques (cf. Chapter X). On the other

’

hand, Severi raised the question of whether there were any rational surfaces char
acterized by the conditions pg(V) =0, Hl( V,Z) =0 {(we recall that the condition
H,(V, Z) = 0 divides into two conditions: g =0 which, when p =0, causes
P,=1, and TorHl(V, Z) = 0). The answer to this question is unknown.

We note that the problem of Liiroth for fields of second degree of transcend-
ency has been decided negatively when the base field k is not algebraically
closed. Correspondmg examples hold for the case when k is the real field [62]
or a finite field [6 1]




CHAPTER IV

RULED SURFACES

Ruled surfaces will be studied in this chapter, and it will be proved, in par-
ticular, that they are characterized by the condition p 12=0- If they are nonrational,
then g > 0. It will be shown that if ¢ > 1, then the condition p = W;is‘gufficient
for the surface to be ruled. For g =1 this condition is insufficient. Al;l_‘the sur-
faces with Pg = 0, ¢g=1 will be found, and it will be verified that those among
them for which P12 _ 0 are ruled. Thus, we give in this chapter a clasdification
of all the surfaces with Pg = 0 and ¢ > 0, oot justa classification of the ruled
ponrational surfaces. We will assume that the base field k is the field of complex
qumbers. Nevertheless, almost all the arguments remain valid when % is an alge-
braically closed field of characteristic 0. We will make special note of the places

where the assumption k = C is essential.

§1. Elementary properties
Definition. The surface V is said to be ruled if it is birationally equivalent
to the direct product of an algebraic curve with a projective line.

Theorem 1. If the surface V is ruled, i.e., if V is birationally equivalent to
B x P, where B is an algebraic curve, then Pn(V) =0, n>1 and the irregularity
q of the surface V coincides with the (geometric) genus of the curve B.

Proof. In view of the birational invariance of the numbers Pn and ¢ we can

_assume that
V=BxPL, (1)

where B is a nonsingular curve. In general, let X= B x C where B and C are
noasingular curves and let @ and B be differential forms of degree 1 on B and
" C respectively, and let (a) and (B) be their divisors. If 7, and 7, are projec-

tions of V onto B and C, then the form
w=mla) A 5 (B
is a two-dimensional differential form on V. It is clear that
(; (@) = 71 (@) = @ *C,
(1 8) = n72(B) = Bx )

52
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K (BXC) = K (BYXC + BXK (C), ©@
) = @)XC + Bx (B). 3)
From this it follows that, if ¥ = B x P!, then
K-bxPh)-—-20Bxa)-(bxPY))=-2<0, bEB, a€P?

and consequently, (K- (BxPY <0 for any n > 0. If we had Pn >0 for at least
one n >0, there would exist a divisor D, D >0, D ~ nK. Then necessarily

(D« (bx P1) <0. But this is impossible: if D=Zn.c,+2 m; (b x P1), then
(D-bxPY=3n(C,-bxPH>o0.

For the proof of the assertion about irregularity, we use the fact that, for any

varieties B and’ C the Albanese variety possesses the property
| | A(BxC)_A(B)xA(C) |
In particular, from (1) we obtain
AW = 4(B)x A(PY = 4(B),
and since
g= dim 4 (V), g = dim 4 (B),
where g is the genus of the curve B, this proves our assertion.

The basic problem of this chapter consists in proving the converse assertion
in its stricter form: a surface is ruled if Py, = 0. Here we shall begin from the
theorem of Noether (Chapter 1, §3). We reformulate that theorem geometrically: a

rational mapping
n: V— B
corresponds to the imbedding K, = k(B) — K = k(V), where if £ is a generic point
of the curve B, then the field K/K is a field of functions on the curve 7 1(£).
Thus the theorem of Noether can be given the following formulation: =
Theorem 2. If there exists arational mapping

» ' m: V — B
of a surface 'V onto a curve B, suck that the inverse image 7 &) of a generic
point £ of the curve B is an irreducible curve of genus 0, then V is a ruled sur-
face.

We shall use this theorem for the particular case in which 7 is a regular map-
ping. Then it determines a fibering of V into nonmtersectmg fibers Fb = “1(3),
b € B. We shall frequently call 7 a fibering and Fb its fibers. The manner of the

construction of such a fibering is based on the consideration of the Albanese map-
ping.
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§2. The Albanese mapping for Pg = 0,¢>0

Theorem 3. If ay: V — A(V) is the Albanese mapping of a surface V for
which Py = 0, ¢ >0, then: 1) a, (V) is an algebraic curve; 2) a V) is nonsingu-
lar; and 3) the genus of o, (V) is equal to q.

Proof of 1). Since the variety CLV(V) generates all of 4(V), and dim 4 (V) =
g >0, it is also true that dima, (V) >0, i.e., dima, (V) =1 or 2.

We shall show that dim 2, (V) £ 2. Let us assume that dim a[}(V) = 2, and
let a be a nonsingular point of the surface aV(V). Since the mapping @, is .
defined up to a translation of the variety A4(V), we can assume that afé 0. Let o
be a bivector, in the tangent space to A (V) at the point 0, correspo:?ng to the
plane tangent to CLV(V) at this point; and let s be a two-dimension element of
the Grassmann algebra such that (s, 0) £ 0. We denote by w the invar{ant differen-
tial form corresponding to s. It is clear that w is a differential form of the first
kind on 4 (V). From the fact that (s, o) £ 0, it follows that @ is not identically
equal to zero at the point 0. From this it follows that the differential form of the
first kind af (m) on V does not vanish identically, and this contradicts the assump-
tion Pg =0.,

Proof of 2). Let CLV(V) =B. Let BN be a normalization of B and let
N: By, — B be the canonical mapping. Since N is a birational equivalence, there
exists a rational mapping v: B — BN v =N7L Let p=v-ay, ¢: V- By We
have a commutative diagram

a(®)

A() —A(By)
Py T (4)
N
B «—— B,.

Here v,bz is the imbedding of B in 4(V). Since the (geometric) genus of the curve
B, and thus also that of By, is distinct from 0 (cf. [31], Chapter II), the canonical
mapping y; of the curve By into A(B N) is also an imbedding, which we can
assume to be the identity mappmg The mapping a(@) is regular, and consequently
the mapping N': B — By = (a(¢)|3) ¢, is also regular. From the diagram
(4) it follows that NN’ = 1, N'N =1, i.e., N is a biregular equivalence of B and

By, so that B = B does not have singular points.

Proof of 3). Since B = BN , (4) reduces to the diagram

a(%)
A (V) - A B)
AN
B

According to the universal mapping property of an Albanese variety there
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exists a mapping 7: 4(B) — A(V), giving the commutative diagram

AQV)2A @B
N S
B .

From this it follows that ¢, = m), and ¥, = al@) ¥,, i.e.,
bi=al@nyy ¥,y=naldy,.

Since Im 1/11 and Imr, generate 4(B) and A(V), it follows that a(é)n=1,
na(#) = 1, i.e.; A(V) is isomorphic to A4 (B). ‘This proves 3) and Theorem 3.

We denote @, by 7 and obtain a regular mappmg (or fibering)

m:V— B

onto a nonsingular cuvn've B éf génu_s q.

Theorem 4. A generic fiber ofthg [ib_en'ng mis ii_rre.ducible.. ]

Proof.” We saw that the assertion of Theorem 4 is equivalent to the fact that
the field k£ (B) is algebraically closed in the field % (V). If this is not so, let K’
be the algebraic closure of £(B) in k(V) and let B’ be a nonsingular model of
the field K'. The inclusion k(B") = K’ Ck(V) determines a rational mapping
V — B’ and thus an epimorphism 4 (V) — 4(B").

From this it follows that the genus g of the curve B’ is not greater than g.
But B’ is a covering of B (since k(B) Ck(B") and consequently g > g. We see
that g = g. According to the formula of Hurwitz for the genus of a covering, the

’ equality g = g is possible only when g = ¢ = 1. Thus, A(V) =B, 4(B') = B’, and

we have the mappings-
@ ¢
A (V) B, BB, vg = ay.

According to the unnersahty property of the Albanese variety, there exists a

mapping x: B ~— B’, giving a commutative diagram

ay
AWV)—-B.
eN I x
BI

From this, as in the proof of Theorem 3, it is easy to obtain that x and ¢
are isomorphisms, i.e. that B' = B and K' = k(B). The theorem is proved.
$3. The case g>1
In this section we will always assume that for the surface V
gpg:O, g> 1. (5)

Lemma 1. For a surface satisfying the conditions (),
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(K?) <o.

Proof. According to formula (4) of the Introduction

Bttt —gq+p=1—3
so that
(K?) = - y +12(1 - Q-
Since y=2-4q + b,, we'have

(K2)=—2+4q—l?2+ 12(1- ¢,

(K?)=8(l-q)+2-b,. - f
Since ¢> 2, b,2> 1, it follows that (K?) <-7. j

Corollary. If E is a hyperplane section, then L(E + mK) = 0 for gufficiently
large m. If 1(E +nK) >0 and I(E + mK) =0, for m > n, then
E+nK~D>0, D#0 and p,(C) <q (6)
for any cycle C for which 0 < C <D.
All the assertions except D#£0 follow from Lemma 3 (Chapter III, §1) The

assertion D £ 0 follows from the fact that otherwise we would have E ~-1nK
while (ED) >0, (K?) <o.
Lemma 2. If C is an irreducible curve on V, w is the fibering introduced in

the preceding section, and F is one of its fibers, then either C=F, or
PO 2(C-Flg-1+1 (7)

 Proof. If C# Fb’ then the mapping = 7/C defines C as a covering of B.
The degree of this covering is equal to C - F. In fact by definition this degree is
equal to the degree of the divisor f~1(b). Coasidering 7 on V locally as a func-

tion and using the equation
» deg(rr/C)O = ((770) -0

((7), and (7/C), are zero divisors of the functions and 7/C on V and C respec-
tively), we obtain that degf 1(b) = (Fy + C). Applying now the formula of Hurwitz
for the genus of a covering, we obtain the inequality y> (F . C) (g-1) + 1 for the
geometric genus y of the curve C, and since p,(C) > y, (7) follows from this.
Lemma 3. If the genus g of a generic fiber F of a fibering @ is not 0, then
(F-K)>o0.
By assumption

(F'(F2+K)) +1>1’

and since (F2) =0, we have (F. K)>0.
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Corollary. Under the conditions given for the divisor D in (6), (D - F) > 3.
Since D~ E+ 1K, (D-F)=(E-F) +n(K-F) > (E- F). It iss clear that (E + F) is the

degree of the curve F. If this curve had degree 1 or 2, it would be rational, which
would contradict the assumption that g > 0.

Theorem 5. An algebraic surface V with the invariants Pg=0 and ¢> 1 is 7
ruled.

In the proof we may assume that Visa relatively minimal model and, conse-

quently, does not contain exceptional curves of the first kind.

We consider the mapping #: ¥ — B constructed in the preceding section. It
satisfies all the assumptions of Theorem 2 except that we still do not know that
the genus g of a generic fiber is equal to 0. If we can pro‘e this, Theorem S will
follow from Theorem 2. ' : s

We assume that g > 1. Let the divisor D whose existence is prm en in the-
corollary of Lemma 1 have the form D= Emn C , where the C are distinct irre-

ducible curves. According to the corollary of Lemma 3,(D. F) > 3.

We consider separately three cases, which together include all the possibili-

ties:
1) for some C,, for instance for i = 1, (C F) > 2,
2) forall C;, (C,- F)<1 but m> 2,
3) D=nC, (C-F)=1, n>3,

In case 1) we can calculate pa(Cl) in different ways on the basis of Lemma
2 and formula (6). We obtain the contradiction

Pa (Cy) < 9 Pa(C) > 2(q—l)+1 29 — 1.

_ In case 2), for at least one of the C , for instance for. [ = 1, (C F)=1,
since (D . F) > 0. By assumpnon there exists another curve C,. We apply formula

()0 C=C,+C,
P (C+C)<q
Since p, (C)—(C (C+K)/2+1,
P (Cl+ C2)=pa(C1)+pa(C2)+(C1-C2)—1.
According to Lemma 2,
Pa{CP2g
so that

PO >g+p,(C )+(C -C,) -1

If also (C, . F) = 1, then p,(C,) > g, and since (C » C,) > 0, we obtain a con-
tradiction thh (6):



58 RULED SURFACES

pa(C)ZZq—l.
If (CZ' F) =0, then C,=F,, (b € B), Pa(Cz)ZI and (Cl' C2)=(.C1- F)=1,

so that we again obtain a contradiction with (6):
p,(O) 2 g+ 1L

In case 3) we argue in exactly the same way applying (6) and Lemma 2 to the

curve 2C. We get that
pa (20) < ¢, pa (20) > 29 + (C°) — 1.

We obtain a contradiction if we show that (c?) > 0. But (C )< O;givjs (C.D) <o,
ice. (C.(E +nK)) <0, and thus (C-K) <0, since (C- E) > 0. Theref‘i' (C%) +

(C-K) = 2p,(C) - 2<0, which is possible only if (CH=-1, P, (O)yZo, i.e. if C
is an exceptional curve of the first kind. Since we assumed that there/wvere no such

curves on V, this proves the theorem.

84. Regular mappings of algebraic surfaces onto curves

We consider an arbitrary regular mapping m: V — B of an algebraic surface
V onto a noasingular algebraic curve B with an irreducible generic fiber F. Let
g and g be the genera of B and F. We will assume the following properties of
such fiber spaces to be known (cf. for example, [25]).

The fiber Fb — 7 1(b) is connected for all b € B. For all points b € B,
except, pethaps, a finite number, Fb is an irreducible nonsingular algebraic curve
with genus g. The set of points {b TRARE b } for which this is not true will be
denoted by S, and the corresponding fibers Fbi will be said to be degenerate or
singular.

The fiber space, n: V - 7 1(S) — B - S is (if k = C, the field of complex
numbers) differentiably locally trivial.

- We will denote by x(L) the Euler characteristic of a topological space L. In

particular, if

L =Fy= X nCs, 0 >0, theny (Fo) =y (F), F'= 2 Ci.
. 1

Theorem 6. When k = C we have

s

(\Q«o\ W) =1 (F) 1 (B)+ X (o (Fo) — 1 () ®)

Proof. (Proposed by A. B. Zifenko.) We let V = ¥V — 77 1(S). From the exact
cohomology sequence determined by the space, the closed subspace, and its com-

plement, it follows that

() = () + x (=" 1S (9)
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It'is clear that

s
X @) =X (F). (10)
-~
Since V¥V —- B-S is locally trivial (as a differentiable fiber space), it follows

from the spectral sequence of Leray for this fiber space that

% (V) =% (F) % (B —S). (11)
Finally,
LB =1B—S)+s ' (12)

(s is the number of points in S), as, for example, follows from the exact sequence
analogous to the one considered in the derivation of (9). Comparing (9), (10), (11)
and (12), we obtain (8).

Lemma 4. If C is a connected curve (perkaps reducible) on a :surface V, then
1 (€) > = €€+ K), | L)
where equality holds only when C is an irreducible nonsingular curve.

Proof. Let C =X Ci’ let C bea normalization of C, i.e. the unconnected sum

of normalizations C; of the curves C;, and let
d: C—C
be the canonical regular mapping. At all points except a finite number, ¢ is a

biregular equivalence. Therefore the usual manner of calculation of the Euler char-

-‘acteristic gives
x(0) = x(O) - &,

where
6 = X (deg (7 () — 1). O
- =0 : .
If the genus of the curve C, is equal to g, then
21O =XxC)=23( — &)
' gt =pa(C) — &

(in view of formula (5) of the Introduction).
Thus,

1O =220 —p(C)) +2X6, — 6
=—2CrC+K)+236 —5.

Let n; points of the curve C; be taken into the point ¢ € C under the map-
ping ¢. Then the corresponding term in (14) is equal to
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(ing)—l=$(n[_l)+l—l’

if n;>1for i=1,---, ! and n;=1 for i=1+1,--+, m. Here the term corre-
sponding to the poiat ¢ in the expression for 8, is not smaller than n; - 1, and the
pumber I — 1 is not smaller than the multiplicity of the point ¢ in the divisor

ZL-<]~(CL.- Ci)' From this it follows that

8§ < N+ 2 (CioC). \ (15)
3 i<j .
Thus - _; i’
| 96, — 8 > —22) (Ci-C), £ (16)
iZy !
so that

‘\;

% (€)= — 2 (Ce (Ct + K)) — 2‘23,_ (C:-C))

| =—(XC)(XC+ K) = — €€+ K)-
In view of (16), equality holds in (13) only when all the §, = 0 and (Ci . C]-) =0
for i #j. The first means that the curves are nonsingular, and the second that they
are mutually nonintersecting. Since we are assuming a connected curve, this means
that it consists of one component. The lemma is proved.
Lemma 5. If a fiber Fy of the mapping has the form Zn C,, then for
C-= EmiCi, m; >0, we have (c?) <0.
We use the equality
(C.F)=o, (17)
which is clear if the fiber F is taken different from Fb'
If it were true that (C2) > 0,then for a hyperplane section E and a sufficiently
large n :
[(nC-E)>0,
“ as follows directly from the Riemann-Roch inequality.
Let nC—-E ~ D >0, i.e.
nC ~E+D.
Since (D «F)>0 and (E-F) >0, this implies that (C.F) >0, in contradiction
with (17).
Theorem 7 (semicontinuity of the Euler characteristic). If F is nonsingular

and F is a singular fiber of a mapping = and the surface V is arelatively mini-

mal model, then
x(Fg) > x(F), (18)

where equality holds only when the genus of F is equal to 1 and Fg is a nonsin-

gular curve of genus 1 taken with some multiplicity.
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Proof. It is clear that )
XWF) =2—2¢ =— (F-(F+K)) =— (F-K),
since (F2) =
LetF—ZnCl,n>1 we set F' = ZC

It follows from Lemma 4 that

XE) =X (F) =4 (F) = x (F) > — (F'Y) + (F — F)-K).
According to Lemma 5, (F'2) <0. It remains for us to show that (F - F").K 5 ¢.
If for some C; it were true that (Ci'K) <0, we would have -
(C,+(C; + K) <(CP),
and hence
_ 2p,(C; ) -2< (C2
Since (CZ)<0 by Lemmas Po(C) -1<0, ie p, (€)=0, and - z<(Cz)<o

For C2 there are consequently two values: —1 and 0. The first case would mean
that C was an exceptional curve of the first kind, which would contradict the fact
that V is a relatively minimal model. Let (CZ) = 0. From the condition (C F ) 0

we obtain

,ni(Ci2)='.2."'(Ci . C):O

Since (C C ) >0 for i #j, it follows from this that (C C )= 0 for all 7 £ j, and
" this contradlcts the connectedness of the fiber Fb if there ex.lsts a curve C £ C
Thus, FO =nC;. The inequality pa(F) > 0 and the formula for P, give us

0<Cpa(F) =pa(nC) =npa(C)+ (2 —n)(CH+1—n=1—n,

i.e. 0 <1~ n, which if possible only for n = 1. Thus, all the n;=1. Butin this
case Fo=F', and ((F - F' ).K)=((Fy,-F". K) = 0. The mequa.hty (18) is proved.
' We now explain when equahty may hold. For it to hold, all the inequalities

met along the way must be equalities. In particular, this refers to the inequality

x(F) > = (F'.(F' + K)), which, -according to Lemma 4, is an equality only if

FO = nC, where C is an irreducible nonsingular curve and n > 2. The inequality

— (F)P+ (F—F)-K) >0,
which we proved must also be an equality. Since then every member of the left side
is nonnegative, then ((F- F').K) = (n ~ 1)(C.-K) = 0, and hence (C.K) = 0 and
(F.K) = 0. From the fact that (F2) = 0 it follows that, since F = nC, (C2)=0
Hence
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pa (F) = w#l 1,

pa(C) = CUECEK Ly

which is what was asserted.

$5. The case g=1

Lemma 6. For a surface V with the invariants Pg = 0 and q=1, we have
(K2) <o.

Inthlscasep(V)—l—q+pg—0 .

From formula (4) of the Introduction it follows that (Kz) +y = 1}1 (" =0,

(K?) = - x. | /

- We consider the projection 7: V — B determined by the Albanese mapping.
Since x(B) = 0, from Theorems 6 and 7 we obtain x > 0, which means that (K?) <0.

Remark. Another proof can be given by starting with formula (4) of the Intro-

duction, which in our case gives
(K2)=2-b,.

It is sufficient for us to show that b, > 2, and for this to find two independeat
homology classes on V. The classes determined by the cycles E (a hyperplane
section) and F (one of the fibers of the projection 7), for example, will be such
classes. They are independent, since (E?)>0, (FH) =0

" We will now examine separateiy the cases (K) <0 and (K?)=0

§6. The case (K2) <0

Theorem 8. A surface with the invariants Pg= 0,9=1, and (K?) < 0.is ruled.

Proof. We consider the same projection m: ¥V — B, which now coincides with
the Albanese mapping. If the genus g of a generic fiber F is eciual to 0, then the
surface V is ruled. If g= 1, then X possesses a mapping oato elliptical curves.
In Chapter VII, Theorem 3 it will be proved that for such a surface (K?) = 0, which
contradicts the assumption (K?) <o.

There remains to be considered the case g > 1.

The plan of the proof of Theorem 8 is the following. For some unramified cov-
ering C of a curve B with a projection ¢: € — B we coansider the inverse image

=V Xp C of the mapping 7 on C, i.e. the subvariety C x V consisting of the

points (c, v) for which ¢(c) = #{v). The projection C x ¥V — C determines on V
a projection 7': V' — C and a fiber space whose fibers are isomorphic to the fibers
of 7. The surface V' is itself an unramified covering of V. We will show, assum-

ing that g > 1, that for a properly chosen covering C the surface V' will be the
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direct product C x F. From this it follows, by formula (2), that on V', K'~C x K(F),
where K' and K(F) are canonical classes of V' and F. Therefore (K'2)=0. But
if f: V' — V is an unramified covering of degree =, then, as it is easy to verify,
K' = f*(K), and therefore
KK = KT K=F(K-K)

(we are considering K'-K' and K-K as cycles here, and not as numbers). There-
fore (K'2) = n(K?2) and hence (K?) =0 in contradiction with the assumption of
the theorem. This proves Theorem 8.

Applying the corollary of Lemma 1 (in which one may clearly replace E by

E+Fy- FO)’ we obtain that for any point b € B there exists an 7> 0 and a divi-
~sor Dy >0 such that ' '

E+ Fo— FotnK~Dy Dy==0, pa @O <1 = (19)
for any cycle C for which 0 < C'< Db' From this it follows that the cycle Db
cannot contain as a component a fiber F, since for it pa(Fb) = g > 1. Therefore
any irreducible component C of the cycle D is mapped by the projection 7 onto
B, and, consequently, is not a rational curve. Hence, for it pa(C) = 1, while it
has no singular points and has a genus of 1.

Let B be a generic point of the curve B. We denote by Cb some irreducible
(over k(B)) component of the cycle Dﬁ" For any b € B we“will'designate'by’ Cy
a specialization of the curve C,B' More exactly, we will designate by f,@ a generic
point of the curve C ; and will consider in B x V an imeducible subvariety I" with
a generic point (B, tfﬁ) We set ‘

Co =pry, (b xV)-T).

The cycle €, consists of components of dimension 1. Otherwise its carrier would
coincide with V, i.e. T" would contain the component b x V, which would contra-
dict its irreducibility. Let Cﬁ =2 Cg) be a‘decomposiﬁon into ‘absolutely irre-
ducible components. Similarly, we define their specializations C%i). We choose
for Cﬁ a component of the cycle Dﬁ not defined over % (in other words, the curve -
Cp does not remain constant under a chaoge in b € B). In order to prove that such
a component exists, it is sufficient to show that the field of definition of the cycle
D,B is transcendental over k. For this we denote by B’ another generic point of
the curve B that is independent from 3, and we show that Dﬁ¥ Dﬁ' . The equality
D/3= D,B' would imply the relation Fﬁ ~ Fﬁ’ . Let (f) = F/S_ F,B' . The function
f is the image of some function g on B: f: 7*(g). In fact, for any constant ¢ we
have ((f- C)O- F) = 0. From this it follows that (f— C)O consists of fibers of the

mapping 7, i.e. f is constant on the fibers. This means that f = 7*(g). But then
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obviously (g) = 8- B’ and this is impossible, since the genus of the curve B is
equal to 1. The field determined by the curve C,(Bi) is also transcendental over k.
We denote by U a noasingular model of this field. Correspondingly, we will denote
the curves Cgi) by Eu, u € U. They form a one-dimensional family of elliptic
curves on V. :

Let £ be the curve Sj'u for some fixed u € U, where £ is irreducible, does
not have singular points, and ®.F)=n (n>0, since £ £ F). The mapping 7
determines on the curve £ the structure of a covering of the curve B.;Since both
curves are elliptic, this covering is unramified. As is known, there de, not exist
coatinuous systems of unramified coverings (cf. [32]. If k = C, thiséfollows from
the finiteness of the number of coverings of a given degree). Therefpy we have on
a generic curve Sgg’ (£ is a generic point of U) a covering isomorphic to the one
defined on £. This means that there exists anisomorphism ¢: £ — S.D.f such that
for any x € g

P {x) = 7(h(x)).

We now consider the inverse image £ Xp V of the mapping 7 on the covering
£, i.e. the subvariety V' C& x ¥ consisting of the pairs (y,v), y €L, v €V for
which 7(y) = 7(v). The projection £ x ¥V — © defines on V' a fiber space
7': V' — & with base £, whose fibers are isomorphic to the fibers of 7. We denote
by 53'6 the curve on V' consisting of the points (y, v), v € Sif, x=¢ly),y € g,
ve v

We note that'it is possible that the mapping ¢ is defined over the larger field
k(£). The same is true of the curve 53’5 . We denote by W a nonsingular curve such
that the field of functions over it coincides with the field of definition of the curve
’f' We denote by 52;7 the curve corresponding to a generic point 7 of the curve
¥, ;ii}d denote its specialization for any point w € W by £:¢ . It is easy to verify
that (S:).:U - F) = 1, where F is any fiber of the mapping 7.

For any nonsingular fiber Fy’ y € £ of the projection 7' the mapping

Y (w) = f;} . Fy‘
determines a curve W as a covering of the curve F_, or, in other words, defines
k (Fy) as a subfield of the field k(¥). As is known, there do not exist uncomnected
systems of subfields of order g > 1 (cf., for example, [15]). It follows from this
that the relation of equivalence defined on W by the condition w ~ w' if £1’u . Fy =
g;, . Fy does not depend on the choice of the fiber Fy' In other words, if the

] D! . - . - .
curves gw and S‘)'w' intersect in oae point (lying on the fiber FyO)’ then they must

have an infinite number of points of intersection (lying on all the fibers F ), i.c.

they must ccincide: Since W parameterizes the family of curves Si).w, we obtain
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[ ! - .
that £w and fw, do not intersect if w' £ w.

Therefore the mapping W x £~ V' defined by the formula

(w,y) — £ - F,, wew, y €L,

is an isomorphism between W x £ and V'. Itis obvious that here F is mapped
isomorphically onto W. Thus V' is isomorphic to F x £. As we said in the begin-

ning of the proof, the assertion of Theorem 8 follows from this.

§7. The case (K2)=0

The surfaces with the invariants Py = 0,9=1, (K?) = 0 are the only surfaces
(among those for which Pg= 0,49>0) whxch can be not ruled. Their complete clas-
sification will be given below The basic tool in investigating them will be the
Albanese mapping 7: ¥ — B. If the genus g of a generic fiber of the fibering =
is equal to 0, then the surface is ruled We will later consider the case g>0.

We note that for surfaces of the type under consideration, p | X=1-g+ pg =0,
and since (K?) = 0, it is also true that y (V) = 0. The basic result which we
obtain (Theorem 9) will be valid for any surfaces for which pa(V) =y =

Theorem 9. Let V be an algebraic surface such that P V) ="x(V) =0, and let
n: V — B be aregular mapping of V onto a nonsingular elliptic curve. If the

genus g of a nondegenerate ﬁber F of the fibering w is greater than 1, then there

_exists an unramzﬁed covering B — B such that the inverse image V=V xpg B of

the mapping m on B is a direct product: V ~Bx F.
Before proving Theorem 9 we give some useful propositions about mappings of
surfaces onto curves.

Lemma 7. If n: V — B is a regular mapping of the surface V onto an elliptic
curve, a generic fiber of which is irreducible, and if x (V) =0, then all the fibers

of the mapping n are nonsingular or, if the genus of a genenc fiber is equal to 1,

all fibers are multiples of a nonszngular curve of genus L.

The lemma follows directly from Theorems 6 and 7, since in (8) x (V) =
x(B) = 0 and thus yx(F b)—x(F) '

We now introduce several helpful concepts relating to fiber spaces #: V— B

without degenerate fibers.
If f is a function on V belonging to the local ring @pb of some fiber F, -

then its restriction to the fiber F, yields a regular function on F, . Thus the

bomomorphism
7% @pb — k(Fb)
is defined. v

In an analogous manner one can associate with any divisor D on the surface
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a divisor D: F, on the curve F,.

The intersection D- Fy is defined if the divisor D does not contain F,asa
component. We complete the definition for all divisors by assuming F - F, =0
(not only as a number, but also as a divisor). Thus we obtain a homomorphism of
the group of divisors on V onto the group of divisors on F,. We designate itby py.

We finally define the concept of a differential on V over B. By this we will
mean a differential in the field &k (¥V)/k (B). This field has a degree of transcendence
1, so that all its differentials have the form gDf, g, f € k(V), where by Df is meant
the complete differential of the function f in the field k(V)/k(B). T'_'
on V over B form a module Dk(B )(k(V)) over k(). A divisor of th‘ﬁ‘diffe;ential

gDf is defined in the usual manner: for any divisor C oot coinciding with a fiber

e differentials

of the mapping 7, we choose a function T € k(V), such that v, (T) = 1, we write
gDf in the form gDf = kDT and set v (k) =m,

(gDf) =2m,C.
By:-definition, the fibers Fb do not enter into the divisor (gDf).

This definition may be given a more geometric character by considering the
one-dimensional vector fiber space ® on V, a fiber of which at the point v is a
subspace of the tangent space at the point v which consists of the vectors tangent
to the fiber Frr(v) that passes through the point v. We denote by 0 the fiber space
dual to ®. Then the differentials are the rational sections of this one-dimensional
fiber space, and a divisor of a differential is a divisor of a rational section.

A differential on V over B is said to be regular at the fiber F, if it can be
written in the form gDf, g, f€ @Fb. The set of all such differentials forms a
module D@b(@[;b) over the ring @Fb' The homomorphism p, extends to a homo-

morphism of the modules

g

Dy, Op,) — Dy (5 (F),
which we will designate by p.

The homomorphisms introduced possess the following properties of commuta-
tivity:

0, Y = (0,°1)s [ E Pryy (20)
pb'(ng) = (pb'gdpf,f)v & f = DDb ('DF[,)- (21)

The proof of these relationships is by direct verification.

Let [ be a generic point of B. The mapping p is an epimorphism and has as
kernel the group consisting of the linear combinations of fibers.

The epimorphic character of the mapping p 3 follows from the facts that all the
principal divisors of the field % (Fﬁ)/'k(ﬁ) are contained in Im P3 that the
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greatest common divisor of pr(C) and pﬁ(C ) is P3 of the greatest common divi-
sor of C and C’', and that all the divisors can be obtained as greatest common div-

isors of principal divisors.

Since mumally prime effective divisors on V and those not containing fibers

intersect with a generic fiber in mutually prime divisors, we obtain the assertion

about the kernel of the mapping Pg-

From the conjunction of these assertions it follows that if C. F,B ~ DFﬁ on
Fb, then C~D+23m, Fb on V, where the Fb are certain fibers.

We now turn to the formulation of the result that lies at the basis of the proof
of Theorem 9.

Definition. 4 divisor D = Xn,;C, (where the C; are mutually distinct irreduc-
ible curves) is said to be unramified.if the distinct curves Ci do not intersect and
for each of-them the projection n: C; — B defines C; as an unramified covering
of the base B. ’

Lemma 8. Let n: V — B be a regular mapping of a surface V onto a curve B
that does not have degencrate fibers. If there exists a function f € k(V), a divisor
of which is the sum of a nonzero unramified divisor and some linear combination of
fibers, then for some unramified covering of the base B — B of the fiber bundle, .
V=V Xp B is the direct sum V>BxF.

Proof. Let

) =2nC; — Zn,’C}—I— ZmpFy,, -

where n; >0, n!>0 and zni Ci - an'. C]'- is an unramified divisor. We consider a
fiber bundle L over B, a fiber of which is an affine line and which corresponds to
the divisor ka bk on' B. After adding to each fiber of L an infinite point, we
will consider L as a fiber bundle, a fiber of which is a projective line.

We will show that the surface V. can be considered as a ramified covering of
the surface L. For this we suppose that B is covered by open sets Wi such that
bi‘ € Wi’ bj %4 Wi for i £ j, and that there exist functions 7, such that 7; ® ) =
and 7; - 7;(b) is a local parameter at any point b € W, ;» where 7,(b)£0 for bEF,
b £ b . Then L can be given as the union of the open sets U where U ~ W xP]
vahere Plisa projective line and the points Ui and U are 1dent1fxed by the rule

bxz~b x20beW,;, bW,z 2 P,
if

b=besW,NW;z =z (22)

We define the mapping ¢,: 7 “Lw ) — U,, setting
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P, (V) =@ (©) X0, @) @), vEat (W)

We note that fr* (r‘.)_m" € OF , for v € ﬂ—l(Wi), according to the choice of 7;,
v
and thus the function pn(u)(frr*(ri)—mi) is defined. It is clear that the ¢, are reg-
ular mappings.
We will show that ¢, = ¢j on 7 l(fv"'i) N n_l(W]'), and, thus, that the collection

of mappings c;Si determines a unique regular mapping ¢ of the surface V onto L.
In fact, if x € ﬂ-l(Wi) N ﬂ—l(Wl'), then . L

00 = @6 % (0o 07 @ ™M@ f

Tk e

6, oy (" (@) ™) () = oy (" (1)) (@) S (1 (2))
J

T

and

in ';‘a‘ccordance with (22).

Thus, under the mapping ¢ each fiber Fb is mapped onto a projective line
that is a fiber of L, where for b € Wi the mapping is effected by the function
Py (f7" (Ti) “Mmi). We note that here none of the fibers Fb is mapped into a point. In
other words, the function py (f=* (ri)-mi) is not constant on F,. This follows from
the fact that we can even indicate its divisor — itis equal to zni C;-Fp - En]’. CI'.- F,
and is not equal to 0, since by assumption the curves Ci and C]'. do not intersect.
Coansequently, the mapping ¢ determines on each fiber a mapping of a covering of
the projective line, where the degree of this covering is the same for all the fibers;

it is equal to Eni(Ci- F) = Enl'.(C]'.. F).

We denote by Wb the divisor of the ramification of the covering, which the

mapping ¢ determines on the fiber Fb' Since

(0, " (1) ) =Znp,Ci — Znp,C;

I'\ b I"
it follows that

. -m; ’ ’
Ws = (dp, (fa" (z)  No+2Z (n; — 1) p,Cp
where (cu)o designates a zero divisor of the differential . By (21)

(do, (F* () ) = 0, (D),
and therefore W, = p, W, where ¥ is a divisoron V,

W = (Df)y + = (nj — 1) Cr
From the definition of the divisor (Df) it follows that

W=3(m—1)C~-32@m—1C+ W, W>O0.
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We will now demonstrate the central part of the proof of Lemma 8 — that the
divisor W does not intersect the curves C; and C In fact, since (fp) = Zn,C; +
Zl F_, it follows from (20) that

(pb (f:_rt* (‘[l-)-mi))o = Zn,-pr; = Zn,‘C,--Fb.'

By the assumption of the theorem the covering 7: Ci —» B is unramified; therefore,
if (Ci-F) =m;,
(m;) (r) (s)
Ci-Fo= Q% + . + Qs iy Qo,iF Qpi for r-s.

From this it follows that

) . - 1) (my;)

(o, (fn" (1) NNe=Zn:(Qs.: + . - . + b, i )
and thus that each of the points Qgrl) occurs in the divisor (pb (f=* (,L_)V'mi))(') with
multiplicity n;. Thercfore this point occurs in the divisor (d(p, (fa*(r) ™)) with
multiplicity n;, — 1. But it occurs in the divisor (”i -1) Py Ci with the same multi-
plicity. Hence none of these points occur in the divisor pbw This means that the

divisors W and C do not have common points on any fiber F; thus they do. not

intersect in genera.l The divisors C are considered similarly. v
Under the mapping ¢ the dnlsors zn C; and En C are prelmages of zero
and the infinite section of fiber bundle L: )
S Ci = 9" (S)), IniC) = " (Sw)-
The divisor V is the preimage of some divisor SonL: V= & (S). From what was
just proven it follows that S does not intersect either SO or S,

. . X . pe - ’
Starting from this, we now show that for some unramified covering B' — B the

preimage of L is wivial: L' =L x B' >B'x Pl andin L' the preimage S’ of

_the divisor § is “‘constant’’: §' = B' x A, where A is an effectne diusor on P* 1

Tor this we denote by C an arbltra.ry 1rreduc1ble component of W The pro;ectlon
defined in L, L — B, determines C as a covering of B. We consider the fxber
bundle ¥ = C x BL‘ In it the points (¢, ¢), ¢ € C, form a section that intersects :
neither zero nor the infinite section. A one-dimensional vector fiber bundle posses-
sing such a section must necessarily be wivial. This means that L becomes trivial
on some covering C — B. For the divisor Emk b, corresponding to L, this means
that it becomes principal on the covering C. Such a divisor determines a class of
divisors of finite order and then, as is known, becomes principal on some unrami-
fied covering B — B. Thus, L' =L x gB'= B' x Pl For the preimage S’ of the
divisor S, the condition that S' does not intersect the zero section means that

(§'-(B" x 0)) = 0, and since the divisor S’ is effective, it follows from this that

$'=B'xA.
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We consider the preimage V' of the fibering 7 on B": V'=Vx gB'. We have
a mapping ¢ V' — L' which determines on each fiber F + a mapping of a cover-
ing over Pl that is ramified at the points of a fixed (not dependmg on b') divisor
A. From this it already follows that the covering V' — L' is a factor of the cover-
ing V' — L', where V"= B « N for B an unramified covering of B’ and N a cov-
ering of Pl which is ramified only at points of the divisor A. This result follows
from the theorem about unramified coverings of a direct product and from a remark

of Abhyankar (cf. [in.

The rematk of Abhyankar is that it is possxble to find a covermggH — Pl
that is ramified only at points of A and is such that any covering Fb;s p 1H1 — H
will be unramified. For this it is sufficient to take Hl so that its Lmy,ces of rami-
fication at the points of A are divisible by the corresponding indices of rami-
fication of the coverings Fb'—’.Pl (for this it may be necessary to extend A by
oné point). One may already apply the theorem about unramified coverings of a
direct product to the covering V: X x L'(B' x H)) — B'x H, (for k = C it follows
from the equality ﬂl(X x Y) = ﬂl(X) X nl(Y)). We obtain that it is a factor of the
covering V" = BxH— B x Hl’ where B and H are unramified coverings of the
curves B" and Hl' Since X' in turn is a factor of the covering V x L,(B'x H 1)—'
B' < H 1 V' is also a factor of the covering V".

We denote by V the surface V' x B'E that has the projection 7: V — B, and
we will show that V=B x F, where F is an arbiwrary fiber of the mapping 7.
From what was said above it follows that V is a factor of V", where, as it is easy
to verify, the mapping u: V"' — V commutes with the projectioas of both the sur-
faces onto B.

«Going if necessary from H to a larger covering, we can assume that H is a
nortial covering of Pl with the Galois group G. From the construction it follows

that'we have a sequence of coverings
BxHLV LB« P1,

where the mappings u and v commute with the projections of all the members of
this sequence onto B. The cov ering V-—BxPl belongs to some subgroup G of
the Galois gronp G of the covering B x H— B xPL Since the automorplusms

g € G act according to the law

g(g x h) = b x g (h),
the automorphisms £,€ Gl also act in the same way. In view of this,
V(B x /6™ B x H/G|. Lemma 8 is proved.

In order to apply Lemma 8 to the proof of Theorem 9, we need to coastruct on

a surface V satisfying the assumptions of the theorem, a function, a divisor of
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which consists of an unramified divisor and a linear combination of fibers. The

following lemmas are connected with the construction of such a function.
We will designate by C % D the algebraic, and by C X D the numerical equiv-
alence of divisors on a surface (if £ = C one is concerned with homologousness

and weak homologousness).

Lemma 9. Let V be an algcbraic surface with (K2) = 0,p,(V) =0, and let
7: V — B be its mapping onto a curve B, where all the fibers of the mapping are
not degenerate and have a genus g > 1. Fora suffzctently large n (for example

n > 3), there exists for any divisor D for whick D X nK a divisor C such that
C>0, CXD.

Proof. It is suffxcxent for us to find a divisor C such that C & D l(C) > 0.
We will look for .C in the form D & Fb FO , b€ B. We will show that
1D+ ,Fb - FO) > 0 for some b € B, which is what we need. ‘

Let 1(D + Fy-Fg) =0 forall b €B. From the exact sequence

FO+Fy—F)—F (D-;_F,,) F(D+Fb)F)—»o'
follows the exactness of the sequence
02D+ Fo—Fo) =~ £ D + Fo) = Lr, (D + Fi)-Fy). (23)
From the assumption made it follows that the restricted homomorphism -
Po: LD + Fu) = Zr, (D + Fo)-Fo) (24)

is an injection for any b € B.

We calculate the dimensions of both of the spaces in (24). Since
(D + Fi)-Fo) = (K + Fy — F)-Fo) = 20 (¢ — 1),

the number [((D + b) F ) can- be found by the Riemann-Roch theorem apphed to
the curve F

LD + Fo) Fo) = @2n — 1) (g — 1) ‘ (25)
On the other hand, the Riemann-Roch theorem on V gives

D+F)(D+F, —K on—1)(K-F,)
1D £y > CTICH LTI BT on—1)(g—1). 26)

From (25), (26), and the fact that the pg in (24) is an injection it follows that both

spaces in (24) have the same dimension, and thus that p; is an isomorphism for

any b €B.

Thus, for any effective divisor A contained in the complete linear system
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(D + Fb)' Fol on F, there exists exactly one effective divisor C, € D + Fb!
such that €y« Fy=A.

We will show that at least one curve Cb passes through each point v € V. For
this we consider in ¥ x B the subset [' consisting of the points (v, b) for which
v € €. Itisclear that [ is an algebraic subvariety in ¥ x B. Under the mapping
I — B induced by the projection ¥ x B — B, each poiat b € B has for a preimage
a curve C,, from which it follows that dim ' = 2. The assertion that we wish to
prove is that pryl’= V. In view of the completeness of all the varletxes considered,
pryl" is an algebraic subvariety of V, and, consequently, coincides \?ﬁth Vif
dxmpr ['=2 1f pryT' = U, dimU =1, then I'= U x B, and this in tufl means that

= U for all b € B. Thls cannot be true, since C £ C ¢ for b £b'. In fact, it
would follow from' the equahty C, = Cyr that Fyp~ F ‘. We saw in th/e proof of
Theorem 8 that this leads to a contradiction: if (f) = Fb — Fy1, then f=a"(g),
g €k(B), (g)=(b) —(b"), i.e. b~ b, and this contradicts the fact that the genus
of the curve B is equal to 1. ‘

We choose for the point v, in particular, an arbitrary point of the curve FO
that is not contained in the divisor A. By assumption there exists a point b € B
such that Cb 2 v. But then Cb intersects FO in more than (Cb' FO) points, and
this is possible only when C, contains F as a component. If Cp=H+Fy,

H >0, then D+ Fb ~ H + F0>0, i.e. D+ Fp— FONH>O, which contradicts the
assumption [(D + Fb - FO) = 0. The lemma is proven.

Lemma 10. If V is a surface satisfying the conditions of Lemma 9, then the
divisor C, whose existence is established in that lemma, is distinct from 0 and
is unramified.

Let C % nK, C > 0. Since (K-F)>0, nK % 0, and thus C £ 0. Let us assume
that .

C = 2nC; Ct==C; for i==j, nt>0,

where the Ci are irreducible curves.
Since every irreducible curve lying on the surface V is either a covering of
the base B or coincides with a fiber F, where the genus of B is equal to 1 and

the genus of F is greater than 1, an irreducible rational curve cannot lie on V.

Therefore
(CH+(C; K2 0. (27)

We will show that (Ci'K) > 0. From (Ci' K) <0 it would follow by (27) that
(Ciz) > 0. Since C = nK, then (C.-K) <0 would give

(Ci- D nC)) = (C) + En, (€;-C) <o,
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which is impossible since (C, .'C]_) >0 for i j, and (Ciz) > 0.
In view of the fact that C % 1K, the equality (K2?) = 0 can be rewritten as
2n,(C;-K)=0 (28)
or

X n,-c,-)“‘ =D n?(CH+ _Z_n,-_n, (CC;) = O. 29)

From (28) it now follows that (C;.K) = 0, and from (27) and (29) that (CZ) 0
and (C C ) =0 for i #j. Therefore

(C€H+(C;-K)

Po(C)= +1=1,

and since Ci is a nonrational curve; it is a nonsingular curve of genus 1. It can-

- not coincide with a fiber because the genus of a fiber is greater than 1, and is.

thus a covering of the base. Since the genus of each curve, both C; and B, is equa.l to
1, this covering is unramified. Finally, the relation already shown (C C ) =

for i # j, completes the proof that the divisor C is unramified.

Lemma 11. Let 7: V — B be a fiber space without degenerate fibers, let B
be a generic point of the curve B and let Fﬁ be a generic fiber. Every class of
divisors of finite order on the curve 5 is defined over some unramzﬁed exta-n.gwn
of the field k().

Proof. Let ]/3 be the Jacobian variety of the curve F,B It is defmed over
the field & (f) and for any b € B has as a specialization the Jacobian variety J, of
the curve F We denote by a (B) the cycle consisting of the points of order n
on ] As is known, this cycle consists of n8 points with multiplicity of one.
Under'the specialization of 8 into b the cycle a, (B) is specialized into the
cycle a_ () consisting of the’ pomts of order n on ]b Since the fiber I, is non-

'degenerate the cycle a, (b) consists of n%8 dxstmct points. By the generalized -

lemma of Hensel (cf. [34]) it then follows that the cycle a o (B) is rational over
the complete local ring of the point b. Since this is true for any point b, it follows
from this that the field of definition of the cycle a (B) is unramified over the
field k(B). The lemma is proved.

Remark. One may give this argument the following geometric form. We denote
by ]b the Jacobian variety of the fiber Fb‘ In the set of all the varieties ]b’
b € B it is possible to introduce the structure of an algebraic variety J equipped
with a projection ¢:J — B. For each b € B the variety I, contains n% points
of order n. The collection of all these points for all the b € B forms, as it is
easy to verify, a one-dimensional effective divisor a, CJ. The projection ¢ deter-

mines on a, the structure of a covering of B. Since for any b € B the cycle
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a,-J, coasists of n?8 dsitinct points, this covering is unramified. This is the
statement of the lemma. :

Lemma 12. Let K = k(B) be the field of functions over an algebraic curve B,
U be an algebraic curve over K, and C be the class of divisors on U to which
there corresponds a point, rational over K of the Jacobian variety of the curve U,
where 1(C) > 0. Then there exists in C an effective divisor defined over K.

This assertion essentially coincides with the so-called criterion of rationality
of Cartier. . ’ .

Let L/K be a normal extension of the field K over which the cé%ss Cis
already defined, let G be the Galois group L/K, and let @L , PL , L , be the
groups of divisors, of principal divisors, and of classes of divisors og U over L.
All these groups are G-modules. By assumption C7= C for 0 € G,ie CE
HO‘(:G, @L). We will show that there exists a D' € @K’ D' € C. For this we con-
sider the exact sequence

: H° (G, ©r) — H° (G, ) — H' (G, Pu),
which is obtained from the exact sequence

(1) - PL—-9,—-C —(1).

It is clear that our assertion will be proved if we show that H I(G, PL) = (1). For

this we consider the exact sequence

() —L =L —-P, — (D),
where L™ and L ()" are the multiplicative groups of the fields L and L(U), and

" the exact sequence

H* (G, L (UY') — H' (G, Pr) — H* (G, L").

Since G is the Galois group L (DYy/K (), HY(G, L") = (1) by a well-known
algebraic fact. On the other hand, H2(C, L") = 0 by a theorem of Tsen, for K=Fk(B)
and the field k is algebraically closed. From this it follows that H1(G, P;) = (1).

It remains to be shown that there exists an effective divisor D defined over
K and equivalent to the divisor D'. But this follows from the fact that [(C)>0
and that the dimension of a divisor is not reduced under a separable extension of
the field of constants (cf. for example, [58], ChapterV, 86, Corollary 1 to Theorem 4).

Proof of Theorem 9. We choose a temporarily arbitrary number m and consider
on the curve Fﬁ the class of divisors & whose order is equal to m. By Lemmall,
this class is defined over some unramified extension field E(B). If B is a non-
singular model of this unramified extension, then we have an unramified covering
¢: B — B, and on the surface V=Vx B-E the class of divisors & of the curve

FE is defined already over the field r’»(—B_) By Lemma 12,> there exists an effective
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divisor £ of the curve Fﬁ belonging to the class K(F ) + & and also defined over
k (B). To this divisor there corresponds an effective dlusor D on V such that

Then .
D+ @r—1 K)-FEEIIK (FE)—l—é", (30)
m @D + (n— 1) K)-F; = mnK (Fp),
and hence on FE
m[D + (n— 1) K)-Fg ~ mnK-Fg. (31)
From this it follows that on V
m (@D + (n— 1) K) ~ mnK + ZmFy,
and since ST
Zmz-F,,l.leb,
where = 3m_, and b is any point on B,

' m(D+(n—1)K)%mnK+lFb. . (31a)

We will show that for a suitable choice of m, ! must be.divisible by m. For

‘this it is sufficient to consider the indices of intersection of the separate parts
(31a) with K. We obtain

m(D-K) =2l(g—1),

and if m is relatively prime to 2(g - 1), then it divides I Until now m was arbi-

trary. Therefore we can choose it relatively pnme to Z(g - 1) and assume that
l=1U'm. Then

, m@D + (n— 1) K — I'Fy) =~ mnK,
and hence ‘

D+ (n— 1)K — I'Fy=nK.

We can apply Lemma 9 to the divisor D + (n - DK -1’ F,. We obtain a divisor
C' >0 such that ‘
C~D+(n—1)K—IUFy+ Fp,— F,.
On the other hand, by the same Lemma 9 there exists a divisor C > 0 such that

C ~ nK + Fp, — F,.

From this it follows from (31) that
mC’ ~ mC + ZsF,,

i.e. there exists a function f on X for which
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() = —mC" + mC + Zs;Fp,.

By Lemma 10 the divisor ~mC' + mC is not ramified. It is not equal to 0, since
C' #£ C. In fact, by (30), it is even true that -

C'FE"I‘-’CFB

Applying Lemma 8, we obtain the assertion of Theorem 9.

We now coasider the case when the genus g of a generic fiber of the Albanese
mapping is equal to 1. As we will see later, in this case the exact anglogue of
Theorem 9 is not true. The following weaker statement, however, v;/ill:_ llow from
Lemma 7 and Corollary 3 of Theorem 7, Chapter VII. :

Theorem 10. If #: V — B is a regular mapping, a generic fiber ofawhich is an
elliptic curve, and x (V) =0, then there exists a (perhaps ramified) covering C—8B

such.that the inverse image of m on C is a direct product

VXBCZCX F.

§8. Surfaces with Pg= 0, ¢>0
(Classification and Theorem of Enriques)

In the preceding sections it was proven that a surface with the invariants
Pg= 0, ¢ >0 is ruled, except perhaps for the case ¢ =1, (K?%) = 0 (Theorems S
and 8). The basic analysis of this last case is Theorem 9. Starting from this theo-
rem we now give a complete classification of those surfaces and verify that those
of them which satisfy the condition P12 =0 are ruled (the theorem of Enriques).

We consider separately the cases when the genus g of a generic fiber of the
mapping 7 is greater than 1 and is equal to 1. We start with the case g > 1.

According to Theorem 9, in this case the surface V with invariants p_=0,
g=1, (K2) = 0 have as an unramified covering the surface V B x F. We gcons1der

how it is possible to obtain the surface V from V.

Theorem 9 shows that V=Vx BE where B is the Albanese variety of the
surface V. (in the given case, an elliptic curve), and B — B is an unramified cov-
ering. We will assume without loss of generality that B — B is a normal covering.

We denote its Galois group by G. It is clear that X = X/C. Under the isomorphism
VBxF, (32)

to the automorphism ¢ € G of the covering B — B there corresponds the automor-
phism

O(Br f) = (UE» fo-—l)' (33)

where f— fo™l is some automorphism of the curve F. This follows from the fact

TR
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operation of the automorphism ¢ € G on 7, like that of the isbmorphism of (32),
commutes with the projection V — B,

Thus, we have a homomorphism
¢: G — Aut(F)

of the group G into the group of automorphisms of the curve F. Conversely, the
existence of such a representation of the group G (which is itself given as the
Galois group of the covering B — B) determines its operation as the group of auto-

morphisms of the surface V:
o (, fy = (b, fo (©))-

It is immediately clear that we thus obtain a group operating on V without fixed o
points, and that the surface ¥ = V/G does not have singular points. ‘We see that -
we can obtain in this way all the surfaces interesting to us, but perhaps also _many E
others. It is thus necessary for us to give the conditions which the covering B—-,B :
the curve F, and the representation ¢ must satisfy in order that the surface V

will have the invariants Pg =0, g= 1. In order to formulate the result, we desig-

nate by L the curve F/¢(G).
Lemma 13. For the surface V= V/G

qg= 1 + Vs » . (34)
" where y is the genus of the curve L. »

Proof. The projection V — V detemines the mapping
yr: NV — Qi (V)

of the i-dimensional differential forms of first order. It is clear that 5[1* is an imbed-
ding and that ¢} (@ (V) = Q¥ (M. Therefore it is necessary for us first to find
the differential forms of first order on ¥ and then to choose among them those that

are invariant with respect to the operation of the automorphism from G.

We begin with the one-dimensional forms. It is obvious that
Q" (V) = p (' B) @ p2 (2 (F)), | (36)

where P, and p, are projections of V onto B and F. We now tell how an auto-
morphxsm 6 € G acts on a form from (V). By the definition (33) of the operation
of o on V the spaces p 19’ (B) and pZQ ‘(F) remain invariant under the operation
of 0 and are transformed in the same way as the space {'(B) under the operation
of 0 and the space Q'(F) under the operation of ¢(a)”1. We now note that o
operates on Q'(B) trivially, so that Q'(B)C = Q'(B) On the other band, as is eas-
ily seen, Q) (F)#C) > '(L).
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From this it follows that
Q@ =2 Be 0,
which yields (34).

We now consider the forms of second degree. According to (2)
K () =K (B) X F + B X K(F),
and since K(B).=0

K @) = B x K (F). ; 37)

Therefore f
e N~Q B (F) = (F) ' (38)

and - /
02 (1) ~ Q" (F*? ~Q" (L), (39)

from which (35) foﬂows.
Corollary. The surface V = V/G has the invariants g =1, Pg= 0 if and only
if g=0, i.e. the curve F/$(G) is rational.

We now turn to the construction of the surfaces with the invariants Py = 0, .
g = 1 (again assuming that g > 1, i.e. that these surfaces are described by Theo-
rem 9). We first note that the covering B = B, as an unramxfled covering of an

elliptic curve, has an abelian Galois group with one or two generators:
m m
= !alix {02}, 011= 1, 022= 1.

The field k(F)/k(L) has as a Galois group the group é(G). Consequently
this?Galois group has two generators; ¢(0’ ) and ¢(a ), the orders of which are
divisors of the numbers m and m,. Since the curve L must be rational, the field
k(L) is isomorphic with the field of ranonal funcnons k (L) =k (x), and the field

k(F)/k{(L) can be obtained in the form /c(x, \/P P (0, \/P P_(x), (this easily follows

from Galois theory), where P (x) and P (x) are any polynomlals m x. Conversely,

it is possible to define automorphisms s, and s, in the field k(r \/P P (), \/Pz(t)

by setting
s, (VP () = & VP (),
s, (VP ) =V P; (),
5 (VP () = &, VP, (),

where ¢, and ¢, are primitive roots of 1 whose degrees are equal to the degrees of

the fields & (x, Y Pk (%) and E(x, y mx/_ V Pk (x, }/Pl) Taking for F
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a nonsingular model of the field k(x, W, n%?:), we can define a homomorphism
¢ of the group G into the group Aut F by setting (o )_ sy ¢(o ) = s,,and on
the surface V= Bx F giving the operation of G by the formula (33). qmce the
curve F/&(G) = L is rational, the surface V= V/G will have the invariants
Pg= 0, ¢ = 1. We have thus proven the following assertion.,

Theorem 11. For the case g> 1 all the surfaces V with the invariants Pe =0,
qg=1 can be obtained in the form V = V/G, V =B x F, where B —: B is an unram-

ified covering of an elliptic curve, F is a nonsingular model of the field

k (x, n{’/ P, (x), ] P, (x)) G is isomorphic to the Galois group of the covering
B— B and operates on X according to the rule a(b fl= (Ub fé(o) ) o€ G,
and ¢{o) is a homomorphism of the Galois group of the covering B — B onto the

Galois group of the field k(x, }/ 1 ]/z )/k (x).
We now consider the case when the genus of a generic fiber of the fibering # .
is equal to 1. ) ’

According to Theorem 10, there exists a covering C — B of the base such

that

CXpgV~CXF,

where F is a nonsingular curve of genus 1. We can of course assume that C is a
normal covering with a Galois group G. It is clear that on C x F the group G oper-
ates according to the rule

olcxf)=0() Xfp)oq, (40)
where

¢: G —s Aut F

is a homomorphism of G into the group of biregular automorphisms of the curve F.

It is obvious that -

= (C X sV)IG = (C X F)IG.

Here we can limit ourselves to the case when ¢ is a monomorphism. In fact,

if N is the kemel of ¢, Gl = G/N, C1= C/N, then it is easy to see that
VXpgCi>~CyX F, V=(C, X F)IG,.

We now indicate which fixed points the automorphisms o € G have.

It is clear that the point ¢ = (c x f) is fixed for an automorphism if and only
if oc = ¢, f¢(0) = [. Since for 0 # 1 it is also true that ¢(0) # 1, both ¢ and ¢ (o)
have a finite number of fixed points on € and F respectively, and consequently
o has only a finite number of fixed points on € x F. Thus the covering Cx F —V
can have only isolated branch points. From this and from the fact that neither

C x F nor V have singular points, it follows that this covering does not generally
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have branch points. This follows, for example, from the theorem of Zariski about
varieties of ramification [ 17], according to which the variety of ramification of any
covering of a nonsingular variety by a nonsingular oae has codimension 1. Itis
also possible to verify this directy, considering the subring @f consisting of the
H-invariant elements of the local ring @x of a point x € C x F, where H is asta-
tionary subgroup of the point x, and showing that this ring is nonregular (the ring
@i{ is isomorpi’lic, as it is easy to see, to the local ring of the image of the point
x on V).

Conversely we take a normal covermg ‘C — B with a Galois grou? G and a
monomorphism ¢: G — AutE of the group G into the group of automogphisms of
the curve F of genus 1. We define the operation of G oa C x F by formula (40)
and explain when G operates on € x F without fixed points and when/{C x F)/C
has the invariants Pg= =0,q=1

The group ¢(G) is a group of the automorphisms of a nonsingular curve F of
genus 1. We introduce in F the structure of a one-dimensional abelian variety.
Then, as is known, the finite group of the biregular transformations of F is a semi-
direct product

$(0) - H.¥, 41

where U coasists of translations and H of the automorphisms of the abelian var-
iety F, while ¥ has one or two generators and H is a cyclic group of order 1, 2,
3, 4, or 6. Here, naturally, U is an H-operator group.

It is easy to verify that the elements of U and only they do not have fixed
points on F. Consequently, for the group G acting on C x F according to (33)
not to have fixed points it is necessary and sufficient that in the group G of auto-
morphisms of the covering € — B only the automorphisms of the form ¢~ 1(a),

a € U bave fixed points. This in turn means that the covering C; — B, belonging
to the subgroup ¢~ 1() by Galois theory, is unramified.

We assume that F/¢(G) = L and we designate the genus of the curve L by y-
From formula (36) it follows that if V = C x F, V=(Cx F)/G,

N~ 20 ®QET~Q B D QL)
and therefore for V
q= 1+ VY

so that ¢ = 1, if and only if the curve L is rational. This in turn is equivalent to
the fact that in (41) H £ 1.

It follows from formula (38) that

2 V)~ Q' (C)® Q' (5
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In order to calculate QZ(V)G, we first define 92(7)?‘[‘. Since the elements
a € ¥ are translations of the abelian variety F, Q'(F)?I =Q'(F) and

@~ O®QF)=QC)R® QF),

where C is a covering C;— B belonging to the subgroup ¢~ 1(U) of the Galois
group of the covering C — B. The covering C 1— B is by assumption unramified,

and we 'can apply formula (39) to it. Therefore

27 = (@O ~ O,
and, consequently, Pg= 0 if and only if the curve L is rational, and hence H £ 1.
We have proved the following result.

Theorem 12. For the case g =1 all the surfaces V with the invariants Pg=0,
g =1 can be obtained in the form V = V/G, V=CxF, for C — B a covering of.
an elliptic curve. B with a Galois group G of the type (41) with H £ 1, where G
is isomorphic to the group of biregular transformations of the curve F of genus 1,
and in this isomorphism the elements of . correspond to translations, and H to the
automorphisms of the one-dimensional abelian variety F. Here the covering C,-B,
belonging in the sense of Galois theory to the subgroup W of the.Galois group G
of the covering C — B, must be unramified. _ _

It would have been possible to give an explicit construction of the extensions
of the field % (B) that have a Galois group of type (41) and satisfy all the condi-
tions of Theorem 12, and at the same time give an explicit construction for the sur-
faces with the invariants Pg= =0, g =1 for the case g =1 also. A more elegant
classification of such surfaces however, will be obtained in the theory of surfaces
with a pencil of elliptic curves (cf. Theorem 12, Chapter VII).

Theorem 13 (Criterion of Enrlques) A surface v is ruled if andonly if P
for it

12—

Proof. First of all we verify that for a ruled surface P12 =0. In view of the
birational invariance of the number P12 it is sufficient to establish the equality
P12 =0 for the surface V= B x P!, where Pl jsa projective line. For this sur-
face Pn =0 for all n> 0. In fact, it follows from (2) thaton V

(K- xPY))=—2<0.
Therefore if P, (V) were positive for some n > 0, we would have nK ~ D >0
(Db XxPY) = (nK-(0 xPY)) = —2n <0,

which is impossible.
We will show that it follows from the equation P12 = 0 that the surface V is

ruled. First of all we note that because of this condition p =0 and p,=0.
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Therefore, if ¢ = 0, then the surface V is rational by the criterion of Castelnuovo
and moreover is ruled. In the same way, if ¢ > 1, the surface is ruled according to
Theorem 5. It remains for us to consider the case ¢ = 1.

In this case we can use Theorems 11 and 12 and represent V in the form -V/C,
where V= Cx F, C — B is a covering, perhaps ramified, and the group G defined
in Theorems 11 and 12 also operates on V without fixed points. We have to deter-
mine Pn (X), i.e. the dimension of the space of differentials of degree n and of
first order on X. .

If x and y are two functionsihat are algebraically independent ?"n X,_then
they will be independent also on X, and any differential of nth degreg fon X can
be written in the form f(dx A\ dy)*, f€ k(X). The invariance of this differential
with respect to the operation of the automorphisms of G is equivalen(to the invar-
iance of the function f, and this in turn means that f € k(X), and hence the differ-
entidl itself is also an image of a differential on X under the mapping of the dif-
erentials that is induced by the mapping 7! X — X

“We have thus shown that the differentials of nth degree on X ‘that are invari-
ant with respect to the automorphisms of G coincide with the differentials of the ‘
form 7* (), where w is a differential on X. '

We now note that since the covering X — X is unramified a differential o is

of first order on X if and only if 7*(w) is of first order on X. Thus,
Qn (X) = Q (X_)G,

where Qn(X) and (X) are the spaces of the differentials of nth degree and first

order on X and X respectively. It is clear that
00 (77° D 2 (€° ® @ (F)° D 24 (B) ® u (F)’.

Sinrbc‘e B is an elliptic curve, Qn (B) > k. Hence, in view of what we proved earlier,
P, (V) > dime Q, (F)* .

It remains to find the dimension of the space 1, (F)*(C) | For this we recall
that ¢(C) is the Galois group of the extension E(F)/k(L) and that L is a rational
curve. Since the differentials of nth degree that are invariant with respect to the
automorphisms of #(G), as we saw, have the form Y*(w) where ¢ is a covering
F — L and o is a differential on L, the space Qn (F)d)(c) coincides with the
space of all differentials of nth degree on L for which y*(w) is of first order.

The surface V possesses a regular mapping V — B whose fibers are isomor-
phic to F (this mapping is induced by the mapping V- E). Therefore if we show
that the genus of the curve F is equal to 0, we will have proved at the same time

that the surface V is ruled.
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We sce that the assertion of Theorem 11 reduces to the following lemma about
algebraic curves.

Lemma 14. Let ¢: F — L be a normal covering of a rational curve.‘ If any

differential @ of 12th degree on L is such that y*(w) of first order on F is equal
to 0, then F is a rational curve.

Proof. We choose a coordinate ¢ on the projective line L so that all the
branch points of the covering i are finite. Let w = f(dt)” be a differential of nth
degree on L. We give the conditions to which the function f must be subjected in
order for the differential ¢/*(w) to be of first order.

Let a point P.€F, l/J(Pi) = Qi # oo and let Pi be a branch point of multipli-

city e, for the covefing Y. Then t = T:?i on F, where 7; is a local parameter at
the point P, while VP, (u) =0, and’ '

Y (@) = "~|’ (" (1’ i), ypi (v)__ 0. -
From this it follows that o is regular in P, if and only if

ve, @ (M) > —n (e — 1),

and since VPi(yll*‘ (f)) = e,'VQ-(f)f the same condition can be written in the form
1

Vo (0> —n(1——),

Vo, (f)>—[ﬂ(1*7)]- :
An analogous consideration at the infinite point () yields the condition
' Voo (f) < — 2n.
We thus see that the dxfferenna.l Y*(w) is a differential of first order if and only if

fe20), D=2 [n(l—l/e,)] Q,—zn(oo)

or

.

Ve have to explain when there exists a dxfferentxal ((u) # 0 such that u* (m) is of

first order on F. In other words, we must explain when
(D) >0 »
Since on a curve of order 0 the dimension [(D) > 0 if and ionly if degD‘_>_ 0, the

case of interest to us takes the form

Sn(— le)l > on. (42)

We now assume that the genus of the curve F is different from 0, and we will
show that the relationship (42) can be satisfied for n = 2, 3, 4, or 6. This then

gives us the existence of a differential @ of degree n = 2, 3, 4, or 6 such that

*() is of first order of F. The differential w!?/" will then satisfy all the condl-‘

tions of the lemma
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Let the covering : F — L have degree m. Then m/ei branch points of mul-
tiplicity e; lie over each of the points (; (because of the normality pf the cover-

ing). Since the genus g of the curve F is by assumption > 1,

1 m |

i.e.

S — le) > 2. 43)

Let e <e,<eee e Since e; 2 2, if k > 4 condition (42) is sgtisﬁed
already fot n = 2: . !
o (1 —l/e) = 2 — 20e; >, £

k

N2 —le)l> k>4 /

]

1f 3<e ;<e,< ey, then the relationship (42) is satisfied with n=3:
: 3(1—1/e)>2 i=123,

3
YB3 —1le)l>6.
1

If e;=2, 4<e,< ey, then (42) is satisfied for n = 4:
41 —1) 4+ 40 —le)l+ 4Q— el >2+3+3=38
Ife =2 €= 3, e32 6, then (42) is satisfied for n = 6:
6 —Y)+60—")+ 60— 1/e)] >3+ 4+5=12.
Thus there remain the unexamined cases €)= 2, e, - 3, e3=3 4, or 5. In these

cases {corresponding to the groups of right polyhedra) the relationship of (43) is

not satisfied:
=1, 1 — Yy 1 — 1< 1222 for <5

Lemma 14, and with it the theorem of Enriques, is proved.

Remark. If the genus of the curve F is greater than 1, then for a sufficiently
large n the dimension of the space of the differentials w of nth degree on L such
that Y*(w) is of first order on F takes as large a value as is desired. In other
words, if V = (F x B)/G, then maxPn(V) = o0,

In fact, in this case instead of (43) we have the inequality

=2 {— /ey —2>0,
and if n =0 (mod ei)’ for all e;, then
degD =2 [n(1 — lled]l —2n = nd

and hence L(D) grows indefinitely large along with n.



CHAPTER V

MINIMAL MODELS OF RULED AND RATIONAL SURFACES

§1. Basic results

In this section the base field %k is assumed to be a]gebralcally closed and of
arbitrary characteristic.

The three-tuple (V, 7, B), where V is a complete nonsingular surface, B is a
a complete nonsingular curve, and .7: V =5 B is a regular epimorphism, is said to’
be a geometrlcally ruled surface if V over B is birationally equivalent to the prod-
uct Bx P over B (Pl is a projective line), and 7 Q) =P for any point Q € B,
For simplicity we will sometimes simply call ¥ the geometrically ruled surface,
B its base, 7 a projection, and the curve 7" 1(Q) C V a fiber over the point ) € B.
A trivial ruled surface will be a direct product B x P '

jection onto the first factor.

with a canonical pro-

Let V be any surface, P € V be an arbitrary point, I C ¥ be an exceptional
curve of the first kind. By the symbols dilp: ¥V — V' and cont;: ¥V — V" we mean
respectively birational mappings of dilation of the point P and contradiction of
the curve I. v

Let V be aruled surface, P € V be an arbitrary point. We denote by ! a proper
image of the fiber passing through the point P on the surface V"= =dilpV. Itis
clear that [2= - 1 and that ! is therefore an exceptional curve of the first kind on
V", since the i 1mage of ! under the composite mappmg

dily 1
V”—»V—-)B

is a point on B, the rational mapping #' of the surface V' = cont;¥" on B defined
from the commutativity condition of the diagram

dilg!

vy

contl 1 lﬂ
o’

V'—2B

is regular. Clearly (V', 7', B) is a geometrically ruled surface. We will say that

V' is obtained from V by means of an elementary transformation elmp with center

85
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at the point P: elmp = coat; e dilp: V- V.

Our main goal is the proof of the following result describing relatively miaimal
models of ruled surfaces (i.e., models on which there are no exceptional curves of
the first kind).

Theotem 1.2) Let V be anirrational ruled surface, m: V — B its canonical map-
ping onto its image in the Albanese variety. The surface V is a relatively minimal
model if and only if (V, 7, B) isa geometrically ruled surface. '

b) Let V be a rational surface. V isa relatively minimal model if and only if
it is isomorphic to either a projective plané P2, or to some geome’tric{)’lly ruled
surface with a projective line as a base.

¢) Every geometrically ruled surface (rational or irrational) can be obtained
from a trivial surface by the successive application of a finite number of elemen-
tary transformations. ‘

This theorem will be proved in the following sections; the cases of irrational
and rational surfaces will be treated separately, for they require different methods. 1
Before proceeding to the proof, we note a simple property of elementary transforma-
tions, which, together with point b) of Theorem 1, gives us more exact iaformation
about ruled surfaces.

Proposition 1. Let (V, m, B) be a (locally trivial) fiber bundle with fiber Pl
and with a projective structure group. Then the same is true for the surface
(V', w', B), where V' =elmpV, P €V being any point.

Proof. It is clear that it is sufficient to verify that, for some Zariski neighbor-
hood U of the point Q = #(P) € B for which W)~ U x p! , the open set

elmp (=~1(U)) € V' (in an obvious defini-

[/x{x} tion) remains isomorphic to UxP 1, where

this isomorphism is compatible with the
projection onto the first factor UxP1loU.
We choose affine coordinates on P 1 such
that for a point P € U x Pl_ 77 1(U) on

its fiber i i ro.
U {U} the second coordinate is zero

We consider some local parameter 7 at the
point Q € B and we choose U such that
in the neighborhood U 3 @ the function

/ r does not have any zeroes and poles. We

Cat consider on U x P! the system of curves

1 The part of Theorem 1 relating to rational surfaces was proven by Nagata in the arti-
cle[38]. Flemeatary transformations were first introduced there. We basically follow his
method. The validity of the analogous result for irrational surfaces is apparently new.
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{C 1 a € kJteel, setting C,=1{(Q, ar(Q")[Q' €U}, a € k, Cp=U x {}.
We denote by C;_ the proper image of the curve C, in the open set elmp (=" 1))

- with respect to the mapping elmp. It is casy to see that the system of curves

{C;} € elmp(U x P1) possesses the following properties:

a) C;ﬂCé:dfor afB; ‘

b) some curve C; passes through each point of any fiber (7)) "1(P') €
eImP(Ux Pl), P'e U,

c) every curve C:: is a section (the image of a section) with respect to the
canonical projection ': elmp (U x PH_, 1. ‘

The choice of the sections {C’} determines an isomorphism elmp(U x Py~
Ux Pl which is clearly compatible with the projection ofito U. The proposition is
proved. From it, by Theorem 1, we obtain 2

Corollary. Every relatively minimal model of a-ruled surface, with the excep-
tion of the projective plane, possesses the structure of a fiber bundle with base B,
fiber P1, and o projective structure group.

Our last result will apply only to the rational surfaces for which the classifi-
cation of ruled surfaces by Theorem 1c allows one to give a compléte description.

Lemma 1. Let P 1 Py€ P1xP1y, points not lying simultaneously on either
a curve of the form P x P or P14 Q. Considering P1x Pl g5 g ruled surface

with a projection onto the second factor, we have
elmpzo elmpl(PleI)’—‘: Pl Pl

Proof. Let P2 be the projective plane, Ql and 02 two points on it, [ the -
proper image of the line Q,0Q, on the surface dil(o ) QZ)PZ' The surface P1x P!
is isomorphic to the surface

o i1 2
cont) °dil P(Q 1’02)P .

Under this isomotphism the points of the linés on P2 passing through the ‘points
01, @, are identified with two systems of genera-
tors on the quadric P1x P we identify Pl, pl #
; . 2 , . ‘
with cont; o dlI(QI,QZ)'P , and we shall designate

. . I3 - +
by Pl’ P2 both the points figuring in the condition g, 42
set by the lemma and their biregular images on P2
with respect to this identification. Then, as it is 2

easy to see,

elmp, p, (P* X P?) = conty,y,1, < dilio, g, p, py P
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where ll’ lZ are images of the lines le It QIP ) respectively. Moreover

conty, 1, 1y © dilia, @ 2., o = confr= dila, 2°¢ (Qu Py P2,

where ¢(Q 1’ P 1’ P 2) is the standard quadratic transformation of the plane with

centers @, Py, P,. This yields the required isomorphism and proves the lemma.
Now we are able to establish the following result. On the trivial surface

Pl Pl we choose some section by=Px Pl and a set of points ¢ ,"**> Q_ Eby

We set
_pl 1 _ ; 1 1 5
F,=P xP*, F = elm(Ql,”‘,Qn)(P < PY), n> 1f
We denote by the symbol b, the proper image of the section bg on Jn.
Proposition 2. Every surface V which can be obtained from PY% Plbya
sequence of elementary transformations Ls isomorphic to one of the surfaces F_,

n >0. The surface F, is determined by the number n up to isomorphism.

Proof. It is clear, in view of the uniformity of the surface FO’ that clmQ F0= Fl
does not depend on the position of the point Q.

We perform an induction on the number of elementary transformations applied
to FO' We assume that the application of not more than n transformations leads
to a surface F , r<n; we shall show that the application of another transforma-
tion to F_leads either to the surface F _; orto F .y, thus completing the induc-
tion.

It is possible to assume that r£0. If Q €b_, then elmQ F, = F - If
Q € b, then, using Lemma 1 and the permutability of elementary transformations
at distinct points, we obtain that elmQ F, = Fr-l'

This argument is not valid if Q lies on one of the fibers obtained as a result
of preceding birational transformations. Then it is necessary to apply another pair
of elementary transformations with centers Q,on b, and 0, outside of b lying
on distinct fibers and not on those which appeared as a result of preceding ele-
mentary transformations; then we apply Lemma 1 to the transformation elm(Q LO2Y
This argument shows that Fn depends oaly on n and not on the choice of the
points Ql’ v, Qn . The proposition is proved.

Proposition 3. The curve b is the only irreducible curve on the surface F_
with a negative index of self-intersection: b’f =~ 7.

Corollary. Any relatively minimal ruled surface is isomorphic to some F_,
n#1; the surfaces F_, F_ for m £ n are not isomorphic.

Proof. The equality bs — — n follows from the definition of Fn. Let s be

any fiber of F_; the classes b, and s generate the group of one-dimensional

n?

cycles F_ up to linear equivalence; this is obvious for F, and the situation
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does not change under the application of elmp. Let CC Fn be any irreducible
curve that does not coincide with bn or s; we set (C, s) =4, (c, bn) = dO' Since
s2= 0, we have
C ~ db,, + (do -+ dn) s,
from which
Ct = 2d (d, + n) > 0,
follows since d > 0, .do 2 0. The assertion is proved.
Remark. Since any rational ruled surface Fn L Plhasa canonical section

with image b, it can be regarded as a fiber bundle with an affine structure group.

$2. Proof of Theorem ] for irrational surfaces

Let V.. B be a vonsingular ruled surface together with the mapping onto its
image’in its Albanese variety; let Vo= B x Pl B be a tivial model of the field
k (V). There exists a nonsingular model V' of the field k(V) such that the follow-

ing diagram is commutative:

f/y,.fj' |
174
X 4

e

a

(N

A

‘where the maps of ¥, V', and Vo on B are natural, and the maps V' — V and

V' — Vo are regular; in fact, one may take as V' a nonsingular model dominating
the graph of the birational correspondence between V and Vo-

Lemma 2. Every exceptional curve ! of the first kind on V' is an irreducible
component of the preimage of some point Q€B.

--Proof. This is clear, for | is arational curve and’the genus of B is greater
than or equal to F. (We note that it is essential to use the ii'rationality of the sur-
face V here; for a rational surface not only the proof but also the result ceases
to be vaiid, which is the main reason for the complication of the situation.)

Corollary. 4 ruled irrational surface V contains only a finite number of excep-

tinal curves of the first kind,
(This corollary is also invalid for rational surfaces.)

Lemma 3. The preimage (=" 1Q) e v of every point Q € B is connected
and is the union of nonsingular rational curves.

Proof. In fact, ()" 1= fo-l o 7761; moreover, nal(Q) ~ Pl and fo—l decom-
Poses into the product of a finite number of dilations, each of which adds a non-

singular rational curve and does not destroy the connectedness. The lemma is
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proved.

By a weighted tree we shall mean a finite tree (graph without cycles), to each
vertex of which is ascribed an integer, its weight. To each preimage of a point
(7)Y HQ) C V' we setin corresponde.nce the graph D'Q in which the vertices are
in one-to-one correspondence with irreducible components of the fiber (7)"1(Q),
two vertices are joined by a simplex if and only if the corresponding components
intersect, and with each vertex there is associated a negative infeget — the index
of intersection of the corresponding component taken with the opposite sign. Itis
clear that D,Q is a weighted tree (here the weights are negative): Inﬁhe future we
shall consider only weighted trees and shall simply call them trees.;é‘

Let D be some tree. We define two operations allowing us to ob;ain from D

. L
a new weighted tree D

We add to D one new vertex with a weight of 1; we join it by one simplex to
aﬁi(‘;ld vertex of the tree D and we increase the weight of this old vertex by one.
We shall say that the new tree D' thus constructed is obtained from D by an ele-
mentary dilation of the first kind, or that D is obtained from D' by an elementary
contraction of the first kind.

We add to D one new vertex with a weight of 1, we join it by two simplexes
to two vertices of the tree D that were joined in D by a simplex, we remove this
simplex and increase the weight of each of its vertices by one. We shall say that
the new tree D' is obtained from D by an elementary dilation of the second kind,
or that D is'obtained from D' by an elementary coatraction of the second kind.

The justification of these definitions lies in the following obvious result.

Lemma 4. Let f: V' — V be a regular mapping contracting an exceptional
curve | on V' of the first kind that lies over a point Q € B; let Db, DQ be the
trees of the preimages of the point Q on V' and V respectively. Then D'Q is
obtained from DQ by an elementary dilation of the first or second kind depending
upon whether the image f(l) lies on one irreducible component of the preimage of
Q or on the intersection of two such components. Conversely, applying an elemen-
tary dilation or contraction to the tree D!, we obtain the tree corresponding to the
preimage of Q on the surface obtained from V' by a dilation of a point or the con-
traction of some component of a fiber over Q.

The product of elementary dilations will simply be called a dilation of a tree;
analogously, the product of elementary contractioas is called a contraction.

Let Q € B; the tree DIQ of the preimage of Q on V' is obtained by a dilation
of the tree consisting of one vertex with a weight of zero which corresponds to the

preimage of () on VO‘ The mapping f then induces a contraction of the tree D'Q,

where, if the model V is minimal, there cannot be a vertex with a weight of one in
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the image DQ of the tree D'Q. We shall show in particular that then DQ again
consists of one vertex with a weight of zero, i.e., the preimage of the point Q on
V is aline. Our follovung arguments will use welghted trees and we shall inter-
pret them with the aid of Lemma 4. _

A simple tree is defined to be a connected tree, the weight of each of whose
vertices is equal to the number of simplexes emanating from the vertex. A terminal
vertex is a vertex of weight 1, and a terminal simplex, a simplex that has a vertex
of weight 1. A simple tree is completely defined by its graph.

‘Lemma 5. a) 4 tree is simple if and only if it is obtained from a one-vertex
simple tree by a sequence of elementary dilations of the first kind. Each contrac-
tion of a simple tree yields a simple tree.

b) Let D be a simple tree, and A and B be two of its vertices. T}zen there

exists a simple tree of the form

2 7 / 7 g
é—g—% 000 ~——mO0——0 or Or———0 or o (2)
A A A -4 : A=/’

which is obtained from D by a contraction and from which it is ppssible to obtain

A and B by contractions.

Proof. The first two statements follow quickly from the definitions by induc-

tion on the number of vertices.

The last assertion is also almost obvious: we join A with B by a sequence
of simplexes and apply to D successively elementary contractions until there
remain no terminal vertices other than 4 and B in the tree obtained. This is pos-
sible, for by the definition of a simple tree and of an elementary contraction, the
latter destroys terminal complexes and only those. But every simple tree having
'only the terminal vertices 4 and B has.one of the forms shown in diagram (2).
The lemma-is proved.

Now let D be an arbitrary tree and D’ a simple tree. We choose any simplex
s of the tree D and any vertex p of the tree D’. We join the vertex p by two
simplexes to the ends P1s P, of the slmplex s, we remdve the simplex s and
increase the former weiglits of the vertices P, Py,and p, by one each. We shall
say that the new tree D" thus constructed is obtained by a grafting of the tree D'
to D; the vertex p will be called the grafted vertex.
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Lemma 6. The tree D is obtained by a dilation of a one-vertex sigple tree if
and only if it is obtained from some simple tree Dy by a sequence of graftings of
simple trees. ¥ v

Proof. Let D be obtained by a sequence of graftings of simple rrées. We con-
tract the last grafted tree to the one of its terminal vertices to which it was grafted;
then we remove this terminal vertex by an elementary contraction of the second
kind. The new tree is a coatraction of D and is obtained by a sequence of a
smaller number of graftings; induction on the number of graftings permits one to
coatract D to a simple tree, which contractsto a one-vertex simple tree by Lemma 5b.

To prove the converse we use induction on the number of vertices. A one-ver-
tex simple tree satisfies the assertion. Let it be true for trees D with a number
of vertices r. A tree D' with r+ 1 vertices is obtained from some tree D by an
elementary dilation. If it is of the second kind, then this is a grafting of a one-
vertex simple tree.

We now assume that D’ is obtained from D by an elementary dilation of the
first kind. Then the new vertex is joined by a simplex with an old one belonging
precisely to one of the simple trees that was successively grafted. It is easy to
see ’itrhat it is possible to add this vertex at the beginning, and then graft the whole
tree: essentially this reduces to the associativity of addition of the integers. The
lemma is proved.

We denote by A the class of trees obtained by a dilation. from a one-vertex
simple tree.

Lemma 7. a) The contraction of any tree of the class A belongs again to A

b) If a tree of the class A does not have a vertex of weight 1, it is a one-ver-
tex simple tree.

Proof. It is necessary to verify the first assertion for elementary contractions;
for this it is sufficient to use the argument of the second half of the proof of Lemma
6 in the opposite direction. The second assertion follows easily from Lemma 6.

In fact, the tree grafted last always has at least one vertex of weight lunless

this last cee consists of only one vertex. The lemma is proved.
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Lemma 8. Let atree D of the class A be obtained by a sequence of graftings
to the tree Dy. If the tree D can be contracted to its vertex A, then A belongs
to Dy. 7

Proof. Let us assume that 4 belongs to Dl’ one of the grafted trees of the
sequence different from D;. Let p € D be a grafted vertex of this tree. Ifp # 4,
r_hé weight of p in the tree D is not larger than two, for D belongs to the class
A; since this remains true by Lemma 7a for any contraction of the tree D contain-
ing A, we can never contract the vertex p without first contracting A, so this
case is impossible.

Let us now assume that the tree D consists of a single vertex 4. In the proc-
ess of contracting D to the vertex 4 we must at some point arrive at a tree which,
in view of Lemma 7 a, belongs to the class A and is obtained by a graft of 4.to
a simple tree DZ) that is a contraction.of the tree D,. But the tree D contains
a simplex onto which the vertex 4 is grafted, and the weight of the vertices of
this simplex is greater than or equal to 2, so it is necessary to contract them with-
out first contracting 4. The contradiction obtained proves the lemma.

~ Corollary. Let a tree D belong to the class A and be contractable to two of
its vertices A, B. Then D is contractable to a tree of form (2).

Proof. In view of Lemma 8 the vertices 4 and B belong to a simple tree DO'
We can contract the tree D to DO’ and then apply Lemma' 5b to DO‘
We shall now show that the geometrical interpretation of the results obtained

leads to a proof of the part of Theorem 1 that refers to irrational surfaces.

In fact, let the surface V- in diagram (1) be a relatively minimal surface. Then -
the tree of each fiber n-l(Q) cannot contain vertices of weight one. On the other
hand, such a tree is the contraction of a tree of the fiber (#)71(Q) belonging to
the class A. By Lemma 7b the tree of the fiber 77__1(0) has only one vertex, i.e., »
7 Q) pl. _

Further, in the tree D'Q of the fiber (z)"1(Q), let 4 and B be the vertices
corresponding to the proper preimage of the fibers 7 1(Q) and nal(Q). Then by
the corollary of Lemma 8 and by Lemma 4, the surface V' can be chosen so that
the fiber (77')-1(0) will have the form

) 2

where the last curves are the proper preimages of the fibers 77_1(0) and 7761(0)
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respectively. But this is clearly the restriction over Q of the graph of the product

of the elementary transformations applied to V

All our assertions are thus proved.

§3. Cycles over a surface

We introduce several definitions. 1 Let us agree temporarily to identify every
surface V with the subset of the local subrings of the field E(V) whose elements
are local rings of the points of ¥ (rational over the field k). In this ?ay distinct
models of the field & (V) are ideatified with distinct sets of local sul‘?ngs, as is

known, it is possible to characterize the permissible sets axiomatically.

We shall say that a point P' of one of the models dominates a poﬂlt P of
another model, and shall write P’ > P, if the relationship of dominance is satisfied
for the corresponding local rings. Every point dominating some point of a model 12
of the field k(¥) (in particular every point of V) will be said to be a point (lying)
over V.

For every point P over V there exists a unique point Q €V for which P > Q.
If P= Pn >P o >ee> Py=0Q is a sequence of maximal paths, then according
to classical terminology the point P is infinitely close to Q of order n. We shall
say that the point P lies over the point ¢.

A cycle over V is an element of the free abelian group generated by the irre-
ducible curves on V and by the points over V. Thus the group of cyclesisa
direct sum of the group of divisors on V and the group of zero-dimensional cycles
over V.

iirFor any cycle C - EmiPi (in the potation of this form we shall alwaysassume
that’ C is a divisor and P, is a point over V) we define the arithmetic genus,

setfing
pa (C— Em:P) = pa (C) — Sm; (m; — 1).2.
For each pair of cycles C - EmiPL-, D - an‘Pi we define their index of inter-
section, setting
(C —_— Zm,‘P,', D — Eflip,') = (C, D) -_ Em,-n,-.
(In other words, the index of intersection is bilinear, the subgroups of divisors and

zero-dimensional cycles are orthogenal, and finally P2-_1 and (P, Q) =0 for
P#£Q.)

Let Z(V) be the group of cycles over V (from now on all the surfaces are

L. The presentation of the theory of ruled systems with the base conditions prescribed
in this section is a variant of a method of Nagata [39]
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complete and nonsingular). The group Z (V) possesses strong functional proper-
ties with respect to the birational transformations, which one may summarize in
the following way.

Let f=dilp: ¥V — V'. We define a homomorphism (not preserving the dimen-
sion of a pure cycle!) fo: Z(V) — Z(V'), setting f, (P) = dilp P, f, (Q) = f(Q) for
Q # P, and denoting by f, (C) the total image of the curve C with respect to f.
The following assertion is true.

Proposition 4. For every birational mapping f: V —» V' there exists a homo-
morphism f, : Z(V) — Z(V') whick can be defined by decomposing [ into a prod-
uct of mappings of the form dilp and cont; and using the formula (goh), = g, ch,
The homomorphism f, is determined uniquely; Z(V) is transformed by it into a
covariant functor on the category of complete nonsmgular surfaces over k in uhich
the morp[nsms are birational mappings.

Lemma 9. For any birational mapping f: V — V' and any cycles Z, 7' € Z(F),
the following identities are true:

@2z)=0¢.@.Len &)
Pa(Z) = pa(f, (Z)). ‘ “)

Proof. By Proposition 4 we may assume that f=dilp. Then both formulas
are easily obtained from the formulas describing the behavior of the arithmetic
genus and the index of intersection of divisorial cycles under the dﬂation of a point.

We now note that for any furiction ¢ € k(V) and any birational mapping
f: V= V' the relationship

£ U = (f, &, |
holds, where f*;é is the function on V' induced by ¢. ‘Consequently, the subgroup
of the principal divisors Z, (V) in the group Z(¥) is mapped isomorphically under
all the homomorphisms f,. By the same token, f, is defined on the factor group
Z(V)/Z (V). The sitation is analogous: with the arithmetic genus and the index .
of intersection, which, as it is easy to see, depend only on the class of cycles
mod Z, (V). The coset of the cycle Z over the subgroup Z, (V) will be designated

by ||Z|| and is sometimes called a linear system. Linear equxvalence of cycles is

denoted as usual by ~.

As an example we describe the operation (elmP) on F ; 'we shall need this
result in the future. We note that the group Z(F )/Z (F ) is generated by the
classes of the base b , the fiber s, , and all the points over Fn .

Lemma 10. Let f= dilp: F — F_

a) For P € bn:

i1 Then we hgve:
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F, (bn) ~ ban T S T P,
f_ (Sn) ~ Sn+ly
f, (P) ~ Snn1 — P,
where P* is the proper image of the fiber F_ that passes through the point P;
b) for P & b,
f.(b) ~bny — P,
fo (Sn) ~ Sn-1,
f, (P) ~ snq — P, §
where P* is the proper image of the fiber Fn that passes through t’i pbint P.

One proves this lemma by direct applications of the definitions./

§4. Proof of Theorem 1 for rational surfaces

We shall now prove the following result, which, in conjunction with Proposi-
tions 2 and 3, establishes the validity of Theorem 1 for rational surfaces.

Proposition 5. Every nonsingular rational surface that does not have excep-
tional curves of the first kind is isomorphic either to the projective plane P2 or
to one of the surfaces F_, n#1.

We first establish a series of useful lemmas.

Lemma 11. Let L CP?2 be the linear equivalence class of the line on the
projective plane. The linear system M=dL-2mP, (d# 0) of cycles over p?
cannot simultaneously possess the following properties:

‘1) Mi=-1,p,) =0,

. 2) mozmlz-"z meOy

3) m, _>_2?=1mi for some h, 1 <h <k,

4) my+m, < d,

5) mg+ 2my 41 < d.

Proof. The relationships 1) can be rewritten in the form
k k

&—EmpDJJW—n—me—n=a
i=0 i=0

From this follows the equation
k
3d — Z m; = 1.
i=0
Using properties 2) and 3), we find

. k
| =3d — 2 m << 3d— mg—m — > m
{=0 i=h+1
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from which we have

k
Y om+1<<3d — my—my. (5)

i=h+1
'But my.120>-1, s0 d?< 2?=0mi2+ my ,,; using properties 2), 3), and 4) and
the inequality (5), we find
k

k h ’
2 2
<D M M < mE A my Y mp o Dy  a
i=0 i=1

i=ht1
‘ A
< mp m, ‘2_31 m; + Mpa (3d — my — my)

< + mymy - masy - (3d — my — my)
= (my + m,) (Mg — ma.y) + 3dmis.y

< d (my — Mpsr) + 3dmpsy = d (my + Impsy),

which contradicts property 5), because d £ 0. ,
Lemma 12. Let C ~ Zf.‘= 1™ P; be alinear system over F_ possessing the
properties

1) (C, b)) =dy20, (C,s,)=d>0,

2) 0<m;<d/2 forall i, 0<i<Fk,

3) C2=~1, p_(O)=0 _

Then either n =1, C is the class ||b1|!, and all the m;=0; or C=0, k=0,
and m;=1.

Proof We may assume that the points P are numbered so that m,>m,
0.<i<k-1. Let us assume first that mg #£ 0 and either d £ 0 or d ;é 0.

1+l

1) Let n > 2. We perform elementary tra.nsformatxons with centers in the
(n - 1)-st point in general position (not. lying on the base b ). Here, by Lemma 10

?

the system C - zk om;P; goes into the following system on the surface -Fl'
. . T o n—i . k
C" =|(dn +dg)'s; + db, — 3} dP; — 3} m;P;|
' =0 =0

(we denote the point Pi,and its propei image by the same symbol). After a trans-

. i [ y -
formation cont the system C goes into the system
by y 8 y

C'=(nd +d)L —((n—1)d+d) Q— 2 dP; —5;0 mP;

on the plane P 2, where Q is the image of b 1> and biregularly corresponding
points, as always, are designated by the same letter. The system C" possesses
all the properties listed in Lemma 11, with & = n. Consequently the case under

consideration is elimated.
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2) We now assume that n = 0. By the symmetry of FO with respect to a per-
mutation of the direct factors, it is possible to assume dO > d. Under the operation
of the transformation (elmp),, P # P;, 0 <i <k the system

k k

C — X mPi =|dby + dosy— X mPe]

=0 =0
goes into the system

[(d -+ do) s, - db, — dP™ — Zm;P;| on F,.
We then apply the transformation (cont bl);; as a result we arrive atgﬁhe system

k
(d - dy) L — dyQ — dP* — 2 m;P; ¢
=0
/S

on the plane P2, which satisfies the conditions of Lemma 11 with 4 = 1. The con-

tradiction obtained elimates this case also.
w:3) It remains to consider the possibility n = 1.

If m< dO , we apply the transformation cont, , to our system. The resulting

system
k
@+ d) L —doQ — X mPs
i=0

satisfies the conditions of Lemma 11 with A =1 and leads to a contradiction.

The case m; > dj is reduced to the case my < dg by the transformation

dilpo © contp . In fact, our system then goes into the system
k
I{d -+ dy — mg) s, + moby — doP — X3 m;Ps|
i=1

on the surface Fl'
‘:wfrhus we are not lead to a contradiction only in the case when n =1 and either
my=0 or d=d,=0.
If my =0, we have C = ||b 1” by condition 1) of Lemma 12 and Proposition 3.
If d.: dy=0, thea my=1, m; =0 for i > 1, since Zmi2= 1. The lemma is
proved.

Lemma 13. Every linear systeni on a surface F_

k
" db, +d05n—2 miPi", m; >0,
=0

can be taken by a sequence of elementary transformations into a system on a sur-
face F_of the form
’ k ’ 4
Vb, +dys, — D) my Pil, d >0,

=0
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where 0 Smg <d/2 forall i, 0<i <k' for ;,vhich P'. € F

Proof. Let us assume that mq > d/2. We apply the transformation elmP ; by
Lemma 10 our system then goes into the system

k
fdbnis + (d + dy — my) spy — (d — mg) P* — 2 miPy|,
=3
if Py€b , orinto the system

k
bdbaa + (do — my) sy — (d — mg) P*— :21 m:Py |,
if P € b,. Since d- m, < d/2, the collection of coefficients m; with m; > d/2
is reduced by one. Contmumg in the same way, we fmally arrive at the requlred
system. The lemma is proven. ‘
For the formulation of the Iast.l'éﬁn;a we introduce the following definition.
A cycle C= EmiPi over V is faithful, if the following conlitions are satisfied;

a) if P.>P.,then m.<mj

by C>0, and for any point P, € V, m; <m(P,, C) (the multiplicity of the .
point P, on the cycle C).

Lemma 14. Let f: V— V' be aregular mapping and C — zm P, a faithful
cycle over V, where none of the components of C is contracted b) tlze mapping f.
Then f (C - Sm;P) is afaithful cycle over V'.

Proof It is sufficient to verify this for the case f= contl Then we have
f,(O)=C"-(C, DP, where P = cont;l and C' is the proper image of the cycle C.
Condition a) is satisfied, because if P > P, then P lies over the point
P € [, and thus, (C, l) > m(Pk, O > my > m, Condxuon b) is satisfied since

(C D =m(P, ). The lemma is proved. '

It will be necessary for us to apply this lemma in the case when the cycle
over V is simply an effective divisor of C. We note that in this case the lemma
is true even if the f is not assumed to be regular, if fundamental points of [ do
not lie on C: in fact, f, (C) = f2 °fy, (C), where f; is a dilation such that f1, ©)
is an effective divisor, and f2 is a regular mapping of contraction.

We now turn to the proof of Proposition 5. Let us assume that there exists a
nonsingular surface V birationally dominating neither P2 nor F, . Then there
exists a similar surface V such that V = dilp V' for some point P € V already
dominates either P2 or Fn . It is always possible to assume that ¥ dominates
F,, for if ¥ dominates P2, then there ison P2 a fundamental point Q that does
not belong to the image [ = dilp (P), so that ¥ dominates dleP2 > F,

Let f: V — F be the mapping of dominance under consideration. \Ke consider
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the system
h

£, Q1) = (dn + do) sa + dba— 2 miP; , (6)

=0
on the surface F . All the points P, lying on F, are fundamental with respect
o f. Applying a transformanon elmP with center at such a point and defining a
mapping g by the commutativity of the diagram
| v
' l elmp ;v
> Dkt é
we obtain a new dominance mapping g. Using Lemma 13 we can thus ér‘ove the
inequalities m; < d/2 for all i for which P; € F; then by Lemmal4 these inequal-
ities are valid for all i. We shall assume that thxs is already true for the mapping f
Using the invariance of the arithmetic genus and the index of intersection
under birational transformations, we can then apply Lemma 12 to the system (G6)
(the inequalities d > 0 and (dn +d ) >0 follow from the fact that the system
I (dn +d o) s, +db, || contains the proper f-image of the curve ).
If n=1, H(dn+ dy)s, + db H = \bIH and m; = 0, then V dominates
cont, Fl - P2, and thus V dominates P2 in spite of the premise.

If d=dgy=0, then the mapping f: V- F, contracts ! into a point, and thus

V' dominates F", also contradictory to the premise.

The proof of Proposition 5 and Theorem 1 is completed.

§S Numerical invariants

_In this section and the following one we shall prove the well- known theorem
of ]Noether about the structure of the group of birational automorphisms of a pro-
jective plane P2, The proof given below is a variant of a proof by Alexander {31

Theorem 2. Every birational automorphism of a projective plane over an alge-
braically closed field of constants can be represented in the form of the product
of a pro]ectwe automorphism and standard quadratic Cremona transformations (we
recall that the standard quadratic Cremona trans formation c (P 1’ P, P ) with cen-
ter in the triple of points on the plane P2 takes each point into the lme passing
through the other two points).

First of all we describe the effect of the transformation c(P v P , P ) on
the linear system dL — Ek 1m; P of cycles over P2 (L is the system of lmes
on P?). The result below is verlfled by reference to the definition of foritis
necessary to represent c(P T p,, P ) in the form of the product of three dilations

and three contractions and to consxder how each of them effects the points and the
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lines.

Lemma 15. Setting a=d - (m +m,+ my), €= C(Pl’ P, Py). we have

k ]
¢, (dL — Zlm,P,) =@d+al — §1 (m; + a) P; +[§4 m:P;,

where P: is the proper image of the point P.. 7 »
Now let f: P2 P? be some birational avtomorphism of the plane. The basic
object with which we shall work is the linear system

k .
Fo(Ly =dL — X} m:P. (7)

=0
The points Pi’ i=0,---, k will be called fundamental points of the system (7).
'The choice of the numbers (d, Mgs** s mk) is a numerical’ charactenstxc of the
automorphism f, and we shall fu'st study its properties. The number d- is called
the degree of the automorphlsm f and of the S)stem f, (L).

First, taking mto account that f_ preserves the arithmetic genus and the
index of self-intersection, we obtain

k
2 omi=dt—1, o @)

; m; (m; — 1) = (d — 1) (d — 2). (9)

We renumber the points Pi so that the inequalities Mg2 My 2 +s2>m, are
satisfied, and we call m the highest multiplicity of the system (7). From equa-
tion (8) it follows that for d=1 all the m; are equa.l to zero, so [ is a projective’
automorphism.

From now on we shall always assume that d > 2, and, consequently, mg ;4 0
and m; £0.- By Lemma 14 and the apphcanon to it of the equations of (7), it fol-
lows that the point PO lies on the plane P2, and, moreover, that d > mg.

We define the number j > 1,/2 by the formula

2j='d—m0

and the integer & by the conditions

. mh>j2mh_l.

Lemma 16.

a) 2j>my; b) h>2.

Iy
Proof. The inequality a) is equivalent to the inequality mg + m, < d. For the
proof of the latter we note that by (7)
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d—my—m = (f, (L), L — P, — Py,

while the index of intersection on the right is nonnegative, because it can be cal-
culated on the surface dil(Po’ P 1)Pz , where the total image of the cycle [ —Py— Py
(! is the line passing through the poiats Py, P"l) coincides with the proper image
!' of the line [; i.e., it is a curve, and in the image of the system L there exists

. . - . . . !
a cycle whose divisorial part is effective and does not contain [ as a component.

For the proof of the inequality b) we multiply equation (9) by some number s
and equation (8) by 1 - s, and we add the relationships obtained:
k

Y om(m —s)=d—1 d—3s+ 1) } (10}

=0

i

In equation (10) we set s = j, we remove from the left all the terms w't{h i>h,

which are nonpositive, and we subtract 3j - 1 on the right:
A

Y mi(m— ) >dd—3)=dm—)
i=o0
Taking the first member to the right-hand side, we obtain 2?___ lmi(mi -1D> Zj(mo -
Taking into consideration that 2j>2m 2m; we find
h

Y me— ) > my— i (1

i=1
Since m |~ j<mg— j, it follows from this that h > 2. The lemma is proved.

Remark. It follows from (11) that 2?; m > d — (k= 3)j, and hence
h

M mi>d, if h>3. (12)

=1

Fur‘”t'her, since h>2and m , m > ] forany 1, s < h, we have
fmo+m,-'rms>m0+2j=d. (13)

We quickly see that this inequality is the motivation of the introduction of the

number k.

$6. Simplification algorithms

We shall now study the effect on the numerical characteristic of the system

(7) of a standard Cremona transformation, one of whose centers is the point PO‘

If there were among the points Pg,- -+, P, two distinct from P, and lying on
P?, say P_and P, then, applying the mapping (c(Py, P, P)), tf, (L) and
using Lemma 15 and inequality (13), we would quickly arrive at a system whose
degree would be less than d. This condition, however, is far from being always

satisfied, and for an unfavorable distribution of the points PO’ v, Ph on and over
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the plane it is only possible to “‘simplify’’ the system f,(L) by using a specially
chosen sequence of quadratic transformations. Here it is more convenient to follow
the change of the parameters j and % than that of d.

We shall now describe in a series of lemmas the simplifying transformatxons
depending on the distribution of the points P We first note that undel the appli-
cation of a standard quadratic transformation ¢ with one of its centers P (which
are the only kinds of transformations we shall use), the parameter j can either

retain its original value or be reduced.

In fact, let d' and m' be respectively the degree and the highest multiplicity

of the new linear system. Then
2j=d—my=(f, L), L — o)— (€. (L), c. (L — Py)).
But by Lemma 15
e, (L-P)=L-P,

Thus the last index of intersection is equal to d - mb, where ’"E) is the new mul-
tiplicity of the point PO' But

d —my>d —m =2

This establishes the validity of our remark. We note that j' <j i‘f and only if PO‘
ceases to be the point of the highest multiplicity.

We shall say that a system of the form (7) with parameters (j k") is simpler
than a system with parameters (j, k) if (', &') <(j, k) with respect to the lexico-
graphical order. In all the following lemmas we shall apply a standard quadratic
transformation to the system (7) and shall assume that the degree of the system
obtained is > 2, without mentioning this specifically.

‘ Lemma 17.. Let us assume that in the systbem (7) two distinct points of the set :
Pl" .., Pn’ say P and P lLe on the plane P2. Then the system c of ),
c=c(Py, P, P)is stmpler than the system (7).

Proof. By Lemma 15 we bave

c,of, (L) =d+a)L — (my + a) Py — (m, + a) P, — (ms + a} Ps
—SmP;,i==0,rs,

where a=d - my-m ~m. If PO ceases to be the point of maximal multiplicity,
then the new system is simpler than the old one by the remark made above, for then
j' <j. Otherwise, j' = j, but then &' = h — 2, because m+a=d-my-mg=2j-
m,<j= j', and analogously mg+a< j', whereas the remaining multiplicities do
not change. The lemma is proved.

Lemma 18. Assume that it is impossible to find any points P, P_ satisfying
the conditions of Lemma 17. Let A and B be two points on P2 such that none of
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the points P, 1 <i <k, lies on the lines Py4, PyB and 4B, and the directions
of P44, PyB do not correspond to any of the points lying over P. Set ¢ =
c(PO, A, B). Then: '

a) for the system c_ o f (L) we have j'=jand B' =h+ 2

b) no other fundamental point of the system lies over the point of maximal
multiplicity Py of the system c, o f, (L. ‘

Proof. a) Since d - mg >0, PO remains the point of maximal muldplicity. The
fundamental points of the system ¢, o f, (L) will be the proper images of the points
Pl’ cen, Pk with their previous multiplicit"ies, and the points A4 and!B, each with
the multiplicity d - mq = 2j (by Lemma 15). But j'=j, and thereforgthe set of
fundamental points with multiplicities > j' will consist of the images of the points
P,,+++, P, andof the points 4 and B. Consequently, B =h+ 2.

. .. b) The point PO remains the point of maximal multiplicity. The poiats 4 and
B are chosen so that the proper images of the fundamental points of the system (7)
lyiﬁg over P, after the transformatioa ¢ will lie on and over the line AB; the
remaining fundamental points cannot lie over PO' The lemma is proved.

Lemma 19. Assume that in the system (7) none of the fundamental points lies
over Py, but for some r, s <h the point P lies over P, of orderone. We choose
a point C on the plane such that no fundamental point lies on the lines PyC and
P_C, and such that the direction of P_C does not correspond to the point P_. Set
c= c(PO, P, C). Then:

a) no fundamental point of the system (7) of multiplicity greater than j lies
on the line Py P _, and the direction of this line does not correspondvto any point
over PS;

b) the system .c* o f, (L) is either simpler than the system (MDorj'=j
b = h, ond the set of fundamental points of the system ¢, o f, (L) lying on the
plane and having multiplicity > j is greater than the analogous number for the
system (7).

Proof. a) If such a point Pt (possibly lying over PS) were to lie on the line

l= PO PS,' then, as in similar cases above, we would have

d—mo——ms—mt=(L—Po—Ps—-Pt,f.(L))
= (g, (! —Py—Ps—Py),g,°[, L) >0,g =dilp, rs. P>

coatradicting inequality (13).
b) It is possible to assume that PO remains the point of maximal multiplicity.
By Lemma 15 the multiplicity of C is d - mg=—mg < J=] ', and the multiplicities

of the points PO and Pl remain respectively the numbers d~m_>j= j' by the
assumption about the maximality, and d - m;=2j> j'. Thus &' =h.
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All the distinct fundamental points on a plane of the system (7) will have dis-
tinct images, again lying on the plane because of the choice of the point C and
the assertion of a). Moreover, there is a fundamental point on the line P C - the
image of the point P — and it does not coincide with either Py or C. Thls estab-
lishes the second assertion and completes the proof of the lemma.

We shall now describe the simplification algorithm for the system (7).

If the system (7) satisfies the condition of Lemma 17, then either it can be
simplified by the transformation described in that lemma, or one can immediately
arrive with the help of this transformation at a projective automorphism correspond-

mg to a system of degree 1.

In the contrary case, we apply to the system (7) the transformation of Lemma
18, and then several times in succession the transformation of Lemma 19. If at o

‘any point we attain a simplification of the system, the cycle is ended; if we arrne:‘_
at a system of degree 1, the algorithm is terminated. If neither of these events =
occurs, by Lemmas 18 and 19 we arrive at a system with parameters (j, & + 2) for
which all the fundamental points Qs Qpup of muldpliciry > j lie on a plane.
Since h + 2> 4, by inequality (12) not all of the points @, - 0h+2 lie on the
same line. Similarly by inequality (13) not all of the points 00’ Q,, Q0,1 s <
h + 2, lie on the same line. .

Then it is possible to find points @, Oss 1,
s $h+ 2, such that there are two more points Q,,9,

7 u, v <h + 2, not lying on any of the lines 0,0, 0 Oy
QOQ (If all except say one, Q,, of the points Q lie
on the line (.0, then we choose the pair o, 0,
instead of the pair Q,, 0, After this we apply suc-.
sessively the pair of quad_rauc transformations . .
c(QO, Q,,0, ) and’ C(QO, Q,.9, ). By Lemma 17 we

arrive exther at a system of degree 1, or at a system

with degree less than j, or at'a system with para-
meters (j, & - 2), i.e., we obtain the desired simplification.

We have described the steps of an algorithm allowing one to go from the sys-
tem (7) to a simpler system by means of a sequence of quadratic transformations.
Iterating these 'steps and keeping in ‘mind that the sequence of linear systems in
which each successive one is simpler than the preceding breaks off, we arrive at

a system of degree 1, that is at a relationship of the form
Cp c CF-l°"'°C1°f=g,

where the ¢, are quadratic automorphisms of the plane and g is a projective auto-
morphism. It is clear that this assertion establishes the validity of Theorem 2.
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$7. Biregular classification of ruled surfaces

The basic step in the biregular classification of rational surfaces is the pro-
vision of any rational minimal model with the structure of a ruled surface. Ruled
surfaces (not only rational ones) are described with the aid of elementary trans-
formations (cf. Theorem 1, $1). This method gives a precise classification of
rational surfaces, but isinsufficient for irrational ruled surfaces. The classifica-
tion of irregular ruled surfaces is based on studying them as locally trivial bundles
over an algebraic curve with a fiber being a projective line or the group of linear
transformations. & !

The set of biregular equivalence classes of algebraic one-dimengc}nal projec-
tive fiber bundles is H1(X, PGL(1)). This is true for fiber bundles wjth any group
G, i.e., the set of classes of fiber bundles is in one-to-one correspondence with
H1(X, G), where G is the sheaf of germs of maps of the base X into G. Every
projective line P can be considered as a variety of one-dimensional subspaces of
a vector space E. For each projective fiber bundle F it is possible to consiruct
a vector bundle E such that each fiber FX of the bundle F is the variety of one-
dimensional subspaces of the fiber EX of the bundle E. The projective bundle F
is determined uniquely by such a vector bundle £ and for each F such an E
exists. In order to prove this it is sufficient to consider the exact sequence of

sheaves
(1) = k" — GL(2) - PGL(1) - (1) (1

where GL(2) is the general linear group of second order, and the exact sequence

corresponding to it can be written in the following form
HY(X, k7)) — H1(X, GL(2)) — H1(X, PGL(1)) — (1)
Here H2(X, k™) = 0, since dim X = 1. Thus, if we denote by P(E) the projectiviza-

tion of a vector bundle E, then any ruled surface has the form P (E) for some E.
It is clear that if L is a line bundle, then P(E ® L) = P(E) and det(E® L) =
detE @ L2. Therefore, if detk is fixed, then P(E) = P(E") if and only if E' =
L® E and L?=1. There are a finite number, 228, of such L. We give the classi-
fication with exactness up to this number.

For detE we may take either the trivial bundle or a fixed bundle of degree 1.

Definition. A surface is said to be even (odd) if it can be obtained from a two-
dimensional affine bundle of even (odd) degree.

Thus, the problem of the classification of ruled surfaces is reduced to the
probiem of the classification of two-dimensional algebraic vector bundles. We note
first that for a curve of genus 0 the classification of two-dimensiona! bundles,

given by Grothendieck [14], coincides with the classification of rational ruled




BIREGUL AR CLASSIFICATION OF RULED SURFACES - 107

surfaces. In order to demonstrate the ideas and methods of working with bundles,

we briefly reproduce here the results of Grothendieck for our particular cases.

Thus, let X be a nonsingular rational line and let E be a two-dimensional
vector bundle over X with a trivial determinant (i.e., the matrices 96 giving the
transition functions of E have a determinant of value 1). On an algebraic curve
each section )1elds a one-dimensional sub-bundle (because of the existence of a
local uniformizing set; cf, [5]). We shall show that the bundle E has a section.
We use the Riemann-Roch Theorem for a bundle on a curve (cf. [15]).

dim H® (X, E) — dim H* (X, E) = deg E + r (1 —8),

where deg E is the degree of the determinant of E, in our case 0 or 1 and r is
the dimension of a fiber, in our case 2, and g is the genus of the base curve, in
our case 0. Thus '

. dim H® (X, E) > 2
We take any section S € I'(X, E) and the effective sub-bundle Lg determined by>
it. Each one-dimensional fibering is determined by an integer n, the degree of the
divisor that it determines. Therefore LS' is determined by a positive integer n;

Lg=L(n). We have the exact sequence

0—-LG)—>E—L(-n)—0 if detE =L(0)
0—-L(n)—-E—L{-n+1)—0 if det E = L ({).

The obstruction to the decomposition of this triple is (cf. [6]) an element of
H1(X, Hom (L (=n), L (n))), where Hom (L, L") is the sheaf of germs of homomor-
phisms of L into L'; it is clear that Hom (L (=n), L (n)) = L* (-n)® L ()= L (20)
and since n > 0, by the Riemann-RochTheorem we have H1(X, L (2n)) = 0, i.e.,
E=LG()gL(-n). ‘

We shall now show that each E has only one effective sub-bundle. In fact,

let there be a second sub-bundle L'(n'). Then we have the commutative diagram:

?

0L (S E— L (n)—0,

L | @

1
0

e., there is defined a homomorphism of L'(n’) into L*(n) or a section S €
HO(X, Hom (L'(n"), L™(n))). But Hom (L'(n"), L*(n)) = L"*(n") ) L*(a) = L (~m),
m < 0, and therefore either E = L (0) ® L(0), or ji’ is the zero homomorphism, i.e.
L'(n") belongs to the kernel of j and thus coincides with L (n), which is what is

?

necessary to show. We have thus proved the following theorem:
Theorem 1. On a curve of genus 0 any two-dimensional fiber bundle E with a

trivial determinant is uniquely determined by a nonnegative integer n(E), the
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degree of its unique effective sub-bundle. Namely, if n(E) =n, then E=L (7 &
L(=n). Itis not difficult to verify that the given classification coincides with the
classification of Nagata, i.e., that the number 2n(E) coincides with the number of
elementary transformations determining the surface F corresponding to E. If
det E = L (i), then the number of Nagata is 2n + 1.

Now let X be an elliptic curve. The classification of fiber bundles of any
dimension over such curves was obtained by Atiyah [5]. As in the rational case,
we immediately obtain an infinite series of classes of bundles if we consider all
the bundles of the form E =L () ® L*(n),\ where 7 is the divisor delﬁrmining L(r}):
In fact, both terms of the direct product are uniquely determined, and;émus distinct . -
classes determine distinct bundles. But the variety fn of the classes of divisors.
of degree n is the principal homogeneous space of the Jacobian varie{y J of the
curve X. We thus obtain a denumerable number of Jacobian varieties. In the rational
case the direct products or the decomposable bundles coasist of the whole set of
classes. In the elliptical case indecomposable bundles first appear along with a
series of decomposable bundles. We turn to the description of the indecomposable
bundles. We recall a basic principle, which follows easily from diagram (2): each
bundle E with a trivial determinant can only have one effective sub-bundle. We
shall show that an indecomposable bundle E always has an effective sub-bundle.
Let O € X be a point such that 02 £ C?. Then by the Riemann-Roch Theorem
dim HO(X, E ®LWOY > 2, i.e., there are at least two linearly independent sections
S and §'. There exists a point C € X such that LSC = LS’C’ since otherwise
E= LS X LS" But then there exists a linear combination S = CLOS + a15', a; € k,
such that S(C) =0, i.e., E has a sub-bundle of the form L (nC/0), where 7 is

effective. We have the expansion

0 —L (qCO™Y) —E —L* (nCO™) —0,

which“is given by A € HI(S, L(772C20_2)). But it is clear that HI(X,L(TIZCZO-Z)) =0
in all cases except when C =0, n=1, i.e., if E has a trivial sub-bundle,

dimH (X, L2(1)) = 1 in this case, and since proportional cocycles determine the
same bundle E (cf. [20]), there exists a unique indecomposable bundle E, with a
trivial determinant. We have ‘

Theorem 2. For a curve ofgenﬂs 1 the set of classes of two-dimensional bun-
dles E with a trivial determinant consists of a series of decomposable bundles
(J,, n>0, I, being biregularly equivalent to the Jacobian variety of X) and
another point.

We make another remark about a series of decomposable bundles. The ruled
surfaces that they determine have the following form. Let X' and X" be biregular

. . ! .
images of the curve X in some PV, where X' and X" do not intersect. Let
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¢: X' — X" be a biregular mapping of X' onto X". We pass through P € X' and
$(P) € X" aline in PN, so that no two such lines intersect. Then we obtain a
ruled surface F for which the corresponding two-dimensional bundle is decompos-
able. Since for rational curves all the bundles are decomposable, it is possible to
obtain all ruled surfaces in this way. It was in this manner that Andreotti actually
obtained his classification [4].

The classification of bundles over a curve of arbitrary genus requires a deeper
study of the invariants of a fibering.

As always, we have a series of decomposable bundles; and the problem is the
classification of the undecomposable ones.

The study of two-dimensional vector bundles over an algebraic curve of arbi-
trary genus is based on the descnpuon of their invariants. The definition of these
invariants and the basic results connecting tbem appear in the works [53] and
[54]. We introduce them here, emphasxzmg the descriptive side of the new concepts

and the idea of classification.

Thus, let X be an. arbitrary nonsingular algebraic curve of genus g, over the
set of classes of bundles which we wish to describe.

There is not one complete set of invariants for all classes c;f bundles. A bun-
dle has an invariant called the defect of the bundle, denoted by the symbol d(E),
which can take either the value 0 or the value 1. Depending on the value of dus

invariant we have two different systems of invariants, whlch we denote by

§(E), 0 (E)
n(E), ¢c(E), d (15)K1
'h (E).

Definitions are given below.

1) To define n(E) one fxxes any pomt 0 of the curve X which is not a Weier-
strass point. Any divisor £ i is equivalent to a divisor of the form 707, where n
is an effective divisor. If we choose such a representation with a minimal exponent
n, then both n and 7 will be uniquely determined (cf. [53], Chapter I). The expo-
nent n thus determined is called the height of the divisor. Since each line bundle
determines a class of divisors, an invariant of the bundle L, namely n (L), the
height of the bundle, is correctly defined. We denote by the symbols Sp (E) the set
of one-dimensional sub-bundles of a two-dimensional bundle E. Then Sp (E) is not
empty ([53], Chapter I, $2). The invariaat n(E) is then defined by

n(E) = min n(L).
L €Sp (E)

It is easy to see that this definition is equivalent to
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dimT (E R L©O"O1Y) =0,dimT (E@L @O ) =i>0.

2) The invariant ¢ (E) is a divisor on X and is defined as the greatest common
divisor of zero of all the sections of the bundles E @ L (0"(5)).

3) It is easy to see that the integer i > 0 can either be 1 or 2. The defectof
E, d(E)=2-i

It is clear that if d(E) =1, then £ contains a unique line bundle L of the

form L (c (E)O—”(E)).
4) If d(E) = 1, we have the following expansion

0—~L(c(E)O"F) ~E L (E)O"F) -0, §
which is determined by the cocycle [6] /

ae= H' (X, L2 (e (E) 0" ).

Sifice such a sub-bundle is unique, it is clear that the point £ corresponding to a
in P(HL(X, L%(c (E)0™2(E)))), the projective space corresponding to the vector
spate, is an invariant of E namely h(E). It is clear that if d(E) = 1, then n(E),
¢(E) and h(E) determine the class E.

5) Now let d = 0. For the definition of £(E) we consider two distinct line
sub-bundles L 1 and LZ of the bundle E. Let L be a line bundle such that
L 1@ L= L'1 and L Py L= LIZ correspond to effective divisors. Then each L;.
determines in £ X L a section Si' We consider the points P € X for which

a,S, (P) = .S, (P)

and @, or a,# 0. We associate with such a point P the point ("’ ra ) € Plof
the pro;ectlve line, which we denote by Z(P). We denote by £(L s L ) the div-
1sor “that is the product of all such points P. It is not difficult to see by using
dlagram (2) that £(L I’ L ) € ‘L &L 2!, where we denote by |L| the linear series
of divisors that determmes L. Itis possible to prove ([53], Chapter I) that if L

and LZ are chosen so that n(L ): n(L )= n(E), then the divisor :f(L 1 LZ) does
not depend on the choice of L 3 and L . It is designated by £(E). Itis clear that
E(E) € IOZ"(E)C (E)~ 2[ and that deg f(E) =2n(E) - 2degc(E).

6) Let m = 2n(E) — 2degc{E) and &(E) = II_ P, We set
V(Li,L) =Z @, ....Z @ PH,

where n(L 1) =n(L 2) =n(E). Since any such sub-bundle determines a section of
the bundle E® L (0™E)) and is uniquely determined by a one-dimensional space
on this section (cf. [53], Chapter 1), the wansfer to another pair Lll’ L'Z is made
with the aid of a bilinear transformation y of the space P (['(E &L (On(£)))),

i
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One may easily prove the following formula:
VoL 1) =6 @@, ... 3@ @)

where y is some automorphism of the group PGL (1) of bilinear transformations

into itself.

Let the group G = PGL (1) operate on (P Lym according to the law
g (Zh v ey Zm) = (g (Z])’ ey g(zm))
We denote by U the factor space (P hm G, Thus, each bundle determines

uniquely a point in the space U. This point is an invariant of the class and j is
denoted by O(E). We note that U is a preschema but not a schema. But it is pos-
sible to filter it (i.e., construct a sequence of closed subpreschema U = F P
F,2..¢3Fpy such that dim F; > dim F, ;+3 and F, - Fz+1 is an algebram \anety
[36]) We have the followmg theorem (cf [54]) ‘

Theorem 3. The invariants n(E), ¢ (E), £(E) and O(E) uniquely determme
the class of a bundle without a defect.

In view of this theorem a classification of bundles will be obtained if we
describe what values these invariants run through when E runs through all the
bundles of the type being considered.

We first indicate what values may be taken by the integer invariants, n(E),
deg ¢ (E), and m = deg £(E) = 2n(E) - 2deg ¢ (E), which depend on d(E).
g—1 )
2

N AE) =0,g>nE)> gzi 0< degc(E) <g—1.

l)d(E)' Le—1>n(E)> 0<Cdege(B) g

We now describe what Values may be taken by the invariants for a fixed defect.

Let degc(E) = k. Here ¢ (E) can be taken to be any effective divisor 5 of
degree k such that dim |p| = 0 and 7 # 0 ([53], Chapter I, $1). If we denote by
,k the variety of the classes of divisors of degree % and by SF(X) the symmetric
product of the base S, then there exists a regular mapping P Sk(x) — ]k identi-
fying equivalent divisors. If we denote by Sk()() the maxxmal open set of SI'(X)—
0 x S¥71(X) on which the mapping P is biregular, then S (X) will be the region
of variation of ¢ (E). We note that dim Sk (X)=k

1) Let d(E)=1, c(E) =75 and n(E)=n; then A(E) runs over the space
P(n, ) = P(HY(X, L(0~2np2)),

It can be proved that if this space is nonempty, there exists in it a set open
in the sense of Zariski that is the region of variation of 4 (E) ([53], Chapter III).
Thus, a calculation of the constants shows that the variety Cln, k, d) of the
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classes of fiberings with ¢ (E) =n, degc (E) = k has dimension g + 2n — k.

2) Let d(E) =0, n(E) =n, c(E) =7. Then E(E) runs over the affine space
|02n1’—2| - \Ozn-ln—zl. There exists an open subset U that ruas over O(E) [54].
Thus, the dimension of the variety of the classes of the bundles with n(E) =n,
degc(E) =k is equal to 4n-3k-g-73.

It is clear from this that the maximal dimension has a component of fiberings
with n(E) =g, k=0 and d = 0. This dimension is equal to 3g — 3. We describe
this component in more detail. We shall call a variety (not necessarily; complete)
rational if it is possible to remove from it a proper subvariety so that%le temaining
variety is biregularly equivalent to an affine space.

We can show that the preschema Uisa schema, and therefore the¢/ component
of maximal dimensionality of U x (0% - |0271|) is arational variety. We thus
ha?éj

"Theorem 4. There exist two components of maximal dimensionality of a variety
of ruled surfaces V C A(Y) of a fixed curve of genus g. They correspond to even
and odd surfaces and are of dimension 3g — 3.

A variety of odd surfaces is rational. A variety of even surfaces is an isotriv-
ial bundle with rational base and rational fiber.

In [54] there is constructed a filtration of varieties C(n, k,d) D
Cln,k,d,1)D-44 D C(n, k, d, N) such that C(n, k,d, i) is a base of the family of
bundles and a bundle with the given invariants lies over each point. There exists,
however, an obstacle to the representability of a basis functor and to the solution
of the universal problem. The families constructed are universal objects only if
one also assumes analytic mappings of the bases (local sections of finite cover-
ings). For algebraic representability it is necessary to introduce a functor of rig-
idity, after which the universal problem becomes solvable. Here a covering cate-

gor'yxis the category of quasi-bundles [53].




CHAPTER VI

SURFACES OF FUNDAMENTAL TYPE

It is well known that to linear systems on an algebraic variety there corre-
spond mappings of the variety into a projective space. One is especially interested
in the mappings corresponding to the canonical system and its multiples. The fact
is that if |nK| gives a birational imbedding for two varieties Vl and V2 then a
necessa.ry and suffxcxent condition for the birational -equivalence of V1 and V
is the pro;ectne equlvalence of the i xmages of these varieties under the mappmg
corresponding to |nK|.

In the theory of algebraic curves it is proved that if the genus of a curve
Pe > 1, then the canonical system yields a birational imbedding or a mapping of
degree two onto arational surface; here if Pg > 2 and the curve %s not hyperellip-
tic, {K| yields a birational imbedding; if Pg > 2 and the curve is hyperelliptic,
then |2K| yields a birational imbedding and for Pe= 2 |3K]| ylelds a birational
imbedding.

In this chapter we consider analogous quesuons for algebraxc surfaces over
the fxeld of complex numbers.

Curves of genus greater than one have surfaces corresponding to them that we
will call "‘surfaces of fundamental type'’; a simpler detinition of them consists
in the requirement of the absence of an elliptic pencil and in the existence of a
plurigenus greater than one.

Among the results of this chapter we note bthe follow ing

1) for a surface of fundamental type with Pg > 3 the system [3K| gives a bx-
rational imbedding (Theorem 2);

2) there exists a surface of fundamental type with Pg = 3 for which |3K] does
not give a birational imbedding (Theorem 6);

3) for any surface of fundamental type the system |9K| gives a birational im-

bedding.

Throughout this chapter the topology is understood in the sense of Zariski.

113
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$1. Lemmas

In this section we will prove some very loosely connected lemmas that will
be important in the future.

Lemma 1. Let V bea nonsingular algebraic surface and |R| bea linear sys-
tem on V not having fixed curves and base points and such that the mapping corre-
sponding to it of V into a projective space is @ mapping onto a curve.

Then there exists an irreducible one-dimensional algebraic system {R*li on
V and an open subset U in the space ofp;zrameters for |R| such thafto any
point (0 € U there corresponds a cycle R(9) € |R| for which all;éhe irredu-
cible components, nonmultiple, nonsingular, are members of the system 1R*1} and,
moreover, are fibers of some differentiable fiber space V' — E', whefe V' is ob-
tained from V by the removal of a finite number of curves and E' is obtained
from E by parameterizing the system {R’l; by the removal of a finite number of
points.

.. Proof. By the theorem of Bertini the regular mapping f corresponding to the
system |R}: ¥V — C (we denote by C the image of the mapping) can be obtained
as the composition of two regular mappings: fl: V - E, fZ: E — C, where E is
an algebraic curve and fy: V' — E is a mapping whose generic fiber is irreducible.
We denote the algebraic system of the fibers of the mapping flz V — E by {R*l}'

Following Kodaira [25], it is easy to show that if there is a regular mapping
fy of the surface V onto a curve E,-then it is possible to remove from E a finite
number of points so that if the remaining set is denoted by E’ and f;l(E') by V',
then the regular mapping V' — E' possesses the following properties:

1) it does not have multiple fibers,
.. 2) each fiber is a nonsingular irreducible curve,
... 3) the mapping V' — E' gives V' the structure of a differentiable fiber bundle.

It is possible to find on C a finite number of points, whose preimages under

f, are in E — E' or contain multiple components. We remove from C all such
points and denote the remaining set by C". Let

Eu — f;l C”, V” — EIE”~ (l)

It is clear that a preimage of any poiat Q € C" is a complete curve without mulzi-
ple components on V" whose irreducible components are certain fibers of the map-
ping V' — E".

The space of the parameters of the system |R] coincides with the space of
the parameters of the system of hyperplane sections of the curve C under the im-

bedding of it into a projective space corresponding to the mapping f Butitis
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obvious that those hyperplane sections that pass through one of the points of
C - C" give a subvariety of a smaller dimension in the space of parameters. More-
over, those hyperplane sections of the curve C whose decomposition into simple
divisors contain multiple components also give a subvariety of a smaller dimension
in the space of parameters (this follows from the fact that such sections corre-
spond to hyperplanes tangent to C at some point).
We can now find an open set U in the space of the parameters of the sy‘stem
IR| such that for any point t{?) € U the corresponding cycle R (:(9)) € |R] is the
union of the preimages of a finite number of points on C’, i.e. R(t(q)) does not
contain multiple components and has irreducible components, nonsingular curves
“that are fibers of the differentiable fibering V' — E'.
Lemma 2. Let V be a nonsingular algebraic surface, and |L| and M| be
infinite linear systems on V, where M is irreducible, the geometric genus of a

generic curve

MeE|MPu>2,|LI=|K+ M-+ C|, where C>0, (2

dimH*(V, 0 [K +C)) >0, 3)
H'WV,0K+Ch=0 ' )

Then the mapping of V into a projective space corresponding to the system |L|
is either a birational imbedding or is a mapping of degree two onto a rational sur-
face, and for (C-M)> 3 the mapping is always a birational imbedding.

Proof. Using the fact that dim H0(V, O[K + C) > 0, we choose a nonnegative 1)
cycle C' € |K + Cl. Having removed from V the curve C' and the base points of
the system [M!, we obtain an open set U’. It is clear that the mappings f; and
fM corresponding to the systems |L| and M| are regular on U'.

By a well-known theorem of Bertini [8] almost all the curves of the system
|M| have singular points only in the base points of [M|. Let P! be the space of

- the parameters of the sjvstem M| and let ¥ be the subbvariety in P! corrésponding
to the curves of |M| that have singular points also outside of the base points or
are reduciblé, or have a genus less than PIMI. To each point PO € U’ theie
corresponds a hyperplane’ H(PO) cp! parameterizing the curves of |¥| passing
through PO' We note that a fiber of the mapping fy containing the point PO is a
subvariety of smaller dimension on V, and therefore the set of points P' € U’ for

which H(P') = H(PO) lies on a subvariety of smaller dimension in U'.

Since ¥ can contain ronly a finite number of hyperplanes of the form H (P),

D) We call a cycle D nonnegative if D> 0.
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it is possible to find on U’ oaly a finite number of subvarieties of smaller dimen-
sion for whose points the corresponding hyperplanes H(P) belong to W. We re-
move these subvarieties from U'. We obtain an open set U" such that for any
point P € U" the corresponding H{(P) ¢ W. This means that for any point Pely”
there exists a curve M é |M| passing through P, that is irreducible, of genus
P|M|l’ and has singularities only in the base points of |M], i.e. outside of U

Let us assume that there exist points P 1 P2, P 3 € U" which are distinct
and such that f; (P ) =f; (Py)=fg (P 3).

Since Pl’ PZ’ and P3 do not lie on C', from the existence of 2 cﬁrve
M € |M| passing through P | but not through P, and P 3 would followfghe exist-
ence of a curve C' + M € |L| passing through Pl but not through PZ; and P 3,
and the points f; (P)), i=1,2,3 would not coincide. Thus, any curve’ ¥ € |H]
passing through P | also passes through P, and P ;. We pass through P acurve
/'V\IJG |M| that is irreducible, of genus PIM" and lacking singularities on U". Let
M be a nonsingular model of the curve M. It is known [49] that there exists a pos-
itive divisor ¢ on M with a carrier in the preimages of the singular points of #
on M such that if we denote by [L];i the fiber space of lines over M induced by
the fibering L] over V under the mapping MV and by m the direct
image of the sheaf O;i (-0 [L];'[' under the mapping " M, then one has the in-

clusion

0(—¢ Ll C O Ll ®)
from which we have

0 — H*(M, 0 (— 0 ILI;) — H° (M, O [L1). (6)

Since MM U" does not contain singular points, M U" is biregularly equiva-
lent to some open set U" on ?1' that does not contain points of ¢. It follows from
this that the mapping of the set U" given by the sections of the group
HO(M, m]ﬁ), coincides with the mapping of the set r[\j” given by the sec-
tions of the group HO(, 03(-¢l (L13). But 0:;1‘ [-cl [L];{J =
O:‘I\/IJ (K + M);i - Cc+ (C)E;] Kodaira shows in [25] that [(K + M)"ﬁ — ¢l is the
canonical fibering over M. On the other hand, in the theory of algebraic curves it
is well known that if the genus of a curve Pg > 2, then the mapping into a projec-
tive space corresponding to the canonical class is either a birational imbedding

or a mapping of degree two onto a rational line.

It follows from this that the mapping of the set U" N M given by the sections

of the group HOM, O(-0) [L]"v‘[‘) have a degree not greater than two. But then
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there exists a section ¢P1 € HOM, O(-¢) [L]'A‘l') equal to zero at P; and not

equal to zero simultaneously at P, and P ;. We will consider d’P an element of

the group HO(M, O[L]M) Since H1(V, O[K + C]) = 0, we have the epimorphism
HO(V,0[K+M+C])—>H°(M,O[K+C+M]M)—->O. )

Taking the section in HO(V, O[K + M + C) mapped under this epimorphism
into ¢P17 we obtain that in HQ(V, OlK + M + C]) there exists a section mapped
into zero at Pl’ but not equal to zero simultaneously at PZ and P3. We thus see
that there do not exist three points on U” having the same image under the mapping
fi,- Thus f; maps U" onto an algebraic surface and the degree of the mapping
does not exceed two. If this degree is equal to one, then the mapping of the set

U", and with it also V,.is a birational imbedding.

Now let the degree of f; be equal to two. It is s clear that U may be réduced
to an open set U" such that for each point P € U" there exists a unique pomt
P' € U" with the properties P’ # P, fL (P") = 1 (P). We call the point P’ 7
associated point of the point P. It is clear that almost all the curves of |M| do
not liein ¥V ~ U", are irreducible, have a genus PW| and have smgular points
only in the base points of |M|. Let M be some curve with these properties.
Clearly, for any point P € ¥ | U" the associated point P’ EM N U". It follows
from this that f; gives on M a mapping fLIM of degree two. But by (7) f] coin-
cides on M \U" with the mappmg ‘given by the group of sections
HOW, 0K + I + C)y).

We remove from U" the fixed points of the system [(K + M + C)’“ - c| Gf

there are any), and from U their images. After the removal we obta.m bxregularly
equivalent open sets UIV a utv N M. Since the sections of the group
HO(M 0(-¢ [L]"‘) do not have common zeros 6n’ UIV r] M, there exists a regular

mapping g of the variety f; (M ﬂ UY) onto the variety fL M(M N U V), where
fL M is the mapping corresponding to the group- HO(M 0(-¢ [L]"’) Here we have

the commutative diagram

le/H

—anwmww

J1v Ve .
MmU ~——>ﬂ,M(MﬂUIV)

fr, M
For the degrees of the mappings we have the equation
d(Fr,m) = d (g)-d (fu| M). . ®

It is clear that f; y oo ¥N UtV is just the same as the mapping of the set vy
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with the aid of the group HO (Yi, OlK + M+ C);i _ ¢)), from which it follows that
d(f, 4 < 2. But d(f ) = 2; hence d(g) =1, d{f 1) =2 and fp N utv)
is a rational curve. From d{g) =1 we obtain that f; (N UV) is a rational curve.

Thus ¥ is mapped onto a rational curve. We obtain that the surface f} (2]
contains an infinite linear system of rational curves, i.e. is a rational surface.

It remains to consider the case (C.¥) > 3. We will show that in this case the
degree cannot be equal to two. For this we take any point P € U" and curve
M € |M! passing through the point P, irreducible, of genus P\M\ and?havingrsin-
gular points only in the base points of M|, The associated point P'fof P lies
on MNU". p

We denote the points on U" corresponding to the points P and P’ by P and

P+ We consider the exact sequence
0 — HO (B, 0 (— P — P (Kz + Q) ~H (M, 0 (—P) Kz + QD
—Cy —~H' (M, 0(—P— P) Kz + ©u)) (9)

here C';; is the sheaf on M, whose stalk is a complex line at the point P and is

zero at the remaining points. Since (C.M) > 3, the degree of the divisor = P -P '+
K’,;i + (C)ﬁ > ZP?I‘ -2+1 (P;; is the genus of the curve M). From this we have

H (M, 0 (— P — P Ky + O =0
We obtain the epimorphism

HO (8, 0 (— B Ky + Oz — Cz = ©

H({e_‘_‘nce in the group HOQ, O[K'ﬁ + (C)’ﬁ]) there exists a sectionr ¢'I\J‘ equal to

- ! . « ™~ -
zgro at the point P' and different from zero at the point P. But then there exists

in the group H_O M, m‘T(K + M)’;; + (C)"‘;]) a section ¢P' equal to zero at p'
and different from zero at P. ¢p' can be considered as an element of the group
HOM, OIK + M + C]). Then the epimorphism (7) shows that in the group

HO(V, OIK + M + C)) there exists a section equal to zero at P’ and different from

zero at P.

Thus P’ and P have distinct images under the mapping fL and we arrive at
a contradiction to the fact that the degree of f; is equal to two. The lemma is
proved.

Lemma 3. Let V be anonsingular algebraic surface, {R;} bea one-dimen-
sional irreducible algebraic system on V that is a system of fibers of a regular
mapping of V onto a curve E, and let S| bea connected curve on V such that
(R;S)>0. Then for almost all curves of the system R4
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H'(V,0K+R,+S8,)=0.

Proof. Using the proof of Lemma 1 we obtain that E and V can be reduced
to open subsets E' on E and V' on V such that there exists a regular mapping
of V' onto E', whose fibers are complete nonsingular curves of the system IRI}
where no fiber is a component of 51, and, moreover, this mapping gives V' the
structure of a differentiable fiber space with base E’ and fibers that are curves of
the system {R 1 We now note that for any points (C ) (c )€ E’ the correspond-
ing curves R (C ) and R (C ) are homeomorphic and any one-dimensional cycle
on R (C ) is homologous on V to some one-dimensional cycle on R (C ) It
foIlovs from this that if a is a one- dimensional differential of first order on V
that vanishes on R (C ) then the integrals of a on all the one- dimensional
cycles on R (C ) are zero, and consequently @ also vanishes on R (C ) We
obtain that 1f a ‘amshes on some curve R (C ) (C )€ E', then a is zero on
all the curves R (C) (C) € E'. Let us now assume that a vanishes not only on
R (C ). but also on S}~ We consider the many-valued function f(P) = fp a. It
is clc—ar that.on all the curves R (C) (C) € E', {(P) is a constant.

Since f(P) is also a constant on 51 and (Rl' 51) > 0, f(P) must take the
same value on. all the Rl(C), (O)YEE' i.e. [{P) is a constant on all of V' and
thus on all of V. It follows from this that a = 0. We have thus shown that there
does not exist a nontrivial one-dimensional differential of first order on ¥ that

vanishes on R (C ) and on ql To finish the proof it remains to note that

"R (C ) + 51 is a connected curve and to refer to the following result of Kodaira

[25] for a curve € on a nonsingular algebraic surface V, dlmHl(V OlK+C)=
m—1+k, where m is the number of connected components of the curve C and %
is the number of linearly independent one-dimensional differentials of first order

on V that vanish on C.

Lemma 4. Let V be a nonsingular algebraic surface without exceptional

lcun es of the first kind and with (Kz) >0, Py =0 Then the irregularity of V,

g = 0. .
Proof. The arithmetic genus of V, P,=1-¢g+ Pg= 1 - g, and the second

Betti number, b, = B30 p L1y 0,2 ng + a5 B L1 The formula of Noether

gives us

Pa =0 (K + 2 — 4g + b)),
I—g =5 (K) + 2 — 4q + iy,

Hence

(K?) + k11 = 10 — 8g.
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Since (K2)>0 and A11>0, we have 10-8¢>0, ¢ <1

Let us assume that ¢ = 1. Then (K2) + hbl=2, (K?) =1, RL1_1. The
equation L1_ | means that two-dimensional (in the real sense) algebraic cycles
on V are homologous over the field of rational numbers to multiples of a hyper-
plane section, i.e. to cycles of the form rH (whete r is a rational number and H
is a hyperplane section of V). Thus in particular there are no effective algebraic
cycles C on V with (€% =o0.

On the other hand, the equation ¢ = 1 means that the albanese mapping is a
regular mapping of V' onto an elliptic curve. Any fiber C of this mappipg is an
effective curve, and clearly (C?)=0.

The assumption ¢ = 1 led us to the contradiction. Thus ¢ =0. The lemma
is proved. ‘

Temma 5. The following three conditions for an algebraic surface are equiva-
lent.

1) For some n>0, P >2 and V does not have a pencil of elliptic curves.

2) For some n' >0, Pn, > 0 and on a minimal model V, (K% > 0.

3) For some n" >0, the system |n"K| maps V onto an algebraic surface.
Proof. We deduce 2) from 1). It is given that V is nonsingular, does not
have exceptional curves of the first kind, does not have an elliptic pencil, and for

some n>0, P > 2. Itis necessary to show that (K2 >o.

We will first show that for any irreducible curve D on V, (K.D)>0. In fact,
i D is irreducible, then (K+D) + (D2)> 2 or (K- D) > - 2= (D?). For (D?) <0,
we have (K.D)> -2+ 1=~ 1; here equality will hold only if (D?) = -1, which,
toge&ler with (K. D) = = 1, characterizes an exceptional curve of the first kind.
This contradicts the minimality of V. Now let (D?) > 0. Then, taking an effec-
tive curve from |nK|, we obtain (rK.D) >0, i.e. (K:-D)>0.

Since Pn > 2, {nK]| is an infinite system. Let |R| be its nonfixed and § its
fixed part. If we had (K?) <0, we would have n(K-(R+85)) <0. Since
(K+R)>0, (K.S) >0, we have from this that (K-S)=0, (K-R)=0.

The last equation gives (R« R) + (R.5) = 0. Since |R! is a system without
fixed parts, (R-$) >0, (R-R) >0, and we have (R-S)=0, (R-R) =0. The equa-
tion (R+R) = 0 shows that it is possible to apply Lemma 1 to the system [R|
(IR| does not have fixed points and maps V onto a curve). By Lemma 1 there
exists a one-dimensional irreducible algebraic system {R*ll such that for almost
every R € |R| we have R = 21’. RU) | where the R(li) are nonsingular irreducible
curves of the system {R*l }. The equations (R+S) =0 now give us (R 1 S) =0,
(RI'R) =0, (R%) = 0. From this we have n(K-Rl) =0, (K-Rl) =0, ZpRl—- 2=
(K +R1)' Rl) = 0. This shows that {R*I} is a pencil of elliptic curves. Thus the
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assumption (K?) <0 led us to a contradiction with condition 1) .

We deduce 3) from 2). We are given that for some n' > 0, P .>0 and
(K?)>0. It is necessary to show that there exists an n"> 0, such that |n"K| maps
V onto an algebraic surface, i.e. |n"K| is an infinite system not composed of a
pencil. Since (K?)>0 and P, >0, there must be a positive curve in |n’K|. For
a hyperplane section H of the surface V we have n'(K.H) > 0 and (K H) >o.
Then it is clear that for m > 1 we have

dim H2(V, 0[mK]) = dim HO(V, O[- (m - 1)K]) = 0.

The Riemann-Roch theorem gives us

dim H* (V, 0 [mK]) > M Fl—q+pg > bm? for m > my,

where b is‘some posltne constant. This. mequa.hty shows thaz for mZ>mgq, ImK|
is an mfmxte system.

Let' us now assume that the system |mK| for some m > mq consists of a pen-
cil, and let C be the algebraic curve onto which |mK| maps the surface V.

Let |R | be the nonfixed part of the system |mK|. Using o-processes it is
possible to replace V with a surface V such that the proper image |R |
of the system !R | does not have base points on V and the system |R | corre-
sponds to a regular mapping of the surface V onto Cm. Let H, be the hyper-
plane section of the curve C in its projective imbedding corresponding to the
. mapping [ C . It is clear thé‘t the curves of the syste-m [Eml are preimages

of the sections HC of the curve Cm, from which it follows that
 dim H° (7, 0,R)) < dim H (Cn, Oc,, [Hcl). (10)

If we denote by a(H ) the degree of the divisor H on C, then we deduce

from the Riemann-Roch theorem for a curve that
~dim H® (Cin, Oc,, He) < a (Ho) + 1.

-But a(HC) does not exceed the number of irreducible components of a curve
Rm on V, which clearly coincides with the number of ireducible components of
the corresponding curve R, on V. The latter number can exceed neither (R <H)

nor m(K.H). Finally we obtam that for m > m

bm?* < dim H® (V, O [mK]) < m (K-H) -+ 1; (11)

o

here we have used the equations
dim H° (V, 0 [mK]) = dim H° (V, O [Rn)) = dim H* (v, 0; [R,)).

It is possible to take mq large enough so that bm?> m(K.-H) + 1 for m > mg,
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and then assuming that !mK| for m >mg consists of a pencil leads to a coatra-
‘diction.

To finish the proof of the lemma it remains to deduce 1) from 3) Here one must
assume that there exists an 7' 'S 0 for which |n"K| gives a mapping of V- onto an
algebraic surface, and then prove that there is no pencil of elliptic curves on V
(the fact that P «> 2 follows immediately from the premise).

We will give a proof by contradiction. Let there be on V a pencil of elliptic
curves {R }, i.e. a one- -dimensional irreducible algebraic system of elliptic
curves. Let E be a curve parameterizing the system {R . In the? roduct

t

) € 1R 1

'

E « V there exists an irreducible cycle I' such that the curve R

correspondmg to any point (¢) € E | is obtained as
It'is clear that I is an algebraic surface with a pencil of elliptic curves {R'ﬁ
that are fibers of the regular mapping r—E 1

Let T bea nonsingular model of the surface I. Then there exist regular map-
pings f;: ' — £, and f:T = V. It is clear that there is a pencil of elliptic curves
(we denote it by i?i 1!) on F, such that a generic fiber coincides under the mapping
I' - E,| witha generic curve of the pencil {R l It follows from this that

(R}) = 0 and that almost all the curves of the pencil {E } are noasingular {2s].
Since {R } is a pencil of elliptic curves, it follows from the nonsingularity of
almost all of the curves of the pencil that ((K’\' + Rl) [ ) = 2pR -2=0, From
(Rz) =0 we obtain (K“‘ R ) -0 We will now show that the system In" [&"’\ does
nf)t consist of a penc11

Let ¢(n”) qS(n”) , ¢(n ) be a basis of the space of regular binary differ-

entials of degree n" on V. The image of V under the mapping corresponding to

the system |n" V‘ is a variety with a generic point

{ (")
(l cpln K CP\/ )
y T(phy 't Y _qn")
% %o

Since this image is a surface there are two algebraically independent functions

among @) /00 L, 607880 say 87765 and 5780

fl”) (nll qs(n )

The differentials ¢0 » induce under the mapping f,: F——» 14

I " ~
the differentials f2 é(n ) fz (75(” ) fz (;5(n ) on I', where

. (@i"_)> L f(cp‘,"’) fred”
2\t et T e foel™”
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The algebraic independence of the functions fs qf,("”)/fz é("”) and

[2 ¢(n”) f2 C/)gl ) pow follows from the algebraic independence of the functions
(n ),d)(n ")

[a®) a¥)
of functions over I that corresponds to the image of I under the mapping coming

and ¢(2" ”/¢§,’? ). These functions belong to that subfield of the field

from the system |n'K? I We obtain that this subfield has a degree of transcendency
of two, and consequently that |n"Kx | does not consist of a pencil, Using the
infiniteness of the system {R } it is very easy to deduce from this that

n (K'IV, . Rl) >0 and (KF +R 1) > 0. We arrive at a contradiction with the equation
(KI’\_J\'- R 1) = 0. The legma is proved. Lemma 5 leads us to the definition of a sur-
face '‘of fundamental type.’

Definition. An algebralc surface is sald to be a surface of fundamental type
if it sathfles any of the three conditions whose equivalence was proved in. Lemma 5.

Remark. A surface of fundamental type cannot contain a pencil of rational
curves, for a surface with a pencil of rational curves has all the Pn =0 (is a

ruled surface).

$2. Mappings of surfaces of fundamental type

with the aid of the multiples of the canonical class

Theorem }. Let V be an algebraic sufface of fundamental type and n .a nat-
ural number satisfying the condition Pn > 2. Then

1) for P, =2 the system |(3n + 2)K| yields a birational imbedding of V,

2) for P, =3 the system |(2n + 2)K| (if nK consists of a pencil) or the
system | (3n + D K| (if |nK| does not consist of a pencil) yields a birational im-
bedding of V, : .

3) for Pn =3, Pn_1> 0 (it is assumed that PO =1, since HO(V, Olo-ED=1
the system |(2n + DK| yields either a birational imbedding of V or a mapping of

V of degree two onto a rational surface,

4) for P > 3 the system |{n + 2)K| (Gf |nK| consists of a pencil) or the
system | (2n + DK\ (if |nK| does not consist of a pencil) yields a birational im-
bedding of V.

Proof. Since Pn > 2, |nK| is an infinite system. We note that it is sufficient
to prove the theorem for any surface birationally equivalent to V. Therefore we
can assume that V is a nonsingular surface and, moreover, that the nonfixed part
of the system |[nK| (which we denote by |R|) does not have base points. (The
last can always be obtained by applying a finite number of o-processes to V.) We

can also assume that there are no exceptional curves of the first kind on ¥V whose
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index of intersection with R is equal to zero.

We first consider the case when |R| consists of a pencil. Then it is clear
that |R| satisfies all the requirements of Lemma 1. Applying this lemma, we ob-
tain that there exists an irreducible algebraic system {R*I} and an open set U in
the space of the parameters for |R| such that to any point {0 € U there corre-
sponds a curve R({®) € |R| whose irreducible components are all nonsingular,
are not multiples in R (¢(9), belong to {R*ll, and are fibers of a differentiable
fiber space V' — Ell' where V' and Ell are open subsets on V and oa the curve
E | respectively, E | being a curve -parameterizing the system 1R*l} Sﬁice {R*l}
cannot be a pencil of elliptic curves or rational curves (¥ is a surfacé of funda-
mental type), we have (K" + R*i)- R*l) >0, and from (R*lz) =0 we obta;'m -

K. R*l) >0, n(K- R*l) > 0. Comparing this with (R - R*;.) =0, we conch;lde that
the fixed part of the system {nK! has an irreducible component 51 with
(S;-RD > 0.

By Lemma 3 the set Ell can be reduced to an open E”l in such a way that

for any curve R (:) € {R*l} parameterizible by the point (&) of EY,

H'(V,0 [K + Ry () + S = 0. (12)

The proof of Lemma 2 shows, fnoreover, that the number of linearly indepen-
dent one-dimensional differentials of first order on V vanishing on Rl(t) +5, is

equal to zero.

Let R(ll) R R(lz) , R(13) be three distinct irreducible nonsingular curves of {R*l's
parameterizible by points of E'll.

We will show that the system 12K + Zgle(li) + Sl\ yields a birational im-
bedding of the surface V.

We consider the exact sequence

0— Ho (V,0 K + R — Ho (v, 0 IK + R + RO
— H° (R(P), OR(‘z) K + Ril) + R(l?.)]R(2)) - H! (V, 0 IK + R(I]_)])
t 1

— H'(V,0 K+ R +RP)
— HY (R, 00 K + R+ R qo)- (13)

2)

Since R(ll) N R(lz) is empty, the divisor R(ll)- R(lz) on R(l is linearly equivalent

to zero, and thus the divisors on R(lz) , (K + R(ll) + R(lz))- R(lz) and

(2)
1

2 2
divisor on R(12) (R(17) is a nonsingular curve) and thus (K + R(ll) + R(12)) . R(l )

2
(K + R(l-))- R(lz) , are linearly equivaleat. But (K+ Ry R(lz) is a canonical
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is also a canonical divisor on R(lz). Hence
dim H*' (R, OR(z) (K + R+ R 2@)
1 Ry

= dim H* (R, 0 (K ]) = dim HO(RY?, 0 1) = 1. (14)

2) '
Since R(ll) and R(l ) are fibers in the fiber space V' — Ell, all the one-dimen-
1)

2
sional eycles on R(l ) are homologous to one-dimensional cycles on R(l , and

conversely. Therefore any one-dimensional differential of first order on V van-
ishing on R(ll) also vanishes on R(IZ), i 0 R(ll) + R(12)'

We denote the number of one-dimensional differentials of first order on V
vanishing on R(l by k. ‘The number of connected components of the curve R( 2

R(Z)

is clearly equal to one, and that of.the curve R(l)

(R(l) R(I)) = 0. From the result of Kodaira [ 25] c1ted above, it follows that

to two, since

dim H* (V,0 [K + RP) =1 — 1 + k = &,

dimH'(V,0 IK+R" +RP) =2—1+k=1+k %)
From (13), (14), and (15) it follows that the mapping
CHV, 0 K +RP) — H' (V, 0 [K + R + R2))
is a monomorphism and the sequence (13) goes into
0= HOW, 0 1K+ RY) — H, 0 1K + R + RY))
Ho(RY, 0 (2)7[1( + Ril)-i—R{Z)] (2))—+ 0. (16)

Since V is a surface of fundamental type, the genus of the curve p G ) > 2 for

R
i=1,2, 3. Therefore

dim Ho (R?, 0 R [K+ R‘”+R‘2’]R(Z))
1

= dimH R, 0, ) K, ) > 2

From this we have dim HO(V, O[K + R(l) R(z) N>2ie |K+ R(11)+ R(12)|
is an infinite linear system. Sequence (16) shows that R( 2 is not a fixed curve
for |K + R(l) R(z)l

It is known from the theory of algebraic curves that the canonical system on

a curve does not have fixed points. Therefore sections from the group
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[@Y)] (2)
R(z)[[(+ Rl + R1

1 1 )
i 2
and (16) shows that the sections of the group HO(V, 0K + R(ll) + R(l )]) also do

] (2)) do not have a common zero on R(lz) ,

HORP, 0

2 . .
not have a common zero on R(l ). This means that there are no base poiats of the

system K + R(ll) + R(lz)\ on R(lz) , and the fixed components of this systeﬁ:x do
)

. Lo . (1
not have points in common with Ry, Itis clear that in all these arguments R}
2
and R(lz) could change roles and in the last statements R(l') could ber;replaced
by R, A
e will now show that dim HO(V, 01K + R{'D >0, i = 1,2, 3. If the geo-
a
metric genus P > 0, this is immediately clear. If Pg= 0, then, since V is a sur-

face of fundamental rype, Lemma 4 shows that the irregularity of ¥, q¢=0. By

the,YRiemann-Roch theorem for surfaces we have

. K4 RY R
dimto @, 0 K + RS> TR p 1 — g e =P o

From p @) > 2, we obtain dim HO(V, OIK + R(li)]) > 0. Let |M| be the nonfixed
R
1

- 2
part of the system IK + R(ll) + R(l )\. If we denote by Z the fixed part of the sys-
2
tem |K + R(ll) + R(lz) |, then |M!=|K+ R(ll) + R(lz) ~ Z|. Since R(lh) is not contained
1 .
in Z and |K + R(l )ll is a nonnegative cycle, 7 is contained in K + R(ll)l.
"Any curve of K + R(l)l has the form Z + C,, where C is a nonnegative
1 1 AR &
cycle. Then ’
Z+C +RY K +RP+R
and..
C, +RY = M].

We now apply enough o-processes at the base points of |M| so that the
proper image of |M| does not have base points. We denote the surface thus ob-
tained by V. The proper image on V of any linear system |L| on V is denoted
by E, and its total image by \r[\:! We have 2: -L+ E’L st , where S‘L S@ s
some collection of curves created by o-processes.

The canonical class K' of the surface V is expressed in terms of K accord-
ing to the formula K'=K+38@ , where 550 is some collection of curves

created by O-processes.

We have
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M+ DuSY=M=K+R"+RP—Z—-K g0
B NS .
+RY 4+ B wS?+ R+ X @Y —Z— P80,
1
Hence
M=K +RP+R” —Z+7Ys,

where YS is some cycle on V all of whose components are curves created under
a-processes

On the other ha.nd M= Cl + R (2 + YS where YS is the nonnegative cycle -

consisting of the curves created under o-processes.

¥e now cpnsider (Mz) ;
()= (M- M) = (C, + RD + V) M),

Since on R(lz) there are no fixed points of the system |M], —ﬁ(lz) does not have
points in common with either Z or YS’ i.e. (ﬁ( 2)-_2) = (_R.(z)- Y )= 0. From the
fact that (R(l) R(z)) = 0, it follows that (R(l) R(z)) 0. Using all this, we -
obtain
RP-M) = ®D (K + R + @R — RYD) + ®Y9)
— (K’ +RORY) =20, —2>2:2—2=2
1

Since M does not have fixed components,

M-C) >0, (M-Ys) >0
Thus
M-M) = (C, + RY + Y5)-M) >2. (17)
Since M does not have fixed points, if it consisted of a pencil, that would
imply that (M2) = 0, in contradiction to (17). Consequently, the system M| is not
composed of a pencil, and thus also the system M| on V is not composed of a

encil. With the aid of Bertini’s theorem, we now obtain that (M| is an irreducible
p (R ]

linear system.

Since |M| does not have fixed components, M. 51) > 0. Clearly, (R(13)- M) =
RP-M = (K + R+ R - 2). R,

(1)

Since |K + R (12)‘ does not have fixed points on R(lz) ,(Z. R(lz)) =0

Thus R ) = (K + R R =2p . —25>2.
1 1 1 R(Z) =
1

We now assume that (M .S)> 0. We write R(3) + S, = C, and note that
1 1 1
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(.= (RP D+ (S M22+1=3
Since V does not contain a pencil of elliptic or rational curves, the geometric
genus of a generic curve M€ |M|, py > 2. This circumstance and also equation

(12) with R(13) instead of Rl(t), and the fact that dim HOV, OIK + CD) =

dim HO(V, OIK + R(ls) + 51]) > 0, permit one to apply Lemma 2 to the systems
|K + M + C} and [M|. From (C.M) > 3 we obtain that |K + M + C| yields a bira-
tional mapping of the surface V into a projective space.

One says that a system \DI\ is a part of a system | Di (d‘enot%_ \Dl\ c\ph,
if for a curve D € ID | there exist a curve D € |D| such that D = D,+D,
where DZZ 0. 7,

It is clear that the field of functions KD o0 the variety obtained under the
mapping of |4 correspbnding to the system 1D ll is the subfield of the field (42)
(thé field of functions on V) generated by the functions f€ C(¥) for which
(H+D;> 0. The field KD corresponding to the system |D] is generated by the
functions f€ C(V) for which {f)+ D> 0. Itis clear that Knl cKpccn. i
|D 1‘ yields a birational imbedding of V, then KD 1= C(V). But then KD =Cc(V),

and |D| also yields a birational imbedding of V. Clearly,
(K+M+Ci=|K+M+RY+S]

3 .
C|K + K +RP +RY R + 81| = | 2K+ DR+ Sy

We obtain that [2K + 2i3=1R(ll) + 51\ yields a birational imbedding of the surface

V into a projective space.

Now let (Sl' M) = 0. Since |M| does not contain a fixed part, S, is a funda-
mental curve for |M!. This means that there is a curve of the form B + nlsl in
|M|, where B does not contain S,- We must have B £ 0, for otherwise we would
have M =n S, and from M. Sl) = 0, it would follow that (M?) = 0. From the
connectedness of B +n S, (the irreducibility of || and the principle of degen-
eracy) it follows that (B+ S)>0. From M-S5)= (B +n 151) +§;) = 0 we obtain

(5%) <0. Since S, is an irreducible curve, (K + Sl) +5;>~2 and (K-Sl) >
~2-(5D 2 -1 Bue (R{V.5) = (R+S) 2 1, and dhus

(K +RM+RY)S)>—1+1+1-=1

Comparing this with M- Sl) = 0, we obtain that there are fixed components in
1 2): . .
1K + R(l )+ R(l )l intersecting Sl (we note that Sl is not contained in Z, since

(Z. R(ll)) = 0, while (Sl' R(ll)) > 0). Let S' be the connected component of the
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carrier of Z that intersects with S
Let us assume that (S'.M) > 0. First let R( ) not be contained in S'. We

will show that H1(V, O[K + R(3)+ §' + 8.1 = 0. By the result of Kodaira [25)
already cited

H'W, 0 K +R® +S+8) =m—114 &

where m is the number of connected components of the curve R(13)+ S'+ Sl’ and
k is the number of one-dimensional differentials of first order on V vanishing on
R(I?? +5;+8

From (R(s)- Sl) >0 and (§'-§ )> 0, it follows that m = 1, and from the fact
that R( is parameterized by a point from E,, it follows that the number of one- -
dimensional differentials of first order on V vanishing on Rl + 51 is equa.l to
zero; but then also k = 0. Thus,

H'(V,0 [K+R® +8+8,)=0.

Since dim HO(V, O[K + R{Y + 8"+ §,1)> 0 and (R + 8"+ S 1) =
(R(IB) M+ -M>24 1= 3, applying Lemma 2 to the sy stems
K+ M+ (R(3)+ $'+ 8| and M| shows that |K + M+ (R(3)+ §"+8)| yields a
~ birational imbedding of V. But |K + M + (R(3)+ S+ SYCK+M+Z+ R(13)+ Syl =
K+ K+ R+ RPLRD 45 = 2K + 23 (R4S |, from which it follows
that IZK + 2?=1R(1i) + Sll yields a birational imbedding.

Now let R(l ) be included in S, i.e. also in Z. We consider the exact se-

quence
H (V,0 (K + R® + 8,)) » H' (V, 0 [K + 2R + S,])
— H' (RY, 00 (K + RY") R + R{"-RY + S1-RP)).
1 .
R(3)) R(S)

Since R¢? is a nonsingular curve, (K +

-R(ls), and (51- R(13)) > 0, we have

is the canonical class on

H' R®, 0 [(K +R®)-R® + R®.R® 4 5,-R¥]) = 0.

R
But also H1(V, O[K + R(ls) + 5)) = 0, and consequently
H'(V, 0 [K 4+ 2RY + 8,]) = 0.
Since HO(V, 01K + 2R+ 8D >0, (@GR + 5D = @R M) > 4, the
R(3
1 +

application of Lemma 2 to the systems K+ M+ (2 Sl)| and l.M" shows that
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1K+ M+ (ZR(3) + S D! yields a birational imbedding of V.
We note that :
IK+M-+@QR®+S)|CIK+M +Z+R‘3’+S |=|K+K+R"+RY
+ RY + sll ‘21( +L2_1R“’ + Sl\l,
from which it follows that 12K + 23 R(L) + 51( yields a birational imbedding of V.
We will now show that the supposlnons (5 M =0, (§-M=0 1?ad to a con-
tradiction. Thus, let (S M=o, ' =
Let §' = 2. 5 be a decomposition of S’ into irreducible components, and
let S = .u;.v 1" S be the divisor in Z whose carrier is S'. Since (M- S ) =0 for
all j=1,---, N’,

Nt

M-8) =2 mj(M-S) = 0.

=1
Since S' is the connected component in the carrier of Z,(Z-9:9=0
Thus
(M-S) = (K + R+ R®—2)-8) = (K + R + R).8) — (S-5)
—(Z—5)-S) = (K +RY+R")S) —(S:S)
From (M.85) =0 it follows that

(S-8) = (K + R +R")-S). (18)

Since (5 M) =0, 5' is a fundamental curve for {M]. Thus there is a connec-

ted curve of the form B!+n S’ in |}, where B, #0 (from B;=0 and (SI’..M)=0
it would follow that (2) = 0) and (B,+B)>0. |
From (M.5) =(B.S) + nl.(s.z) = 0 we obtain (5;%) <0.
Since S} is an irreducible curve, (K. S) + (5] 2)> 2, (K-S) > -2~
(; 2)> 1. Theonly time when (K- S)<0 is when (K- S)——1 and (S; 2y 1.

It is clear that these conditions charactenze an e‘(cepnonal curve of the first kind.
From (Z+R) =0 it follows that (S R) = 0. But it was remarked in the beginning
of the proof of the theorem that it 1s possible to assume that there are no excep-
tional curves of the first kind on V whose index of intersection with R is equal

to ze€ro.

Thus (K+S) 2 0. Since (RY”-$) = (RY-5) =0, (K + R R+ RP). 8N > 0.

Formula (18) now gives

(S.8)>0. (19)
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In order to arrive at a contradiction it remains to show

(S'S)<0. (193)

The proof we give practically repeats the proof of Mumford [35] of the negative
definiteness of the matrix composed of the indices of intersection of the curves
obtained under the resolution of a normal singular point on a surface.

We take a curve M € {M| passing through some point of the curve S} Since

(.S 1) = 0, we must have
M = nS,+ g miSr + B,

where n; >0, all the ml; >0, B'>0, and B’ contains neither 51 nor any of the
5;.. We will show that the £ in Ek m;t S;c runs through all the values from 1 to N',
If this were not so, it would follow from the connectedness of Sl + 85" and of S’
- that there is a.nsz not included in Ek m;t SI’: but intersecting S, + Xk m;c S;c". This
would mean that (M. Sz) > 0, in contradiction with (M- SZ) =0.

Since (M. S;) = 0 we have

<

pi

04

me (Se-Si) = —((B' + n,8)-87) <0, -

k

I
~

or

A
3 (mxSk-m:S) <O0.
k=1

. Moreover, it follows from the connectedness of Si + S’ that there exist values of
i for which 2k=1(m1'£ S;ﬁ . m;S;) <0. : ‘

Ve set (m;£ 'S;t . ml{S;-) = a; ;. We obtain that E};\I:lakig 0, where there exist
values of i for which E‘Zilaki < 0. Since for k £ i, a;> 0, the last inequality
shows that there elxists values of i for which a,; <0. If we now prove that the
. equation zgzlz‘;\;laki ay a; =0 is possible only for aj=.+.=0ay’ =0, then we

obtain that the matrix | a]“.‘H is negative definite.
!

'
Let 22’;\;122"\’:1%,'% a; = 0. It is easy to verify that

N N’ N N’ ‘
Y Daworn = ( D akz‘) az— D) aw (ot — )t
k=1 i=1 i=1 k=1 1SRN
We obtain
NN
S (S aar— T aw@—a)r =0,
i=1 ‘ k=1 ISER<ISKN?

1
and from the inequality a;; >0 for k # i, and EQLIGH <0 it follows that
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NN
(Y aw)az=0. (20)
i=1 " k=1
2 Ay (Cll' —_ dk)z = 0. (21)
ISE<iS V!

!
Since there exists an { for which E;Y:laki <0, (20) shows that there exists

an i for which @, =0. It follows from connectedness of S’ that from any i to any

index % there can be found a sequence of indices i =i, il, Lyytre, i, = k such
that for any adjacent members of the sequence ip, Losls (S; . SL'. L >0, i.e.
p p el
a. . >
ipip+l .
From (21) we obtain successively a, = Ay == % i.e. that all the @,
are zero.

. We can write

N N’ NN
(S:8) = 2 D (meSe-mS) = N D (miSk- miS)) ('"_) ("’_)
k=1 i=} k=1 i=1 mlz m;

- 3.2 (3)(%)

. . ]
since the quantities mk/mk are not zero.

Thus we have proved that [2K + E?le(li) + Sl' yields a birational imbedding
of the surface V.

We denote by m’ the number of irreducible components into which a generic
curve of the system |R| is decomposed. Since |R| does not contain fixed parts,
there always exist curves R € |R| for which all the irreducible components are
parameterized by points of Eﬂl‘ Let m' > 3. Then it is possible to assume that
R(ll)’ R(IZ)’ and R(13)
We have

are components of some curve R€ iRl, i.e. |21'3=1R(ll )‘ C |RI.

3 .
2K+[§1Rf)+31 CI2K+R + 8|S |2K+nK|=|(n+2 K],

i.e., for m' > 3 the system |(n+ 2)K| yields a birational imbedding of the sur-
face V.

For m' = 2, we can assume that |2R| D lE? (‘)] Then |2K + 23 lR(L)J- S)c
[2K + 2R + Sll C|2K + 2nK| = |(2n + 2) K], i.e. for m’ = 2 the system |(2n + 2)K]|
yields a birational imbedding of V.

For m' = 1, we can assume that |3R| D ]Z?le(lL)l, i.e.
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~

3 , .
2K+ X R’ + 8|S 12K+ 3R + 8, | |2K +~ 3nK | = | 3n + 2) K|,
=1

and |(3n + 2)K| yields a birational imbedding of V. Since |(n+ 2)K| C
I(2n + 2)K| C {(3n + 2)K|, it is possible to say that for m' > 2, the system
[(2n + 2)K| and for any m' the system |(3n + Z)KI gives a birational! imbedding
of V. )

For Pn = 2 the system |nK] is necessarily composed of a pencil, and hence
for the case Pn = 2 the statement of the theorem is proved in full.

We now take Pn > 2, and we will consider what kind of restriction the condi-
tion m' < 2 imposes on P . Thus, let us assume that m' <2, P > 2

We consider the regular mapping of V onto a curve X correspondmg to the
system ‘Ri We will denote by. H .a divisor of the hyperplane section of the curve
X under the imbedding of ¥ into a projective space corresponding to the mapping
fr: V — X. We have already referred to the part of [25] where it is proved that
one can take open subsets V' on ¥ and X' on X such that to each point of X'
there corresponds a nonsingular (possxbly reducible) curve from V', where homeo-
morphic curves correspond to distinct points of X', i.e. in any cgse, curves hav-
ing the same number of irreducible components. Let this number be A Then if
the degree of the divisor H is equal to a(H), it is clear that the number m’ of
irreducible components is equal to a(H):% for almost all of the curves of IR}.

Thus, since m' <2 we have a(H)-h <2 and a(H) < 2. Itis clear, however, that
mHO(/\ 0 [H]) > dim HO(V, OLR).

~

Let X be a nonsingular model of the curve X, [H]w be the fibering over ¥
induced by the fibering [H] over X, EZT[—J]—; be the dxrect image of the sheaf
Ox [H] under the mapping ¥ X Iei is clear that Oy [H] < O'X[H]’\f

Ve ogtam thar dim HO(X, Oy [H]) < dim HO(X, O5TATy). But
dim HO(:\ 0’“ [H]’\‘) = dim HO(X ON[H]”) By the Riemann-Roch theorem for the
curve X we hawe

dim H° (X, Oy [Hl3) = a (H) + 1 — p_+ dim H* (X, Oy Kz — (Hy)).

N
Since (H)’)\{' is a positive divisor on X, from the absence of fixed points in the

canonical system on the curve we obtain for p ¥ #0
dim H° (X, O Ky — (H)%]) < py— 1.
It follows from this that for p ¥ #0

dim H° (X, Oy [H]p) < a (H) < 2.
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Hence also dim HO(¥, O[R]) < 2. Since IR| is the fixed part of the system |nK!,
p, = dim H° (V, O [nK]) = dim He (V, O [R]) < 2.

We arrive at a contradiction with the assumption Pr; > 2.

ThirJe remains the case py = 0, i.e. % is a rational curve. Then v
dim HO(X, 0}*[}[]) =a(lyY+1<3. As above, one obtailns from th';s Pn < 3. To-
gether with P > 2, this gives P =3. Then dim HO(X, O}*[H]}f) -3 and a(H)=2.
From m' = a(H)+h <2 we obtain m'=2, k=1, and IR} = \R(ll) + R(?)l. The equa-
tion h = 1 means that irreducible curves of V correspond to points | £ X'. But
these curves must be components of curves of |R]. Since X is a rational curve,

*
we obtain thart the curves {R 1} are linearly equivalent.

We obtain that R(ll) and R(lz) vary in an infinite linear system. From results
of [25] it now follows that HY(V, OlK + R(ll)]) = 0. We proved earlier that
2 2
HO‘(V, 0K + R(ll)]) > 0. Since the genus of the curve R(l ) , P (7)> 2 and ‘R(l )‘
. R -
1
is an infinite irreducible system, one can apply Lemma 2 to the systems
(2) (n (2) . . (D (2)
|K+ Ry + Ry | and \Rl |. From this lemma we obtain that |K + R} + Ry |
yields either a birational imbedding of ¥, or a mapping of V of degree two onto
a rational surface. It is clear that
K + RV +RP| S| K+ nK{S | @n+ DKL
2
Let fl be the rational mapping corresponding to the system |K + R(ll) + R(l )l
and let [ be the mapping corresponding to the system |(2n + DKI.
It is clear that we have the commutative diagram
L)
V\ \ g
f1 f]. (V))

where g is a rational mapping of f(V) onto fl(V). For the degrees of the map-
pings we have

d(f) =d@d
Since a'(fl) <2, d(f) <2. When d(f) =1, (2n + 1D K| yields a birational imbed-
ding; when d(f) =2, then cl(fl) =2, d(g =1,1i.e f(V) is birationally equiva-
lent to fl(V)’ and f(V) along with fl(V) is a rational surface.

We thus obtain that f for m' <2 is either a birational imbedding, or a map-

ping of degree twoon a rational surface. Let us assume that

dim H° (V, 0 [(n — ) KD) > 0.
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Then |[(n+ DK| Clln+ DK+ {n- DK} =|(2n+ DK| andfor P =3, m’ > 2, the
system }(2n + 1)K| yields a birational imbedding of V. We obtain that the condi-
tions that P_ = 3, that dim HO(V, 0l(n - 1)K)) > 0 and that |nK| be composed
of a pencil imply that {(2n + 1) K| yields a birational imbedding of ¥ or a map-
ping of V of degree two onto a rational surface.

We showed above that m' = 2, Pn =3 follow from the conditions m' < 2,

P, >2

It follows from this first of all that P_ > 3 implies that m' > 3, and thus if
P_ >3 and |nK| is composed of a pencil, then |(r + 2)K| yields a birational im-
bedding. :

If P =3, then we obtain m' > 2, from which it follows that if P_.= 3 and
inK| is composed of a pencil, then the system |(2n + 2)K| yields a birational im-
bedding of V. We see that in the case when InK| is compoged of a pencil, all the
assertions of the theorem have been proven. o o ' .

Now let the system |nKl|, and thus the system {R|, not be composed of a pen-
cil. From Bertini’s theorem it then follows that !R| is an infinite irreducible sys-
tem. Since V¥ does not contain pencils of rational or elliptic curves, the genus of
a generic curve R € !R\, PR 2 2. We will show that dimHO(V, O[K + Rl)>o0.

If Pg > 0, this is immediately clear. If p, =0, it follows from Lemma 4 that
g = 0. The Riemann-Roch theorem gives us that dim HO( v, OlK+RD>
(K+R)-R)/2+1-g+ Pg= ((K + R)- R)/2 + 1. Having noted that
((K+ R)-R)/2+1>pg > 2, we obtain that dim HO(V, 01K + R1) > 0. Since R is
a connected curve varying in an infinite linear system,. it follows from the results

of [25] that :
HY(V, OTK + R]) = 0.

It is now clearly possible to apply Lemma 2 to the systems |K + R + R| and
[R!, which shows us that in the case (R-R) >3, |K + R + R| yields a birational
imbedding, and for (R-R) <2, |K'+ R + R| yields either a birational imbedding

or a mapping of degree two onto a rational surface.
Let us consider the case (R-R) < 2. We write down the exact sequence
0 — H°(V, Oy) — H* (V, Oy [R]) — H* (R, Or [R-RI). (22)
Since {R} does not have base points (see the beginning of the proof), by Bertini’s
theorem we can assume that R is a nonsingular curve.

Applying the Riemann-Roch theorem, we have
dim H* (R, Or [R-R]) = (R*R) + 1 — p,+ dim H* (R, Or [Kr — R-RI).

Since pp #0 and (R-R) >0 we have dimH°(R, OR[KR—R-R])SpR— 1 and
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thus dim H° (R, OR {R-RD <(R.R) <2. Further, dim HO(V, OV) =1 and (22)
shows that dimHO(V, 0, [R) <dimH(V, O)) + dimHO(R, Og[R-RD <1+2=3.
Thus P = HOW, 0[nK]) = HO(V, O[R]) < 3. Since |nK] is not composed of a
pencil, P > 2 and thus P_=3.

Smce |K + R+ R C|K+nK+nK|= |(2n + 1)K|, we obtain that the conditions
that P > 3 and that |nK| is not composed of a pencil imply that |(2n + D K]
yields a birational imbedding of V, and the conditions that P =3 and that |rK|
is not composed of a pencil imply that (2n + 1K! yields elther a birational im-
bedding of V or a mapping of V of degree two onto a rational surfage.

We now note that (R+R) > 2. For the fact that IR} is not composed of a pen-
cil implies that (R?) > 0, and it would follow from (R2) = 1 that the'image of V
under the regular mapping fR corresponding to R is a surface of first degree, i.e.,
a plane, and fR has degree one. But then ¥ would be a rational surface, which
contradicts the assumption of the theorem.

From (R-R) > 2, we obtain 2(R-R)> 4> 3.

- Applying Lemma 2 to the systems IK + R+ ZR‘l and |R|, we obtain that
|IK + R + 2R| = |K + 3R] yields a birational imbedding of V.

Since |K + 3R| C|K + 3nK! = |(3n + 1)K!; we obtain that from the conditions
that P =3 and that |nK] is not composed of a pencil, it follows that |(3n + DK
yields a birational imbedding of V. All the assertions of the theorem are proved.

The most important consequence of Theorem 1 is the following theorem.

Theorem 2- Let V be an algebraic surface of fundamental type. Then, if the
geometric genus of V, Pg> 3, 13K yields a birational imbedding of V, while if
Pg= 3, |13K| yields ewher a birational imbedding of V ora mappmg of V of de-

gree two onto a rational surface.

Proof. Since P 1= Pg >3, it is possible to take the number n of Theorem 1

to be one.

If one notes further that for n = 1 we have Pn-l = PO =1and 2n+ 1=
n+2=3 then the assertions of Theorem 2 follow immediately from poiats 4) and
3) of Theorem 1. The theorem is proved.

The following theorem shows that for surfaces of basic types, when Pq <3
small multiples of the canonical class will already yield a birational imbedding,
and, in particular, |9K! will yield a birational imbedding for any surface of funda-
mental type.

Theorem 3. Let V be an algebraic surface of fundamental type. Then

1) for Pg =0 the system |7K| yields a birational imbedding of V;
2) for Pg = =2 the system ]SK, yields a birational imbedding of V;
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3) for Pg= 3 the system |4K| yields a birational imbedding of V;
4) for any Pg the system |9K| yields a birational imbedding of V.

Proof. It is clear that one can assume that V¥ is a nonsingular surface with-
out exceptional curves of the first kind. Then (Kz) >0 (Lemma 5)- Noether’s

formula gives us
1
P, =1 (K?) + 2 — 4q + by),
or, since
=] — q + pg; b2 — h2,0+ h1.1+h0,2= 2pg_|_ hl,l,
12 —12¢ + 12p, = (K) +2 — 49 + 2p, + K.

From this we have

| 10(p, + 1) — (K?) — B SR
q= »g 8 " S » (23)

1) Let Pe= 0. It then follows from Lemma 5 that g =0

The Riemann-Roch theorem gives us

Po = dim H (v, 0 [nK]) > UKOK=K) 4 g gqp = 2€20 (k) + 1.

(24)

For n =2 and n =3 we obtain from this
P>y 1= k) +1>2 - (25)
Py>2CD gy 41 =3k + 1> 4. (26)

The last inequality shows us that it is possible to apply point 4) of Theorem
1 for n = 3. Noting that for n =3, n+2=35, 2n + 1 =7, we obtain that the sys-
tem |5K| or the system |7K| yields a birational unbeddmg

It follows from (25) that |2K| contains a positive cycle, and thus
|sK| C|7K| C{9K|. This shows that for Pg= 0, |7K| always yields a birational
imbedding of ¥, and also {9K| will always yield a birational imbedding of V.

2) Let p_ = 2. Then an application of point 1) of Theorem 1 with n=1 shows
(3n+ 2=5 for n = 1) that |5K| yields a birational imbedding of V. Since here
Pg >0 and |K| thus contains a nonnegative cycle, |5K| C|9K{, i.e. |9K]| also
yields a birational imbedding of V-

3) Let Pg= 3. Noting that 2n + 2=3n+ 1= 4 for n = 1, we apply point 2)
of Theorem 1 and obtain that |4K| yields a birational imbedding of V. Since
|4K| C |9K|, |9K| also yields a birational imbedding of V.

4) To complete the proof it remains to consider the case Pg = 1. Formula

(23) gives us that for pg =1
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20 — (K?) — At
- 8

It is evident from this that g < 2. By the Riemann-Roch theorem
—1 a
P, =dim H° (V, 0, [nK)) > =Dy +1—q + pg>L"2—) (K2).

For n=3 and n =4 we have

P> 3 (KY) > @7
P,>A=1 () 6.(KY) > 6, / (28)

One can see from this that it is possible to apply point 4) of Theorem 1forn =4
Noting that for n =4, n + 2= 6 and 2n + 1 =9, we obtain that the system |6K|
or the system |9K| yields a birational imbedding of V.

It follows from (27) that |3K| contains a positive cycle, and thus |6K} C 19K].
We obtain that |9K| always yields a birational imbedding of V. The theorem is
proved.

The results obtained can be somewhat improved if one assumes that Visa

regular surface of fundamental type.

Theorem 4- Let V be a regular algebraic surface of fundamental type and let

n be a natural number satisfying the condition P> 2. Then:

1) for Pg= 0 the system |(2n + DK| yields eithera birational imbedding of
Vora mappmg of V of degree two onto a rational surface;

2) for Pg> 0 the system |(n + DK| yields either a birational imbedding of
Vora mappmg of degree two onto a rational surface.

Proof. Since P > 2, |nK| is an infinite system. We can assume that V is
a npnsingular surface and that the nonfixed part of the system |nK| (we denote it
by |R|) does not have base points.

Let us first assume that |R] is composed of a pencil, and let {R } be the

irreducible algebraic system described in Theorem 1. Let R(l) and R( Y be any

two curves of the system {R 1} Since V is a regular surface, R( D and R( 2 are
2
linearly equivalent. Let f be a fuaction for which R( D is a zero divisor and R( )

is a divisor of the poles.

We take any curve R 1€ {R*f different from R(12). Since (R(lz) -R l) =0, fis
regular en Rl and is thus constant on R;. From the connectedness of R (the
irreducibility of {R l! and the principle of degeneracy) it follows that f takes the
same constant value ¢ on the whole curve R j and thus is a component of the

zero divisor of the function f - c. Since this divisor must be homologous to the
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cycle R(ll) and R, is bomologous to R(ll), R | coincides with the zero divisor of
f- ¢. We obtain that all the curves R 1€ {R*l} are level curves of the function f,
and thus that {R’;_} is a linear system. We denote it by IR ll‘ It is clear that

Ryl CIR] € K],

Now let {R| not be composed of a pencil. Then by Bertini’s theorem |R]| is
an irreducible system. We denote it also by !th. We obtain that in all cases
there exists an infinité linear imeducible sysiem |R1! that is a part of the system
InKl.

Since V is a surface of basic type, the geometric genus PR of a generic
curve R} € |R| is pot less than two.

Let P> 0. Then HO(V, O {K]) > 0. It follows from the regulanty of V that
B, O,[KD = 0. We can now app]) Lemma 2.to the systems 1K + R | and [R ],
from which we obtain that the system |K + R 1] yields either a biratiﬁ?g_al imbed-
ding of I/ or a mapping of ¥ of degree two onto a rational surface.

The assertion of the theorem for Pe> 0 now follows immediately from the
fact that

|K + R\ CIK +RIC|K+nK|=[{n+1)K]

Let Pg= 0. By the Riemann-Roch theorem we have
: ‘ R
dimHYY, OIK+R) > AR Ly gy p KERIRD 4y pp >0

Further, HI(V, OlX +R 1]) =0, since Rl is a connected curve é.nd there are no
one-dimensional differentials of first order on. V. We now apply Lemma 2 to the
systems |K + R+ R,| and |R,|. We obtain that the system |K + 2R | yields
either a birational imbedding of V ot a mapping of ¥ of degree two onto 2 radonal
_surface. It remains to note that 'K + 2R\ C 1K+ K| - {{(2n + 1DK|. The theorem
is proved.

Theotem 5. Let V be a regular algebrm.c surface offundamental type. Then
1) for Pg 22 the system |2K| yields either a birational imbedding of V or

a mapping of V of degree two onto « rational surface,

2) for Po=1 the system |3K\ yields either a birational imbedding or a map-
ping of degree two onto a rational surfoce, and the system |7K| yields abirational
imbedding of V; .

3} for P, = 0 the system |SK| yields either a birational imbedding of V or
a mapping of V of degree two onto a rational surface;

4) for any regular surface of fundamental type the system |7K| yields a bi-
rdtional imbedding.
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Proof.

1) Let p_ > 2. Then the assertion of the theorem follows immediately from
point 2) of Theorem 4 for n = 1.

2) Let Pg = 1. The Riemann-Roch theorem gives us

dimH (v, 012KD) > 28D (k) + 1 — g + pg = (K +2>3

Applying point 2) of Theorem 4, with n = 2, we obtain that 13K} yields either a
birational imbedding or a mapping of degree two onto a rational sur.face. We also
apply poiats 2) and 4) of Theorem 1 for n = 2. Noting that for n = f, n+2=4,
2n+1=5, 2n+2=6, 3n+1=7 and that for p, >0, 14K| C |5K]| C |6K| C|7K],
we obtain that |7K| yields a birational imbedding of the surface V.

3) Let Pg = 0. By the Riemann-Roch theorem we have
dimH° (V, 0 [2K1) > (K) + 1 —q+pg = (K) +1>2.

Applying point 1) of Theorem 4 with n =2 (2n+1=2-2+1=25), we obtain that
the system |5K| yields either a birational imbedding of V or a mapping of V of
degree two onto a rational surface.

The assertion of 4) follows easily from 2) and from the results of Theorems
2 and 3. The theorem is proved.

The results of Theorems 2, 3, and 5 may be easily given in a table. We note

that by Lemma 4 any surface of fundamental type with Pg= 0 is regular.

§3. Regular surfaces of fundamental type with Pg= 3
for which |3K| does not yield a birational imbedding

_ Theorem 6. In order for an algebraic surface V to bea regular surface of
fundamental type with Pg = 3 for whick I3K| does not give a birational imbedding,
it is necessary and sufficient that there exist in the class of surfaces birationally
equivalent to V a surface V' given in three-dimensional affine space by the equa-
tion z% = Fglx, y), where Fglx, y) isa polynomial of eighth degree of x and y
that does not have multiple factors and the curve C on the plane (x, y) with the
equation Fg(x, y) =0 possess the following properties:

1) C is not tangent to the infinite line at any point;

2) C does not have singular points at points of intersection with the infinite
line;

3) any singular point of C is either of quadratic singularity or is a singular
point of third order which, after one g-process on the plane at the point, goes into

a point of multiplicity not greater than two on the proper image of the curve C.
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Table of the results of Theorems 2, 3,and 5
(only for surfaces of fundamental type)

Multiple of the canonical
Geometric Multiple of the canoni- | class yielding either a bi-
genus Irregularity cal class yielding a rational imbedding or a
. birational imbedding mapping of degree two onto
‘ a rational surface
Pq >3 arbitrary 3K
arbitrary 9K
arbitrary - : - - -
Pg=0 - ' 1K o 5K
arbitrary 9 K
py=1
g=0 7K . 3K
Py = 2 arbitrary 7 . = 5 K
pg=3 arbitrary 4K 3 K

" Proof. Let V be an arbitrary regular surface of fundamenta] type with Pg= 3 for
which [3K| does not yield a birational imbedding. We can assume that V xs non-
singular. ’ ‘

Let ]Kl be the nonflxed part of the canonical system IK| and let S be its
. fixed part. Let us assume that II\I is composed of a pencil.

We perform enough u-processes on V so that the system ][\’ does not have
any fixed points. Let {R } be the one-dimensional irreducible algebraic system
on V of which |[x| is composed Let E be a curve parametrizing the system
{RI}, and let .E’ be an open subset on this curve corresponding to the nonsingular
members of {RI}. -

If there is among the exceptional curves of the first kind on ¥V one whose
restriction leaves elements of {le parametrizing points of E' nonsingular, then
we eliminate it. We thus obtain from V a surface V- Again we eliminate on it
an exceptional curve of the first kind whose resmcnon leaves elements of {R }
parametrizing points of E' nonsingular (if such a curve of first order exists), and

we continue this process. Since the second Betti number is reduced at each step,
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this process must terminate. This means that we can assume that there are no
exceptional curves of the first kind on V whose restriction leaves elements of
{Rli parametrizing points of E' nonsingular.

The last statement can also be formulated in the following way: there is no
exceptional curve of the first kind T, on V such that (Rl' Tl) < 1. Since V is
a regular surface, all the elements of the system {R1} are linearly equivalent.
Therefore if ”{1} is not a linear pencil, {Rll may be made part of an irreducible
linear system whose dimension is greater.than one. But this would coatradict the
assumption that \\Ki is composed of a pencil. o

Thus {R,} is a linear pencil. We will denote it in the future by |R;l. We
note that V is birationally equivalent to a surface V (with the aid of o-proces-
ses) such that |R,| does not hza.:'e base points i.e. such that the elements of
]R1| are fibers of the mapping V — E.

" Let ;[z be homolo_gous to mR,. Itis easy to show that the functions of L’[y(—lz)
(f€ L’I‘;(K) if ((f) + K) > 0) are induced by functions of C(E) under the mapping
T — E, and more precisely by the functions of L p (mP), where P is an arbitrary
point on E. Since E is a line, dim LE(mP) —m+1. Wehave m+ 1=
dim LC(mP) = dim L’[\/'(—[Z) = pg(V) = 3. Thus m = 2. Returning to V, we obtain
thar |K| = |2R,|. We consider first the case (R%\ > 0. Then, noting that

dimH® (V, 0 (K + 3R,) >0, H'(V,0 K +3R}) =0

(the latter follows from the connectedness of the curve R(ll) + R(12) + R(13)’ whete

R(l{‘)’ R(lz) and R(ls) are arbitrary distinct irreducible elements of |R}1),

(3Ry- Rl) > 3, and applying Lemma 2 to the systems |}| = \Rll and L} =

|K:# Ry + 3R ||, we obtain that the system |K + 4R,| yields a birational imbed-
ding of V into the projective space. Since |K + 4R | = |K + 2K] 3K, 13K
also yields a birational imbedding of V. This coatradicts our assumption with

respect to the surface V.

Thyus, we can assume that (R%) -0 on V. But then we obtain
9<((K + Ry) R)=(K-Ry)=((K + 8)-R)=(@2R:+S)-R)= (S-RY:

since (K + R))- R,)/2 + 1> 2. This means that there can be found in S an irre-
ducible curve §; such that (R,-S)>0.

We consider the exact sequence

0= HV,0IK) — H (V,0 K +R,l) - H Ry, 0 [K + Rlr) — 0, (29)

where R, is an arbitrary nonsingular element of R |. (K + Rl)Rl‘ is the
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canonical class on Rl’ and from the fact that the canonical system on Rl does
not have fixed points, we obtain that the sections of HO(RI, O[K + Rl]Rl) do
not have a common zero. Formula (29) then shows that the sections of

HO(V, OlK + Rl]) do not have a common zero on Rl’ and this means that the sys-
tem |K + R;| does not have fixed points of Ry, i.e., in particular, its fixed part
does not intersect with R,. Let Z be the fixed part of the system |K + R,| and
D its nonfixed part. Smce dim|{K + R;| > |dimK]| = 2, D is an infinite system;
hence its generic curve does not have multiple components, does not have the
component S, and the condition (D-§;) > 0 is sufficient for the connectedness

of the curve D + §,.

Let us assume that (D- Sl) = 0. We will show that in this case
(Z-5)>0. e (30)

Since (S R )> 0 and (Z- Rl) =0, S, carnot be contamed in Z and (Z S ) >0,
If it were true that (Z. S ) =0, then

«K+&ro=wso+w&hw,

ie. (R 51) =-(K-§ )’and we would have (K- hl) < 0. Since |K!| contains
effectue cycles (p = 3), it follows from (K. S;) <0 that (52) < 0. From
((K+S) S)> Z“eobtam '

K-S)= —1, 8= —1, (K809 g
CRy-S) = — (K-S = 1.

But these conditions characterize an exceptional curve of the first kind on V for
which (Rl- 51) = 1. This contradicts our choice of the surface V. This proves
(30). : . ' , ,

Let S’ be the connected component of the carrier of Z intersecting 51.

Let us assume first that (S'- D) > 0. From (§'- 51) >0 and (S'-D) > 0 it fol-
lows that there exists in the system |D+ §' + §;! a connected curve without mul-

tiple components, and thus
HV,0IK+D+S8 +8)=
Further,
(D+S+S)R)=(K+R,—Z+S8 +S)R)=(K-+R)R)
TER)>Z2p(R) —2+(S'R)>2+1=3.
Now, noting that HO(V, O[K+ D+ §' + 51]) # 0, and applying Lemma 2 to

the systems |[M| = {R,| and |[L| =K+ R+ D+ 8"+ S|, we obtain that
|[K+ Ry + D+ S +85,| yields a birational imbedding of V. Since
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K+ R, +D+S +SICIK+Ri+D+Z+8
C K+ Ry + K+ Ri+S8, = 2K + K + 5] 13K,
|3K| yields a birational imbedding of V. This contradicts our assumption with
respect to V.

Now let (S'- D) = 0. We note that |D| is not composed of a pencil. Indeed,
it follows from (29) that there is a function f; in LV(D) that is nonconstant on
R,
LV(D) that is constant on R;. Since f| and f, are algebraically independent,

and from |R,| € |D] it follows that there is a nonconstant function f, in

|D| yields a mapping of V onto an algebraic surface, i.e. it is not ctmposed of a
pencil. (S'-D) =0 means that S' is a fundamental curve of the system D. Re-
peating the argument given in the proof of formula (19a), we obtain that (S%) <0,
where SZ is the divisor in Z whose carrier is S’, and that (S’lz) < 0, where S'1 is
an arbitrary componeat of S,. However,
(S‘é):((D + 8y S))=((D+ Sy +Z — Sa)Ss)
— (D +28:) = (K + R)S) = (K-5)).
From (K- 52) < 0 we obtain that there exists in SZ an irreducible component Sll
such that (K. S'l) < 0. Uniting this with (5'12) <0 and (K + Sll) - S'l) > -2, we
have (5'12) =-1, (K- S'l) =-1; (K + 5'1)- 5'1)/2 + 1 =0. This means that S'1 is an
exceptional curve of the first kind with (S'l Rl) = 0. This contradicts our choice
of V.
Thus the assumption (D- Sl) = 0 leads to a contradiction in every case. Then
(D- SL) > 0. But then D+ S1 is a connected curve, HY (v, O[K+ D+ 51]) =0,
HO(Y, OLK+ D+ SD#0, (D+S)-R)=(K+RD-R)+(5;R)>2+1=3
and the application of Lemma 2 to the systems |Y| = IR, and |L| =
K+ R, + D+ 5| shows that K+ Ry + D+ 5§yl yields a birational imbedding of

V. But then, since

K +R,+D +8,1C |2K + 2R, + S| =[2K + K + S;| S 3K,

|3K| also yields a birational imbedding of V. We finally obtain that for a regular
surface of basic type with Pg= 3 possessing the property that |3K| does not
yield a birational imbedding, the unfixed part of the canonical system cannot be
composed of a pencil.

We will further assume that V is a minimal model. We will show that IKl
does not have a fixed part. Let us assume the coatrary, i.e. that S#0, and we
will show that one can find in S an irreducible component 51 for which (E-Sl) >0.

If this were not so, we would have that (K S)=0. Let S be the carrier of S.
From ([—(_§) =0 it follows that S is a fundamental curve of the system K. As in

the proof of formula (19a) it is possible to establish here that (52) <0 and that
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for any irreducible component §; of the divisor S, (S ) < 0. Since (52) <0, one
can find in S an irreducible component S such that (S- S) < 0. From (K SH=0

we obtain
K, S)= 10, (K + S)S)<0, (K-S)< 0, (SH< 0.

Combining the inequalities (K- S) <0 and (SZ) < 0 with the inequality
((K+ 5;)+§;) > = 2, we obtain
(K-8)=—1,89=—1, LEDR Ly,

i.e. §; is an exceptional curve of the first kind on V. This contradicts the mini-
mality of V.

Thus, (Z S) > 0, and let S be an irreducible component in S such that
(K- Sl) >0. Let V' be the surface onto which IK| maps ¥, d be the degree of
the mapping f: V — V' gnen by IK[ and ‘m be the degree of V' in the projective
imbedding corresponding to the mapping f It is easy to see that (K?) >d-m If
it were true that d-m =1, then d=1 and m = 1, and V would bé a rational sur-
face. Consequently, d-m > 2 and (K2) > 2. Since I-KI is not composed of a pen-
cil, by the theorem of Bertini it is an irreducible system. It follows from (K S )>0
that there exists in |K + § 1| a connected curve without multiple components and

thus
H'(V,0[K - K+ S,)) =0.

Noting that HO(V OlK + K+S ]) #0 and (K + 5 )X’) = (K/Z) + (SI-R) >
2+ 1 =3, and applying Lemma 2 to the systems |M| = |K| and |L|=
IK + K+K+$§ 1 we obtain that 1K+ K+K+ Sy yields a birational imbedding of
V. Since |[K+ K+ K+ Sl' C {3K|, it follows that |3K]| also gives a birational im-
bedding of V. _ v

The assumption S #£.0 led us to a contradiction, so that the system |K| does
not have a fixed part. If it were true that (K?) > 3, then by applying Lemma 2 to
the systems |M| = |K| and |L| = |K + K + K|, we would obtain that |3K| yields a
birational 1mbeddmg of V.

Consequently (K?) < 2 and the argument above with f: V— V' now shows
that (K2) = 2. Let us assume that |K| has base points. We then apply enough

c-processes on V so that the proper image of the system , a system %K'|, does
not have base points. Then the mapping f is regular, and (K'?) =m-d. Butitis
clear that (K'?) < 2, and we arrive at a contradiction with d-m > 2. Thus |K| is
an irreducible linear system without a fixed part and without base points and such

that (K?) = 2.

It follows from Bertini’s theorem that a generic curve of the system [K| is
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nonsingular. From (K2)=d.m=2 and d> 1, we obtain d =2, m=1, i.e. |K|
effects a regular mapping of degree two of the surface V onto a projective plane
P2. The images of the curves of the system |K| under this mapping are lines of
the plane P2. There exists on P2 a set A, consisting of a finite number of points
such that for each point P € P2_ 4, f"UP) consists of a finite number ofpoints
(one or two): A branch curve of the mapping f is a curve Cc P2_ such that for any
point P € p2-(CYA, f—l(P) consists of exactly two points, and for a point
Prec-(CNnA, f (P} coasists of one point. Let | be a line on P2 such thar
Ind= #, | is not a component of C, ! does not pass through singu%ar points of
C and is not tangent to it anywhere, and f~1() is a nonsingular elefient Klbof the
system |K|. For any point Pel-INnC f-l(P/) consists of two points, while
for any point P'eincC, f_l(P') consists of one point. We obtain that flKl:

K, —1 is aregular mapping of the curve K, onto the line I, that has a degree of

two and a set of branch points that coincide with the set cnl

Since ”Kl is a covering of second degree, all the branch points have an
order equal to one. From (K2) = 2 it follows that the geometric genus of the

curve K !

K, (K, + K))
p(Kz)=(‘ 5 +1=3.

For the Fuler characteristic of the curve Kl we have 2p (Kl) -2=2:(-2+A,

where A is the number of branch points of the mapping f\Kl. From this we have
A=2p(K1)-——2—2-(—-2)=2-3—2+4=8.

Since | does not pass through singular points of C and is nowhere tangent to it,
C:l =8, i.e. C isa curve of eighth degree on P2. It follows from Theorem 3
(this is also easily proved directly) that for a sufficiently large n the system an\
yields a birational imbedding of V. It easily follows from this that there exists a
function z on V such that a pole of z is concentrated on K, and z is a primi-
tive element of the field C(¥) over C(x,y), where (x, y) are affine coordinates
on S2=P2-1

Let W' be an affine variety with a generic point (x, ¥, z). Since x, y, and z
are regular functions on V=V - Kl’ there exists a regular mapping g’: V' W
For any point (c 1 €2 03) € ¥’ an extension of the specialization
(x —c¢ Y —¢y 2= 03) into the field C(V) can have as a center only a poiat
of V', for at any point of Kl one of the functions 1/x or 1/y is regular and equal
to zero. It follows from this that g’ is a mapping of V' onto all of W'. The func-
tion z can have only a finite specialization over each point x = ¢, ¥y = ¢ (a

pole of z is located on Kl)’ and therefore z must satisfy the following equation

over C(x, y):
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2Z2+Pxyz+ (x4 =0,
where P (x, ¥) and 2(x, y) are polynomials. Replacing z by z + P (x,y)/2, it is

possible to assume that z satisfies the equation
=Gz, y)
where G(x, ¥) is a polynomial.
Let G(x, y) = H;”;I[Gj (x, )" be a decomposition of G (x, ¥) into irreduci-
ble factors, n. = 21:1- t€;, where ¢ is zero or one depending on the evenness or

]
oddness of n]-. We consider the function

z
zl=_k'

i i
[H Gj(x’ !/)]
=1
z satisfies the equation

z = T116; (x 91", B1)
j=1

Let W be the variety in the space §3= 53(x, y, z) given by this equation.
From the form of equation (31) it follows that z 1 €an have only a finite special-
ization over any point x = ¢, y = ¢, of S2. This means that zy is aregular
function on V', a pole of which is concentrated on K,. Moreover, it is clear that
z, is a primitive element of the field C(V) over Clx, y).

As above for g', we find that there exists a fegular birational mapping g" of
V' onto W". If we denote by e the projection of B onto $%= S2(x, y), then
f'=eog", where f' is the restriction of f on V'.

For any point P = (¢ 1 cz) € §? satisfying the condition Il [G (e €2 NT £ 0,
e 1(P) consists of two points, and thus [’ “I(P) also conststs of at least two
points, i.e. P € (C - (4 C)). On the other hand, if P € (C - (4N C)), then [’
is locally biregular at P, and thus e must also be locally biregular over P, i.e.

P does not belong to the curve C, with the equation H [G (x, y)] T-0. We

obtain that C = C , and since the polynomxal H -IG (x, )) does not have multi-
ple factors, it must be a polynomlal of eighth degree We denote it by F {x, ).
By the choice of [ we obtain that the curve F (x, y) = 0 coinciding vuth the
curve C, is nowhere tangent to the infinite line and does not have singular points
on that line. It is thus proved that V is birationally equivalent to a variety W"
with equation z2= Fs(x, y), where Fs(x, y) does not have multiple factors and
determines a curve on the plane that is nowhere tangent to the infinite line and
does not have singular points on it. To complete the proof of Theorem 6 it remains

to show that in order that the surface
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~s ~
The subsets in UO and U determined respectively by the conditions 7, £0

and 7 #0 (we denote them by LO and U )) must be identical according to the rule:

if (Q 1('50 ’ ‘f]_)) is a point of UO(Q € AO)’ then the point
- 77 E' 2 &1
(Q (. 8))=U,, where E—,l'——— ve g,
0
is put in correspondence with it, where Vo designates the value of v= T]l/'qo at

the point (. We denote by U the Var1ery which is obtained from U as a result of
a o-process along the curve u = 0, y;=0, by X the proper unagdtof X on U‘l,

and by S, the surface which is joined into U. We mtroduce four opien sets 49,

AOZ’ 4 11 4 12°
by the conditions 50 # 0 and flzé 0, and All and 417 are the subsets of U
determined respectively by the conditions fo 40 and cf £ 0. We set

Here 401 and AOZ are the subsets of C determined respecuvely

2, 2=i, ?=sl, 0o, U=t
Then the local coordinates are (u, v, tl) in AOl’ {y LY t'l) in AOZ’ (u, v', s 1)
in 411, and (yz, v, S') in 412
We will find the local equation of Xl in .401. For this we set y | =ut in
(35):
8 — 2@ (u, 1,0) = u® — BED (u, 1, v) = 0.

Cancelling 12, we obtain the needed equation:

ut — 6P (u, 1,0) = 0. (37)

We now find the intersection —flﬂ 451N 5, S.. For this we set u =0 in (37), ob-
taining t2¢)(0 1, v) = 0. From this we have Dt = 0; chis is the curve u =0,
“=0; 2) ®0, 1, v)=0. Let v, g be the roots of the polynomial ®{0, 1, v)

_(all of them are distinct). We obtain exghr curves S . determined by the condi-
tions u=0, v=1,, k=1,---, 8. Singular points of Xlﬂ 401 can lie only on
X 1N AOl NS, Itis unmedxately evident that each point of the curve u =0,

=0 is smgular for X1 Now let P be a point on the curve Slk’ t,£0 at P.
Smce v, is a nonmultiple root of ®(0, 1, v) (@(0, 1, v) does not have multiple
roots), 9®(0, 1, vk)/ab # 0. Moreover,

S — B0 1,9) = —£2

(u, 1, v).

|

For u=0, t;=0, v=u, this expression is not equal to zero. Consequently,

is a nonsingular point on Xl'

We now consider E1 in ;-’102. Setting u = L'lyl in (35), we obtain

R e i Lo

it
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6 — yiq) (uv ]) U) = tlsyg - yiq) (tlyly 11 U) = O'
Cancelling y% , we obtain the equation of Yl in A02

£t — @ (1, 0) = 0. (38)

We obtain the intersection Xlﬂ Sl N AOZ by setting y; =0 in (38), i.e.
®(0, 1,v)=0
We obtain the eight curves Slk already found earlijer.

If there are also singularities of 71 in ilﬂ Ao, they can only be at the
points y =0, t'1= 0, v=1v;. But

’ aq) ,
du (tlyl — 0 (t]yb 1 D)) = - v (tlylv 1 U)'

v_}For ll =0, y,=0, v=1v,, this expressxon is not equal to zero. Consequently
there are no smgular pomts of Xl in Ag,N X, X, '

Consideration of the sets 4, and 4 12 does not add anything new, and we

obtain that Xl has a curve of singularities ll whose equation in AOl is u=0,
t;=0,andin 4, isu'_Os =0.

We now perform a 0-process on U 1 along the curve l1 For this we consider
the two products "401 x Pl and 4 11 X Pl (the homogeneous: coordinates in pl

are (go, 4 1) or (§6 s C'l)), and then in the first product the subset VO determined

. by the equation u{ 1= Ilgoi, and in the second product the.subset Vl determined

by the equation
ulﬁ; = 51§’0~
The subsets in ¥ and V| determined respectively by the conditions v # 0

and v’ #0 (we denote them by VO and Il) must be identified according to the
rule: if (Q(¢ v <o )} is a point of V| (QE 401) then the point O(é’l, e )) € Vl

" is putin correspondence with it, where

Let ﬁz be the variety obtained from —01 as a result of the o-process, let XZ

be the proper image of Xl on -[72, and let the surface joined in to U be S,.

o11° 012> 4111 4112+ Here 4gpy
and A012 are the subsets in V determined respectively by the conditions

4—0 £ 0 and él #0, and A111 and A112 are the subsets in Vl determined re-
spectively by the conditions ¢’ £ 0, é'l,:' 0. We set £,/{y=1, Co/¢1=t ", The
local coordinates are {(u, v, t) in Ag1, and (¢4, v, t') in Ay1,- Ve now find the

We consider four open sets in Ul: A
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equation of gz in Ag;,- Forthis we set £y=u CI/CO =ut in (37): uf -
tf(b(u, 1, v} = wi-u tsz(u 1, ¥) =0. Cancellmg w2, we obtain the desired

equation:

The singular points of -)_{2 can be only on _Xzﬂ 52. We now find X_zﬂ Szﬂ A011‘
We set u =0 in (39), obtaining

20 (0, 1,v) = 0.
ﬁi
From this we have 1) ¢ = 0, i.e. the curve u =0, t = 0; 2) ®(0, 1, v) 240 gives us

eight curves S, determined by the conditions =0, v=v;,, k=1,---,8.

From the absence of multiple roots for ®(0, I, v) it follows that the singular
points of XZ satisfy the curve u =0, ¢t = 0, and that none of them are outside it.

We now perform a 0-process on —(_/_2 along this curve.

Let U be what is obtained from UZ as a result of this o-process, let X3
be the proper image of XZ on U3,let S be the variety joined in, and let AOll
be what is obtained from A011 under the o-process. Then it is possible to cover
AOll with two open sets 4,,,, and A1z Vhere the local coordinates are s,
t, v in 40111 and s', u, v in 4011,, here s' = 1/s, u = st. The equations for

X3 in Agyq; and Ay, respectively have the form
— @ (st,1,v) =0,

1 —s2® (u,1,0) =0.
It is easy to verify that —)_{_3 is a nonsingular variety.

We now turn to the consideration of regular differentials of different degree

on .X.
Any regular differential of mth degree on X - ¢(m) must have the form

dy d m
(P(m) = gb (ylv yz, 93) yl/\ L , (40)
Oy-, (y3 D (Y3, y1, y2))

where ?()‘1, ¥ y3) is a polynomial of y,,¥,, and ¥4 of degree not greater than
m (8 ~ 4) = 4m that satisfies some additional conditions. In order to discover
these conditions, we look at the differential d)(m) on X3 and require its regularity
there. It is easy to see that a question about the regularity of ¢>(’") on ?3 arises
only in the preimage of the point Po(y1 =y,=¥3= 0) under the mapping
X} - XN U. This preimage consists of the curve s?-®(0, 1, v)=0, t=0 on
5(_3 and of the curves §2k’_§1k’ =1,---, 8, where §ik denotes the proper

1

image of the curve Sik on

P D 1,0 =0. (39)

|
3
i
g
3
i
*

1

;

s B N A

b e iy 2o T

s aib
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consider only A0111' We note that

It is easy to verify that it is sufficient to
u’t = s,

Yy, = ut, = u-ut =
o= gt =t = T,

y =%y1= uy, = st

Th
us gy = &
Y, = vS°t3 (41).

s = S
Hence
dy, = 2st*ds + 3% dt;
dy, = 3s*t* ds + 4s*dt;
dy]_ /\dy;; = — S4t6 dS/\dt;
2P, vsth) = — (SFY L (o, 1, ©)

9 0D
GO ) = — 5 9D (o,

= sl“lf"1 9D S (st 1, ),

dys N dys . ds A\ dt .
D '
1008 5 sty 1, v)

d (]
éﬁ(ys_ D (ys, y1, _1/2))

We consider the eight points P, , k=1,---, 8 on —X3 with the coordinates.
t=0, s=0, v=1v,. Itis easy to verify that at each point P'k the functions s

and t are local coordinates on 3-&_3 this follows from the fact that
o0
—5'5 (Oy ls Uk) =F 0.

4 —
P (s> — D (st, 1, v));::: =

v=up

Let m = 1. We represent P(y, 3"2; ¥ 3) in the form
' 4 4

P (ylv Ya, E/a) = 2 2 BI, (.’/11 y2) ya’

i=0 r=0

where B (1> 5,) is a homogeneous polynomial of y, and y, of degree r.
Expressmg Y1, ¥ and y 3 in terms of v, s, and (, we obtain in a nelghbor-

hood of the point P, an expression of the form
12 : 3ky—]
P(yh!/-z,ya): 2 Skl E t ? 'B]ﬂ(l’v)l)
i

— k
k=0 max (0, & —8)<j < -31 .

1 .o _ . -
) Here it is assumed that Bj,(k 1-3)/2% 0 when k 1 3j is an uneven number
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and for the differential (40) the expression

3k,

3 sk N t? B gy (0

- .. kl 2
max (0, k8IS o

(P(l) = 3 ds N\ dt.

o
510418 30 (st, 1, v)

Since at the point P, 9®(st, 1, v)/dv =90(0, 1, vk)/av # 0, the regularity of
(;5(1) requires the regularity at Pk of the function v
- ¢
12 3R—] %
Ssa t 2 Bi ti-3j (1, 0)
B=0 max, k1—8)</<%' e

7 (Sv t) = 51015 .

Thus, let (s, ¢) be a regular function at P, k=1,-
- We will show by induction on k| that for 0 <k <10, B, (k- 31)/2(1 v) =
for j such that max(0, k- 8) <j <ky/3.

1) Let /c1= 0. It is necessary to show that BO 0(1, v) = 0. From the regu-
larity of H(s, £) at Pk it follows that at P the numerator of the expression for
H(s, ¢} is equal to zero. Butfor s =0, t=0, v=1;, this numerator is equal to
BO,O(I’ vk), from which we have 30,0(1, vk) =0, and, since BO,O(I’ v) is a poly-
nomial of zero degree, BO 0(1, v) = 0.

2) Let us assume that 0 < kll < 10 and that our assertion has been proved for

kl < k'l. But this means that

12 3k,—§
k 2
2 s 2 t B k,-3f (11 U)
, ok i, =L
kemk, max (0, k-BS/< o 2
gf (Sy t) = SlUtlS
_ 8k
12 kr-k’ —; !
2 ’ s 2 t B[ ki3] (1r U)
ko=t max (0, k-9)</S 3 B
10—, !
s 1t1'

We consider the numerator of this expression on the curve s =0 ina neighborhood
of the point P, on X From the equation for X . s2-®(st, 1, v) = 0, it follows
for s =0 that ®(0, 1, U) =0, also in a nelghborhood of the point Pk on the curve

s=0, v=1,. Hence for s = 0 the numerator takes the form
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3kl —f

2
> A BN () (42)
: & b=

max (o,kl-a)sigf

First let kll < 10. Then (42) must be zero on the curve s = 0, and thus all the
B]. (k' _3].)/2(1, v,) with max (0, k' -8) gjsk' /3 are zero. Since r < 4, B]. . is
a polynomial of degree not greater than four, and therefore since B (1, vk) =0
forall k=1, , 8 it follows that B (1 v) =

Now let kl— 10. Then (42) can be divided by tls. For j we have
10-8<j<y, ie 2< /<3

If j=3, then (_k'l _ 3']_)/:2 = 1/2 is not an integer and Bj,(k 1-3)/2= 0 by deﬁni-
tion. »

We obtain in (42) the single member
14
12 Bz’z(l, Uk).
From this we have B, ,(1, v,)=0 and B, 2(1, v) = 0. We have thus proved the
assertion made above. »
We thus have at our disposal only k = 11 and k = 12. For /t = 11 we have
. for j that 3 <j<11/3 i.e. j=3 and (k —3]) 2=1; for k1—12 onehas j=4
and (k - 3/)/2 = 0. We obtain that the regularity of ¢(1) on X3 requires that
only 33 1(71’ yz) and B4 0() 1’ yz) need be different from zero among the
s ,()’ 1Y 2)

For P (yl, Y as y3) we obtain the following necessary condition:
P(yy, 42, ys) = Bsa (4. 1) Y3+ Bao (Y1, 42) ¥t = yilawy + aoy, + asys)-

A direct computation shows that the expression
_ ¥3"Qp (41, y2, Us) (dyn N\ dys)™

(5 4 —® om0

(m)

(43)

(Q {y 1Yo 3) is a homogeneous polynomial of degree m of y,, )'2’ and y3)
is a regular double differential of degree m on X

In order for Pg = 3 to be true, we must require that X have only singularities
for X # 0 which do not impose new restrictions on

o — y3Q1 (41, v2, ys)

9 . .
a—_l/z (y3_ D (y31 Y1, y2))
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We turn to the equation of X in §3=53(x, y, 2):
22 Fglx, y)=0.
We call a surface X for which the equation in S3(x, y, z) has the form
22— Flx, y) =0,

a double plane of canonical form, and if moreover F{x, y) does not have multiple

factors, a double plane of normal form.

Let Y be a double plane of normal form for which the point Qo(x =y=2z=0)
is a singular point. Singular points can lie only on the curve CY h%’ing the equa-
tion F(x, y) = 0, and must be singular points of this curve. Let O, be a singular
point of multiplicity s on the curve Cy. We perform a o-process at the point ¢,
of the space S3(x, y, z). We denote the direct image of ¥ by Y, the direct image
of the plane S%(x, y) (z=0) by $2, and what is obtained from S3 by S3. Then
it is possible to cover 53 with three open sets B T B,, and BS’ where it is pos-
sible to introduce local coordinates «x, 4y plin Bl’ ¥, Uy, vy in 32, and z, Uy,

vy in B3 such that

Y = WX, Z = UX;

Usl;
X = ugz, Y = UsZ.

X = Uy, 2

The equation of Y in B 1 has the form
vt — x57F) (x, uy) =0, (44)

where Fl(x, ”1) = 0 is the equation of the direct image of the curve Cy in

:S—Zﬂ Bl (x, u, are local coordinates in §2) We see from (44) that Y N 31 is a
double plane of canonical form in B .

We consider the differential
dx A\ dz
F
5 (& —F ()

We have dz = xdv1 +v ldx, dx N dz = xdx N\ dv 1’

o] OF (x, dF1(x,
2@ —Fig= -8 patnln)
_ _a 0F (x, m)\ __ d 2 o
= x(—— x5 T)_ x‘—ﬂ(vl—xS 2F, (x, uy)),
dx A dz . dx A do,

! _ , (45)
5 (= F(x ) e =R, )

The consideration of Y in BZ does not add anything new. As for Yﬂ 35,
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there occurs there only one point of the preimage of QO under the o-process that
is not contained in (¥ NB 1) U Y N BZ)’ the point u3=v3=0. It is easy to see,
however, that this point does not lie on Y. Therefore we will not consider Yﬂ B3.
Equation (45) shows that if during the resolution of the point 00 by consecutive
g-processes we obtain only double planes of normal form, then @ does not impose
any new restrictions on the double differential. If, bowever, at some step we do
not obtain a double surface of normal form, this means that the surface acquires a
curve of singularities, which a fortiori lays some restriction on the double differ-
ential. '

It is clear from equation (44) that in order for Y to be a double plane of nor-
mal form, it is necessary and sufficient that s <3, j.e. s=2o0or s=3. If s = 2,
then (44) takes the form

Ui_Fl (x, uy) = 0.

Since a o-process does not raise the multiplicity of singular points, we obtain
that the curve Fl(x, u))=0on S Zn Bl can have in the preimage of the point
QO singularities of at most second order, i.e. we have again arrived at the con-
sideration of a double plane of normal form with a double point oa a branch- curve.
This shows that the last 0 -processes repeat this situation and that we can never
meet a double plane that is not of normal form, i.e. for s = 2 the point Qp does

not impose any restrictions on the double differential.
Now let s = 3. Equation (44) takes the form
v} — xF, (x, u;) = 0.

If the curve Fl(x, u 1) = 0 has singularities of third order among the preimages of
the point 00, then, since in these preimages x = 0, v%— xF(x, u 1) =0 will be a
double plane with a singular point whose multiplicity on the branch curve is equal
to four. And this, as we showed above, implies that during the preceding ¢ -proc-

ess a double plane of normal form was not obtained.

Now let any preimage Q. of the point Qg on the curve F l(x, u 1) =0 have
a multiplicity not exceeding two. If this multiplicity is equal to one, we obtain
for Y NnB 1 @ singular point whose multiplicity on the branch curve is equal to two.
As was mentioned above, restrictions on the double differential cannot arise from
such singularities.

Now let (; be a point of multiplicity two on Filx, u)=0. Let Flx, y) =
f3 (x, y) + f4(x, y) + +++ be the representation of F(x, y) in the form of a sum of
homogeneous polynomials of third, fourth, fifth, etc. degrees. Then

Fy(xu) = Ff3 (1, uy) + xfy (1, wy) +7x2f5 A, u) + ...

Let the point OOi have the coordinates x =0, u = c;. We have at this point
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Fy=Ff0c)=0;
aF
5 =1, c) =0;

ors _
oy

Tt c) = 0;
and since f3(l, ”1) is a polynomial of not greater than third degr‘ee
c;)’

(1 :) (1 )____
(1 c) (4y — Ct) + x*f; (1 &) + H, 4

a"fa aafa

Filx, uy) =

0f4

B

where H contaias the members of degree greater than two with respect to x and
ny=c;.

Since the multiplicity of QOi is equal to two, at least one of the quantities
a2 a
TaLa) S(a) f (e

must be different from zero.
We perform a 0-process at the point QO;‘ on S3. Here it is sufficient to con-
. ! . . 1
sider the space Bl with the coordinates (u, u’, v'), where u = RN u' = x/u,

v' = vl/u, and in it the surface given by the equation

re 1 o2 d
vt — uu [2_6—513(’ c) + f4(1 c,)u

tosg @ uthau '2+H1] =0, (46)

where Hl consists of the members of degree greater than one with respect to u
! . o . - . . .
and u’, and necessarily containing u. We are interested in the singular points of
- A . - !
the surface (46) for u = 0. These singular points can only be for values of u’ sat-

isfying the equation

(1 afa(l ) + (1 cyu +fi (1, c)u ) = 0. (47)

1af,-,

1 '
T 5. (I,CL)—L (1 ) u' + (l ayu+f(l,c)u?+H, =0 (48)
is the equation of the direct image of the curve Fl(x, ul) =0 after the o-process,
and the o-process does not raise multiplicities, the roots of equation (47) can
give only singular points of second order on the curve (48). To a nonzero root of

equation (47) there will correspond a singular point on the surface (46) whose
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multiplicity on the branch curve does not exceed three. It is easy to verify that a
cubic singularity that arises has a lowered multiplicity after a 0-process.

We now consider the root &' = 0. If 62f3(1, ci)/c?ui £ 0, then the curve (48)
does not pass through the point u = u' =0 and on the surface (46) there corre-

sponds to this root a_singularity whose multiplicity on the branch curve is two.
Now let 82f3(1, c;)/du i = 0. Since f3(1, ;)= 8]'3(1, ¢;)/0u | =0, it must be

true that 53f3(1, ci)/aui # 0. But this shows that the point u = u' =0 is simple
on the curve (48), and thus the surface has a singular point at it whose multiplicity
on a branch curve is equal to three. It is easy to verify, however, that this cubic
singularity is such that after a 0-process on the curve
10 '
uu (0& (1, e)u' +& auf; (1, c)u+fs (1, c,)u2—{—H1)—~

it has a smaller multiplicity. This proves that if a double plane of normal form Y
-Flx,y)=0

is such that a singular point () on it is either a quadratic singularity on a branch
curve, or a cubic singularity that decreases in multiplicity after a 0-process, then
after a o-process on Y at the point OO we again meet a double plane of normal
form on which the singular points corresponding to @, considered as singulari-
ties of a branch curve, will again possess the same property.

This shows that a necessary and sufficient condition for a singularity on X
for x, # 0 not to impose new restrictions on the differential is the satisfaction of
condition 3) of Theorem 6. 7

Consequently, this condition 3) is necessary and sufficient in order that
pg(X) = 3. This finishes the proof of the necessity in Theorem 6.

We can now assume that condition 3) is satisfied for X and that consequently

all the double differentials of first order on X have the form

y3 (@ + aaye + asys) dys N\ dys _ (ax —{- asy - as) dx /\dz

(p(l) =
3gs W5 @ (s, 41, y2)) ay (22 — F(x. )

Let X, be a nonsingular model of X which coincides with —7;'3 over UNAX. A
simple anal) sis then shows that the canonical system |K| on Xl consists of a
nonfixed part 'Kl without base points, a generic element of which is the preimage
of the line a x + a,y + ay on §2=52(x, y) under the projection of X ; onto the
plane 52(x, y), and of a fixed part

8 8
S=3 Egok‘l‘g E§1k+ Z‘gglzv

k=1 k=1 k=1

A




CHAPTER VII

SURFACES WITH A PENCIL OF ELLIPTIC CURVES

This chapter studies surfaces with a pencil of elliptic curves. A description
is given of the connection between this class of surfaces with other.classes of
algebraic surfaces (surfaces with (K?2) = 0, surfaces with « = 1). Fmally, there
is presented a classification of surfaces with a pencil of elliptic curves, or, more
- precisely, a classification of the pencils themselves. This last question was con-
sidered in the works {25,42,57,40]. we present the results of these papers with-

out proofs, proving only those assertions which are not contained in them.

The base field £ is assumed to be the field of complex numbers. The major-
ity of the arguments remain valid when £ is an algebraically closed field of char-
acteristic 0 (or with even weaker restrictions on the characteristic). We shall

note the places where the assumption & = C is essential in an argument.

§ 1. Basic concepts

Definition. 4 surface with a pencil of elliptic curves is a triple (V, B, =)
consisting of a nonsingular surface V, a nonsingular curve B, and a regular map-
ping w: V — B such that a generic fiber of the fibering w is a nonsingular curve
of genus 1.

Two surfaces with a pencil of elliptic curves (V, B, #) and ('V', B, ') are
said to be biregularly (respectively, birationally) equivalent if there exists a bi-
regular (respectively, birational) mapping f: V — V' such that n' f = 7.

A surface with an elliptic pencil (¥, B, #) is said to be a minimal model, if
the fibers of the fibering # do not contain exceptional curves of the first kind, i.e.
(by the theorem of Castelnuovo, Chapter I1, $4) it does not contain nonsingular
rational curves C with (C2) = 1.

Every surface with an elliptic pencil is birationally equivalent to a minimal
model — a tracsformation contracting an exceptional curve of the first kind con-
tained in a fiber into a point clearly commutes with a projection.

Remark. A surface (V, B, #) with a peacil of elliptic curves can be a mini-
mal model in the sense of the definition of this section, while at the same time
the surface V is not a minimal model in the sense of Chapter II. As an example

we consider two plane nonsingular cubic curves G = 0 and H = 0 that have nine
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distinct points of intersection P AR P9. We denote by V the surface obtained
by an application of a ¢ -process to the points P ,--., P9 of the plane. The
total preimages on V cof the plane curves AG + uH = 0 determine on V a pencil
of elliptic curves. The surface obtained is a minimal model in the sense of the
definition of this section. This can be easily verified directly if one assumes that
no three of the Pi lie on the same line, and that no six of them lie on the same
second order curve; one may also deduce it from the description of the possible
types of degenerate fibers given in §6. The surface, hbwever, is of course not a
minimal model in the sense of the definition of Chapter I

The concept of a minimal model of a surface with an elliptic pencil is analo-
gous to the concept of a relatively minimal model of an arbitrary surface. It also
plays the role of an absolute minimal model, however, as the following result shows.

Theorem 1. If (V, B, @) and (V', B, #n') are two surfaces with a pencil of
elliptic curves, f: V' — V is a birational mapping of V' onto V, and if V is a
minimal model, then the mapping f is regular.

Proof. Let F’,3 and F-,'B be generic fibers of the fiberings 7 and 7'. We de-
note by € and &' generic points of the curves F,B and F[‘?’ and by Ogs0p's o,,
and 0§', their local rings on the curves FB and F,B' and on the surfaces V and

V' respectively. It is clear that the mapping f induces a biregular isomorphism

between FB and F/g. Thus
fE) o0z f0) E0: ® k& B):

It follows easily from this that exceptional curves of the mappings [ and f~! are
contained in fibers of the fiberings 7 and 7'. If f were not regular, then there
would exist on ¥V exceptional curveé of the first or second kind. Exceptional
curves of the first kind cannot exist on V by definition of a minimal model. We
shall show that there also do not exist any- exceptional curves of the second kind.

For this we note that if there exists an exceptional curve of the second kind,
then there also exists an irreducible exceptional curve of the second kind. The
proof of this fact given in Chapter II (Theorem 1, $5) remains valid in the present
case (we cannot directly apply this theorem because of the different sense of the
term ‘‘minimal model”). '

If there were on V an irreducible exceptional curve of the second kind C con-

tained in a fiber 'FO’ then, by Theorem 1, Chapter II, §1, we would have
(€?)>o.
Let
Fo = nC + X\ nCs; n> 0.
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It is clear that (FO' C) = 0, since in the calculation of (F,.C) we can replace
Fy by any other fiber. Therefore
1
(€ = — 5 2 (C:C) <0.
Consequently it must be true that (€?) = 0, which is possible only if all the
(Ci' C) = 0. This means that C coincides with a connected component of F,
which, because of the connectedness of FO’ is possible only for F; = nC. But
then we have p,(C) = 1, at the same time that p_(C) = 0 (by Theorem 1 of $1,

Chapter II). The theorem is proved. t

Corollary. Two birationally equivalent minimal models are biregularly equiva-
lent. A birational eutomorphism of a minimal model is biregular.

We consider an example of the application of Theorem 1. Let (V, B, 7) ke
the surface with a pencil described in the remark. It is clear that B =Pl (a point
on B is aratio (A: ). The lines L;=0(P), i=1,---,9 are mapped by the
projection 7 biregularly onto B. Thus it is possible to define biregular mappings
s;: B — L, such that 7s; = 1. Taking the point Fﬁ . L1 for 0, we can define on
the generic fiber F,B the structure of a one-dimensional abelian variety. The map-

pings ¢&;, i =1,---, 9, defined by
’ P: (V) = v+ s 7 (v)

are biregular transformations, if v € F/S are contractions onto the points Si(B)'
They are thus birational, and by the corollary are also biregular automorphisms of
V. The group formed by these automorphisms is, as it is easy to show, the free
abelian group with eight generators ¢,,..., ¢)9v. We thus obtain an example of a
surface that has an infinite group of automorphisms, but does not have, as is easily
verified, an algebraic group (or, for £ = C,-a Lie group) of automorphisms.

On the other hand, there exist on ¥ curves with negative squares (for exam-
ple, Li)' Using the automorphisms constructed, we can obtain an infinite number
of such curves. Thus, we obtain an example of a surface containing an infinite

number of curves with a negativé square (and even exceptional curves of the first
kind).

§2. The structure of fibers

Lemma 1. Let V be a surface, m its regular mapping onto a curve B, F, one
of the fibers of the fibering w, and Fo=2n,C;, n,>0, where the C; are irre-
ducible curves. If D = zmiCL., then (D2) <0.

Proof. Assume (D?) > 0. It then follows from the Riemann-Roch theorem that
for any E and for a sufficiently large n, [(nD - E) > 0. We choose for E a hyper-

plane section of the surface V and set
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nD—E’\,Dl > 0.
Then, if F is any fiber of the fibering 7,
n(D-F)=(E-F)+(Dl-F). (1)

Since all the components of the cycle D are contained in FO’ (D-F)=0. Og the
other hand, (E.F)> 0 and (D - F) > 0, since we can choose an irreducible fiber
for F. Thus we have a contradlcuon and the lemma is proved.

- The assertion of Lemma 1 can be expressed differently. For this we consider
the space X (over the field of rational numbers) a basis of which is formed by the
irreducible components Cl’ ceny, Ck of the fiber F;. The index of intersection

(C-D) determines in X a scalar product and the quadratic form
¥ (0 =(C2). : - (2)

The lemma asserts that this form is not positive.

Theorem 2 (cf Zariski [22]). If, in the notation of Lemma 1, the fiber F,
connected and (D?) = 0, then D= rFO, where r is a rational number.

Since (FO . Ci)~= 0 for all the Cl’ CEIN Ck’ the guadratlc form ¢ defined by
(2) has rank <k - 1. The assertion of Theorem 2 is equivalent to-saying that this
rank is equal to % - 1. Assume that the rank of ¢ is equal to [ <k - 2. In the

space X we denote by Y the subspace consisting of all D for which (D.C) =0
for all C € X. It is clear that in the factor space X/Y the form Y is negative

" definite. We can choose Cl’ e, Cl such that they form a.basis in X/Y¥, and then

(x1C1+---+xlCl)2<0 (3
for all x,,--, x; not simultaneously equal to zero.
We set o
C,;=L+D,
where D €Y and L is a linear combination of Cl’ ey vCl. Let
L=1L 1- Ly

where L 1>0, L,>0,and L and L 5 do not have common components. Then,
on the one hand, (Cl+1 L 1) > 0, since C;,; and L 1 do not have common compo-

nents, and on the other hand,
2
(Cpyy-Lp=WLD =L, -Ly<o.
Hence (L i) =0 and (Ll -Lz) = 0. But from (3) it follows that L 1=
C+L,€7,

and, in particular, ((Cl+1 +L,).C))=0. This means that the cycles C; that are
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components of Cl+1 + L » do not intersect with other cycles, and this, in turn,
means that two sets of cycles constitute two connected components of the fiber

FO’ which contradicts the assumption.

§3. The canonical class
Lemma 2. On a surface with a pencil of elliptic curves, the canonical class
contdins a divisor consisting of components of fibers.

Proof. Let Fﬁ be a generic fiber of the fibering #: ¥ — B. Since the canoni-
cal class of the curve F ;3 is equal to 0, K-Fy~0.1f D€K and 9 F = (f),

B
then D =D - (f) €K and (D. F )=0. As we saw in Chapter IV §7 it follows
from this that D consists of components of fibers. ?

Remark. It follows from the proof of the lemma that any effective divisor con-

sists of components of fibers.

‘Theotem 3. On a minimal model of a surface with a pencil of elliptic curves
(K?)=o. |

We have to show the impossibility of a) (K2) >0, b) (K?)<o0.

a) It follows from the Riemann-Roch theorem that for any E and for some
n>0, 1(nK - E)>0. We take for E a hyperplane section of the surface V and
let

nK~-FE~D>0.

Since a fiber F is an elliptic-curve and (Fz) = 0. we have (K. F) =0. Thus
0=n(K-F)y=(E- F) + D-F).
But (E-F) >0, and (D. F) >0, which leads to a contradiction.

“b) According to Lemma 2, there exists in the canonical class a representa-

tive K of the form
e m
K= Z Kir
0

where the K, consist of componeats of fibers F;.
Since (KL ‘K/) =0 for L:)é j:

(K =2 (K

and it is sufficient for us to show that all the (K?) > 0.

Let (Kz) <0, and let C, be an irreducible component of the fiber F con-
tained in K . If FO— nCO, then (C } =0, and thus (K y=0. If FO contains

still other components Fy=nCy + 21"’:’ C,, then

0 = (Fy:Co) = n(CH + X n (Ci-Cy).
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Here (Ci . CO) > 0 and for at least one i, (Ci . CO) > 0; otherwise CO would be a
connected component of the fiber FO’ which contradicts its connectedness. There-
fore, (Cg) < 0. For at least one component CO of the cycle F, we have
(CO 'KO) <0. For, if (Ci -KO)Z 0 for i=0,---, k, then (Ci -Kg)=0 for all i —
otherwise for some C. it would be true that (C]- . KO) > 0, and since for all j,
(Cj +Ky) >0, then (F:Kj)> 0 at the same time as (Fg-Ky) = 0. This proves
that if for all i, (Ci 'KO) > 0, then (Ci 'KO) = 0. But then (K(z)) =0, which con-
tradicts our assumption.

We have proved the existence of an irreducible component CO of the divisor
K for which (Cy - Ky) < 0. But then the inequality already established

(Co-K) = (Co- Ko) <0, (Co) <0
shows d_)at :

| CoK)H(CD
p,(C) =R 1<,

which is possible only for p_(Cy) =0, (Cg) = - 1. This means that C is an ex-
ceptional curve of the first kind that is a component of a fiber, and this contra-
dicts the minimality of V.

Theorem 4. On a minimal model of a surface with a pencil of elliptic curves,
the canonical class contains a divisor that is a rational combination of fibers.

Proof. Let K be a divisor of the canonical class that consists of components
of fibers, K = ZKi' Since by Theorem 3 (Kiz) =0, it follows from Theorem 1 that
Ki = riFi’ where r; is some rational number. This is the assertion of the theorem.

Remark. It follows from the remaﬂ( after Lemma 2 that any effective divisor

of the canonical class is a rational combination of fibers.

_ Definition. A fiber FO is said to be multiple if
Fo = 2 n,-C,-, n,-> 1.

Corollary to Theorem 4. If the fibering n: V — B does not contain multiple
fibers, the canonical class contains a divisor that is an integral linear combina-

tion of fibers.

S4. Surfaces with an elliptic pencil and surfaces with (K?) =0

Theorem 5. Assume that the surface V is neither rational nor ruled, but is a
minimal model and for it (K2) = 0. Then either 12K = 0 or there exists an m such
that, for all sufficiently large n, the linear system |mnK| has neither fixed curves

nor base points and is composed of a pencil of elliptic curves. The property given
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uniquely determines this pencil.

Proof. We consider two cases: A) All the P <1, and B) some P >2

A) We consider separately the cases p=0 and p=1. lf p=0 and ¢=0,
then, for P2 =0, by the theorem of Castelnuovo (Chapter III, §2), the surface is
rational, and for P, = 1, by the remark at the end of §1, Chapter VIII, we have an
Enriques surface, for which 2K =0, aad thus 12K = 0. If p =0 and ¢ > I, then’
by Theorem 5 ($3, Chapter IV) V is a ruled surface. Finally, for p = 0, g=1, by
Theorems 11 and 12 ($8, Chapter IV) ¥ can be represented in the form {(Bx 0)/G,
where B is an elliptic curve, C is a curve of arbitrary genus g, and$G is the
finite group of automorphisms without fixed points of the surface B x*C. If g=0,
the surface V is ruled. If g > 1, then by the remark after Lemma 14 (Chapter IV),
Pn(V) takes values as large as desired, and we have case B). It remains to con-
sider the case when g =1, i.e., when B and C are elliptic curves.

By the theorem of Enriques (Theorem 13, Chapter IV), if V is not a ruled sur-
face, then PIZ(V) >0, i.e., 12K ~ D > 0. We shall show that D = 0. Thus, if
f: Bx C—V is a projectioq, then the canonical class K of the surface B x C
has the form f* (K). Therefore, if D >0, D #£0, then

12K = f*(12K) = (D)
and it is clear that f*(D) >0, f*(D) # 0. This, however, contradicts the fact that

B x C is an abelian variety, so K =0 and 12K = 0.

We now consider the case p =1 and thus P,= 1. Then

2 —4qL2p ALt 4 —hgtpit
12 = 12

PN=1—gt+tp=2—g=F=

Siﬁce RLLS 0, it follows from this that ¢ < 2. If ¢ =0, then by tHe Riemann-Roch
theorem
I(-K)+1(2K) > 2,

ice., 1{(~K) > 1. Since [{K)» i, it follows from this that K = 0. -

The case ¢ = 1 is impossible by Theorem 1 (Chapter VIII). Finally, for ¢ = 2,
V is an abelian variety according to Theorem 3 (Chapter VIH), and thus again
K=0.

B) Let PV2 2 for some v, i.e. (LK) > 2.

By Bertini’s theorem the system |vK| is composed of a pencil C)- If Dis
the fixed part of this system, then

vK ~ D+ ZCi, (4)

where the Ci are curves of the pencil C) and (Ci) > 0. On the other hand,
(Ci «K)>0 and (D-K) >0, for otherwise, by the lemma of Chapter II, §4, the
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surface V would be ruled or would not be a minimal model. Since (K2) = 0, it fol-
lows from (4) by the multiplication of both the parts by K that (Ci . K) = 0. Now multi-
plying both parts of (4) by Ci’ we obtain from this (and from the fact r.hat(Ciz)_>_ 0)
that (Ciz) =0 and (C; - C}-) = 0. Thus, p,(C,) = 1, and distinct curves C; do not
intersect. It follows from Bertini’s theorem that C,\ is a pencil of elliptic curves,
where, since (C)%) = 0, it does not have fundamental points. It determines a regu-
lar mapping of V onto some curve B.

It remains to prove the assertion about the fixed components of the system
InK|. By the remark after Theorem 4, the divisor D+2 €, is arational linear com-
bination of fibers. Let v’ be the common denominator of the coefficients of this
combination. We set m=v - v . Then |mK| contains an integral linear combina-

tion of fibers:

mK ~ Enini, n;> 0.

Since for a sufficiently large n the class n(Zn;b,) on the curve B does not
contain fixed components, the class mnK on V also does not contain fixed com-
ponents. v

Corollary. If a surface V is a minimal model and is not ruled, then k =1 for

it if and only if (K2)=0, 12K £0.

§5. The Jacobian fibering

In this and the following sections we shall present the results of the works
[25, 42, 40, 57] on the classification of surfaces with a pencil of elliptic curves.
We shall not give proofs of the majority of the results set forth. The reader can
find them in the works indicated. '

Let #: V — B be a fibering, whose fibers determine a pencil of elliptic
curves on the surface V. If f isa geperié point of the curve B, then the fiber
Fﬁ is a curve of genﬁs 1 defined over the field & (B). We can thus appiy to the
analysis of the surfaces V' the theory of curves of genus 1. This is the point of
view of the works [42,56,57].

It is in general impossible to introduce on the curve Fﬁ the structure of a
one-dimensional abelian variety over the field & (B); for this it is necessary that
it have a rational point over this field. The existence of a rational point on the
curve F,B over the field £(B) is equivalent to the existence of a rational (and
thus regular) mapping o' B — V such that 7o = 1. The image 0B = C is charac-
terized by the fact that it is an irreducible curve on V and (C.F) =1, where Fis
any fiber of the fibering 7. We shall call such a curve C a section of the fibering

7. With each fibering 7 one may associate another fibering having the same base
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and already possessing a section. For this it is necessary to coasider the Jacob-
ian curve Aﬁ of the curve F,B' The curve Aﬁ possesses the property that there
exists a birational mapping ¢ of the curve Fﬁ oato A,B , defined over some finite
extension of the field k(B) and establishing an isomorphism between the group of
the classes of divisors of degree zero of the curve F,@ defined over some field

K D k(B) and the group of points on the curve Aﬁ defined over the same field. It
will be convenient later to assume that the curves Fﬁ (and the corresponding sur-
faces V with a pencil of elliptic curves) are distinct if the mappings ¢ are dis-
tinct, i.e., do not differ by an automorphism of the one-dimensional a&elian variety
Aﬁ . A generic point of the curve A determines some algebraic surface, which,
in view of the inclusion k(B) C k(Aﬁ), has a pencil of elliptic curves with the
base B.

We denote by J a nonsingular minimal model of this surface with a pencil of
elliptic curves. We shall call J a Jacobian fibering of the fibering 7: V — B.
Since the curve Aﬁ has a rational point over the field k(B), the zero poiat, the’
fibering / has a section 0, which we shall call the zero section. For each fiber-
ing 7: V — B there exists a covering C — B such that the fibering ¥ x5 C
over C has a section. Every fibering with a section is isomorphic to its Jacobian
fibering.

The method of classification to be used is to classify first all the fiberings
having a section, and then all the fiberings having a given Jacobian fibering. An
arbitrary fibering is associated with its Jacobian fibering in the following way.
Let C — B be some normal covering with a Galois group G and let ’]\‘C be a non-
singular minimal model of the fibering J XB C over C. The group G, naturally,

operates on jC The sections o: C —» ]C form a group, which is clearly a G-
operator group. We denote this group by ?I (C). Then all the fiberings m: V — B
for.which the fibering ¥ xg C over C has a section are in one-to-one correspond-
ence with the elements of the group H (G, <3]:].(6‘)).

The group structure can be carried over with the help of this correspondence
onto the 'set of all the fiberings of V having / as a Jacobian fibering and for
which ¥ xp C has a section. For any two fiberings V| and V, over B with the
same Jacobian fibering it is possible to find a covering C — B such that
VxgC and V,xpg C have a section. Using this, it is possible to introduce a
group operation into the whole set of fiberings on elliptic curves 7: V — B hav-

ing a given Jacobian fibering J. The group obtained is denoted by $(B, J). It is
a torsion group.

Let 7: ¥V — B be a fibering on elliptic curves having the Jacobian fibering /.
Let C — B be a covering such that V x5 C has a section over C and
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’

u € H1(G, ?I (0)) is the element corresponding to V. Thus u is aone-dlmensmnal

cocycle, i:e. has the form u, € ¥, (0), g € 6. Since ug is a section of JC over

C, the transformation x — g(x) +u, (7 (x)) is (since ]C is a minimal model) a bj-
(2% o

regular automorphism of JC . We thus have a mapping ¢: G — Aut (]C) which is a

a monomorphism. Now V is defined in terms of J, and ug

V> To /6. T

§6. Fibers of a Jacobian fibering

The works [25] and [40] describe all the types of degenerate fibers that can
be met in Jacobian fiberings. In order to present this description, we recall that a
generic fiber Fﬁ is birationally equivalent over k(B) to the curve given by the

equation -
y=x+px+q pgsk@®). |
Let b € B, let t be a local parameter at the point b, and let v(f) be the
index of the function [ € k{(B) at the point b. One may assume that in the above
equation v{p) >0, v(g)>0, and min (v (p) - 4, v(q) - 6) <0. We set
A=4p 3, 27q2.
The fiber Fb is degenerate if and only if v(A) > 0. We consider two cases.

A. For k=0 or k = 1, one has the representation
p—t‘a g=1", vi@=v@® =0, n= v(4a8+27b2)>o.

B. Such a representation does not exist.

We shall denote case A for k=0 by A; depending on n, and for £ = 1, by
A; . The pumber n can take any positive integral value. '

In case B the number v(A) can take the values 2, 3, 4, 6, 8, 9, 10. We shall’
denote these cases by Bn, n=23 4,6,8,9, 10.

The description of the degenerate fibers in all these cases is given below.
Here the G)i are rational curves without singular points, except for the case A'l,
when @ has one double point with different tangents, and for the case B,, when
O bas one double point with a double tangent. The intersections of the curves
0, are shown in Figures 1—4. All the curves are transversal. at the points of inter-

section, except for case BS’ when @, and @)2 have a tangent point of first order.
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A"z, n>1; Ab/A2=%n

Fxgure 1 Figure 2
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The fibers have the following structure (Figures 1—4):

Al Fy =®,

Ay n>1: Fy=0,4...+ 6,
An: Fp=0,4+ 0,20, + ...+ 2045 + On.s + Bpuyy
B, F, =0,
By Fp=0,1 0,
B Fp =0, + 6,+ 6,
By Fp=20,+6,+0,+0;+06,
By F, =0, 0,+ 0, + 20, + 28, + 20, + 36,
By: Fy =0, + 0, + 20, +20, - 20; + 304 + 70, + 46,
By Fp = 0, + 20, + 20, + 30, + 30, + 40, + 40, + 50,4 + 60,

It is evident from the consideration of the separate cases that it is always
true that v(A) = ¥ (F)). |

More detailed properties of the degenerate fibers come from a‘consideration
of the group structure on them. The group operation on a generic fiber Fﬁ of the
fibering | determines a regular mapping F,B X F,B_’ F,B' This mapping can be
conside;ed as a rational mapping J Xp J —]. It turns out that if J is a minimal
model, this mapping is regular and defines the structure of an algebraic group on
the set of nonsingular points of each fiber Fb' We denote this group by 4. In
particular, the component that intersects the zero section forms a subgroup V’Ag,

a connected component of the unit of the group A,. The group 4, = Ag is an
elliptic curve if the fiber F; is nonsingular, is a multiplicative group in the case.
of Ar'l , and an additive group in all the remaining cases. The group Ab/Ag is
shown in Figures 1-4. ‘ ‘

Finally, we shall indicate the form of Jacobian fiberings that do not have
degenerate fibers.

Definition. Let 4 be an elliptic curve (with a fixed group structure) over the
field %, let B be an arbitrary curve, let B - B be a normal nonramified covering
whose Galois group is isomorphic to some subgroup of the group of automorphisms
of the curve A (as an abelian variety), and let ¢: G — Aut 4 be the corresponding

automorphism. We define the operation of G on Bx 4 according to the rule
o (bxa) = cbxag (6)™

The fibering (B x A)/G — B does not have degenerate fibers. Such a fiber-

ing is said to be a fiber bundle. We have
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Theorem 6. Every Jacobian fibering without degenerate fibers is a fiber bundle.

Corollary. If B is a rational curve, then a Jacobian fibering without degener-

ate fibers over B has the form B x F, where F is an elliptic curve.

§7. Local classification

In order for a fibering of ¥ over B by elliptic curves to be isomorphic to its
Jacobian fibering, it is necessary and sufficient that it have a séction.

" Every section 5 over B gives a local section at any point b € B. By this is
meant the mapping s,: B — V given by a formal power series in thé _powers of
the local parameter ¢ at the point b, and such that 7sy =1 In other words, a
local section is a rational point on the curve F,@ over the field of power series
k{t}. An important necessary condition for the existence of a section is the exist-
ence of alocal section at some point b € B. In connection with this we introduce
also the concept of a local isomorphism of fiberings, i.e. an isomorphism given by
a formal power series in the powers of the local parameter ¢ at the point b. In
other words, the fiberings #: V — B and #': V' — B are locally isomorphic at
the point b € B if the curves F/3 and Fﬁ are isomorphic over the field of power
series k{t}.

We now give the classification of a fibering up to a local isomorphism at a
given point b € B. For any fibering V — B there exists a covering C — B hav-
ing one branch point over the point b € B such that V Xp C is formally isomorphic
to / xp C, where J is the Jacobian fibering of V.

We denote by V — C a minimal noasingular model of the fibering V xg C.
Then the fiberings V- C and 7=+ C are 1sornorpb1c Since, moreover, there is
aumque projection ] — J, we obtain a mapping 72 J. Let Ub and F be
fibers of the fiberings 7 and V lying over the point b and its preimage c € C

respectively. The mapping V — | determines a mapping Fc — Ub’ which, as can
be easily seen, is an unramified cyclic covering. The Galois group H of this cov-
ering, narurally, is isomorphic to the subgroup of the Galois group G of the cover-
ing C — B at the point b. The group G has a distinguished character I,JO In

fact, the corresponding extension is obtained by the addition of the elemeant \/—t_
to k1itl. The character l/lo is determined by zbo(o) =n t179. A restriction of the
character i), determines some character on the Galois group [ of the covering

FC - Ub' Thus we have some unramified covering rﬁc — Ub and some character
of the Galois group H of this covering. Since the group H (when k = C) is a fac-

tor group of the group Hl(Ub)’ we thus have some character i of the group Hl(Ub)!
% € CharH,(U,),
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where Char denotes the group of characters of finite order, and H (U}) is the one-
dimensional Betti group with integer coefficients.

The character ¥ is a basic invariant of a fibering from the point of view of a
formal isomorphism. It is convenient to replace it with another invariant, however.
For this we consider the open set Ag C Ub and the natural mépping j: Hl(Ub) —
-]71(_4 2) where ﬁl is the homology group with arbitrary carriers (if the fiber U,
is singular, Ag is not compact).

It is easy to verify for all types of fibers that j is an isomorphism, and con-
sequently determines an isomorphism j* of the groups Chbarﬂl(Ub) and
Char H I(Ag).

Since Ag is a variety, the group Charﬁl(/lg) is isomor{:hic to Hl(Ag, Q/2),
where Q is an additive group of rational numbers. As a result we have an. isomor-
phism of the groups Char# ;(U,) and HI(AO, Q/Z). We denote by h}, (V) the
element of the group Hl(Ag, Q/Z) corresponding under this isomorphism to the
character ¥ which we associated with the fibering of V.

The following is a basic result of the local classification.

Theorem 7. For k = C the fiberings n: V— B and =': V' — B are locally
isomorphic at the point b € B if and only if hy (V) =k, (V')

For a somewhat more general class of fields & an analogous result is obtained

_in the works [42] and [57]. )

Corollary 1. The invariant ky (V) can be different from zero only if the fiber
U, is nonsingular or has the type Al

In fact, in the remaining cases Ag is an additive group which is simply con-
nected. ‘ .

Corollary 2. For an arbitrary fibering n: V — B a singular fiber F, is either
isomorphic to the corresponding fiber U, of the Iacobian fibering or (when Uy is
nonsingular or of type A} ) is multiple and is obtained from U, by multiplication
by some integer.

If the fiber U, is singular, but not of type A:_L , the assertion follows from
Corollary 1. The remaining cases are easily verified by a direct construction of
the fiber Fb according to formula (5). ‘

Corollary 3. If the fibering V — B has no degenerate fibers other than multiple
nonsingular fibers, there exists a covering C— B such that the fibering V xg C
over C is isomorphic to Cx F, where F is an elliptic curve.

For the proof it is sufficient to choose C such that ¥V x5 C 2> J xg C and to
apply Corollary 2 and Theorem 6.
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Corollary 4. The fibering V — B has a local section at a point b € B if and
only if the fiber F is not multiple.

The proof is obvious.

Corollary 5. The fibering V — B has a local section at a point b € B if and
only if it has a differentiable section in some neighborhood of b.

In fact, if V does not have a local section, then the fiber Fb has the form
mD, m > 1. If the fibering had a differentiable section s, then we would have

(s-F,) =1 at the same time that (s:F)=m(s-D)> L i

v,
4

§8. Classification of fiberings

For a fibering #: ¥ — B and any point b € B we have defined the invariant

hy (V) € Hl(Ag, Q/Z). It is easy to see that hy (V) =0 if F, is a nondegenerate
fiber of the fibering #. Thus for a given v, hb(V) # 0 only for a finite number of

points b € B. Therefore the correspondence
V—t{h, (), b€ B}

determines the homomorphism
¢: 98, )~ X H, (A%, Q2).
bEB

Our first goal is the description of the kernel and cokernel of the homomorphism
¢. We begin with the description of the cokernel.

Theorem 8. If J is not a direct product B x A, where A is an elliptic curve,
then the homomorphism ¢ is epimorphic. If | o B x A, then the cokernel of the
homomorphism ¢ is isomorphic to the group of points of finite order of the variety A.

' The kernel of the homomorphism ¢ consists of those fiberinés which, by
Theorem 7, have a local section at any poiat b € B. In other words, they are
locally isomorphic to J at any point of the base. We shall call such fiberings
locally trivial, and we shall denote by §(B, J) the group consisting of all such
fiberings. ’

Now let us assume that k = C. The analysis of the group §(B, J) can be
conducted according to the classical example of the analysis of one-dimensional
vector fiberings. Namely, it is based on the comparison of the algebraic and dif-
ferential structure of the fiberings V € §(B, /).

We denote by 5,(B, J) the subgroup of the group 5(B, ]) consisting of those
fiberings which are isomorphic to J as differentiable fiberings. These fiberings

are also characterized by the fact that they possess a differentiable section.
Theorem 9. The group S(B, J) = §(B, /)/4(B, I) is finite.
We first describe the group §, and then the group S and we shall then show
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that § is their direct sum.
Let V €5,(B, J) and let u, € HY(G, ?IJ (C})) be a cocycle. It easily follows
from the condition V € E)O(B, J) that

u_=s-o0s, 0€G, (6)

o

~ . ~
where s: C — | is a differentiable section of the fibering J, and the section 0s
is defined by the formula

(0s) () = slo™1e).

The cocycle u_, as well as s and 0s, are two-dimensional cycles of the variety

o -~ ~ A

J. We denote by u_, s and os the two-dimensional cycles corresponding to them —
(a%]

elements of the group H2(, Z). Let P29 be the operator associating with an ele-

ment of H2({J, Z) its component of type (2, 0). Since u, is an algebraic cycle,
by a theorem of Lefschetz, pZ,OJU = 0. Therefore, we obtain from (6) that

P*'s = oP™", (7
The mapping f: .7 —-» | determines the imbedding
f'r H2(J,C) - H2{(J, C).

As is known (and easily verified), here elements of H%9(], C) are mapped
into elements of HZ'O(:’\; C) that are invariant with respect to the operation of the
group G. Equation (7) shows then that there exists an element x € H%%(1,.C)
such that »

f*x=P20g,
Direct verification shows that the element x is determined by a given fibering
of V uniquely up to a term of the type P%0J, y € H%U, Z).
~ The coset in the group H%:0(7, C)/P20H?(I, Z) determined by the element x .
is denoted by y (V).
Theorem 10. The mapping

v By (B, J) = H* (J, O/P*H* (], Z)

determines an isomorphism of the group E)O(B, I} and a torsion part of the group
H20(], ©)/P20H2, 2).
The homomorphism
P H2(J,Z) - H* (J,C)

has a kernel, according to a theorem of Lefschetz, the group Hg(]) consisting of

algebraic cycles. The factor group
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Hi ()= H® (J, Z)/H3 ()

is said to be a group of transcendental cycles. This group is imbedded in the
group H%0(J, C) with the aid of the homomorphism P29 Oq the other hand, if
Y is a subgroup of an infinitely divisible group X, then the torsion part of the
group X/Y is isomorphic, as can easily be seen, to the group ¥ @ Q/Z. In con-
junction with Theorem 9 this gives us the following result.

Theorem 11. The group §,(B, J) is isomorphic to H (])® Q/Z.

It remains for us to describe the structure of the group (B, /),

Theorem 12. If the fibering | has any degenerate fibers, or if it has the form
B x A, where A is an elliptic curve, then D(B, J) =0. If J does not have de-
generate fibers and I # B x A, then the group S(B, J) is isomorphic, depending
on the type of the group of automorphisms of a fiber, to a group of order 1, 2, 3,
0r4 (in the last case to Z,DZ,).

The proof is based on results found in [57]. Let us assume that J has a de-
géﬁerate fiber. It follows from the above that the group (B, J) is isomorphic to
the factor group of the group §(B, F) over the subgroup of the infinitely divisible
elements. According to [37] this factor group is isomorphic to the group of those
sections s of the fibering J that have finite order in the group ‘l[., (B) of all sec-
tions and for any b € B intersect the fiber Fb in some point belonging to the
subgroup Ag. We have to show that such a section s is equal to the zero sec-
tion o.

We note first that if s £ 0, then s does not intersect the zero section. For,
in the terminology of [57], s determines for each b € B a nonzero point of finite
order on the curve FB that is rational over the field k{t} of power series in the
powers of the local parameter ¢ at the point b. This point belongs to a connected
component ag of the group of all points @, of the curve F, that are rational over
kftl. On the other hand, under the specialization 8 — b the points of finite order
in the group 0-2 are mapped isomorphically onto the points of finite order of the
group Ag. This means that s Ag # 0, and since this is true for any b € B, it fol-
lows from this that s does not intersect the zero section.

Let ms = 0. Then the divisor ms - F,B - mo- F[i is equivalent to 0 on Fﬁ and,
consequently, determines some function f on Fﬁ and thus on J. We want to apply
Lemma 8 of Chapter IV to this function. This cannot be done directly, since the
lemma applies to fiberings without degenerate fibers, while J has degenerate
fibers. In order to be able to apply the result of Lemma 8, we remove from [ in
each degenerate fiber F, all the components different from Ag. We denote the
open set left by JO. Itis easy to verify that the proof of Lemma 8 remains valid

without any changes for the surface J9 if one considers in the formulation of the
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lemma only divisors C; on ] that intersect with singular fibers F, only at points
of the sets Ag. s and o are such divisors. The divisor ms — mo, as we have seen,
is not ramified, and we can now apply Lemma 8. It gives us, in particular, that all
the fibers of the fibering JO are isomorphic, which is possible only if the fibering

J does not have degenerate fibers. Thus, if J has a degenerate fiber, then s = o.

The case J = B x A is analyzed on the basis of the description of the group
2 (B, ]) given in [25]. In this case £(B, J) is a periodic subgroup of the group
Z &Z, and is consequently equal to zero.

Now let J not have degenerate fibers, and consequently be a fiber bundle,
but let it not be a direct product. Then J has the form (C x A4)/G, where f: C—B
is an unramified covering with a Galois group G, 4 is an elliptic curve, &

G — AutA is a homomorphism, and G operates on C x 4 according to the rule
o (cxa) = o (c) xap (o). v 8)

According to [571, the group $(B, J) is isomorphic to the group of sections
of finite order of the fibering /. We now indicate what these sections are like.

Let s: B — ] be a periodic section. It determines the section
s C - JIxgC, s*() = (5f) (c) xc. 3
The section s* possesses the property
os*(c) = s*(oc),
‘where o operates on J xpg C according to the rule.
' d(xxc)=x><cr(c). ©)

In our case, J xg € > A4 x C, and under this isomorphism the operation (8) of the
automorphism o goes into (9).
In view of this s* can be written in the form
s*cY=ule) x c, (10)

where u: C — A is a regular mapping. Rule (10) gives

u{o @) =u)e @)™ (11)
Since s is a section of finite order, for some m> 1

ms*(c) =0, mulc)=0.

Thus u(c) is an element of period m in A. The number of such elements is finite,
and then it follows from the regularity of the mapping u that this mapping is con-
stant;

ule) =uy € A

The condition (11) shows that
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dlodug=u,- (12)
As is known, 0 can be an automorphism of order 2, 3, 4, or 6. It is easy to

verify that the solutions of equation (12) form in these cases groups respectively
of orders 4 (isomorphic to Z,Z,), 3, 2, and 1.

§9. One particular case

We apply the obtained classification of fiberings on elliptic curves to the
study of one type of surfaces which we have already met earlier (Chapter IV, §7)
Namely, we consider the surfaces V with the invariants p =0, g ='1 for which
the Albanese mapping 7: V — B has as fibers elliptic curves. .We.saw in Chap-
ter IV, §7 that in this case the fibers can be only nonsingular or mﬁltiples of non-
singular curves. It follows from Corollary 2 of Theorem 7 that the Jacobian fiber-
ing J of a fibering of V does not have degenerate fibers and is, consequently, a

fiber bundle
J >~ (Cx 4)/C.

We first establish that V has the invariants we need if and only if J is not
a direct product (i.e., ¢(G) # 1). For this we have to give an argument very close
to that which is contained in Chapter IV, §8 We note that by formula (5) of $5
the fibering of V is a factor of the fibering ] ~ ] Xp C for some covering C-—B
with a Galois group G. We can choose C such that the covering € — B will be
a factor of it. This gives a homomorphism ¢ : G — G. Then, as it is easy o see,
J > Cx A. Itis oot difficult to interpret the operation of the group G on ] A

simple calculation shows that
o(cxa) =0 (@) xau@?,

where u(G) is an automorphism of the curve A (but not of the corresponding abe-
lian variety), and u: G — Aut 4 is a homomorphism of the group G into the group
of automorphisms on the curve A. Here ©{3) is a combination of an automorphism

and a translation of the abelian variety 4

u (0) (@) = ¥ (0) (@) + v (9),
where v(3) is a point of A.

Repeating the argument given in the proof of Lemma 13, §8, Chapter IV, we

see that
Of V)~ @ Cx A, i=1,2.
It follows from this that

Q1(V) >~ Q' (B) & Q! (4)"?




ONE PARTICULAR CASE - ) ' 181

and thus ¢ = 1 if and only if ¢(G) # 1, i.e. when / is not a direct product.
Analogously,

Q2 (V) ~ (2 O (A))S.
Let H be the kernel of the homomorphism t: G — G. Since
(@0 ® 2" @)F = (@ O ® 2 WS,

Ql O =~ 01 (0), 9 W) = Q1 (4), Q' (O)° ~ Q! (B),

we have

Q2 (V) =~ QU (B) @ Q! (A9,

from which it follows that p = 0 if and only if ¢{(G) # 1.

Now applying the classification developed in the previous sections, we armrive
at the following result.

Theorem 13. The surfaces V with the invariants p =0, g = 1, for which the
fibers of the Albanese fibering m: V — B have genus 1 are classified in the fol-
lowing ﬁ*ay. The lacobian fibering of the fibering of V has the form

] ~(Cx A)/G,

where f: C — B is an unramified covering with Galois group G that is not the
identity mapping, A is an elliptic curve, ¢: G — Aut 4 is an imbedding of G into -
- the group of automorphisms of A (as an abelian variety), and G operates on Cx 4
according to the rule o(c x a) = o(c) x a¢(0) 1. The structure of the group $ (B, ])
of all the fiberings of V with a given Jacobian fibering is determined from the
exact sequence (Fb is a fiber of ] over the point b € B):

0—5(B,J)— H(B,J) —»bEBHl (Fs, Q/Z) — 0
- =

and the relationship

5B, ) =9 (B, J), (13
where D(B, I) has order 1,2, 3, or 4 depending on whether the group ¢(G) has
order 6, 4,3, or 2.

We need to verify only the relationship (13). It follows from the fact that

S(B, )= E)(B, ])/E)O(B, I) and from E)O(B, JY = 0. The last assertion follows from
the fact that th(]) = 0. For, from the fact that x =0, g =1 it follows that b, = 2.
On the other hand, we have immediately two nonhomologous algebraic cycles in J,
for example a fiber and a section. Thus the rank of the group Hg(!) is also equal

to two. Since, according to the criterion of Lefschetz, the group th(f) =

HZ(], Z)/Hf(]) is torsion-free, it must be equal to zero.
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Remark. In his consideration of our class of surfaces, Enriques ([59], Chap-
ter X, $11) asserts that V has a pencil of elliptic curves that are transversal to
the fibers of the fibering m: V — B. It is easy to see, however, that there is an
elliptic curve on V distinct from the fibers of the fibering 7 only if ¥ does not
have multiple fibers. In fact, let L be such a curve. By assumption, (L-Fp) =
r>0. Since the base B is, like L, an elliptic curve, the projection 7 determines
on L the structure of an unramified covering of B. This means that L« Fb con-
sists of r distinct points for any b € B. But if F, is a multiple fiber, Fp= m . U,
m > 1, then it is clear that L. F, consists of the points of LU tgken m times.

Thus the classification of Enriques evidently only applies to flbermgs without
multiple fibers. As we saw, these are everywhere locally wrivial. They form a
finite subgroup (B, J) = §(B, J) of the group H (B, J). The fiberings correspond-
ing to the elements of the infinite factor group 2 H (Fb, Q/Z) of this group are

clearly omitted in Enriques’ classification.




CHAPTER VIII

ALGEBRAIC SURFACES WITH «=0

This chapter studies Kihler (sometimes only algebraic) surfaces with k= 0.
The existence of a multicanonical model of a surface F means that for some
- natural number ng the number P"O =dim HO(F, Q(nOK)) is greater than zero,

where K denotes the canonical line bundle; zero-dimensionality in such a model

is equivalent to the .requiremeri‘t Pn <1 forall n>0.

¢1 discusses the possible values of the integral invariants of surfaces of the
indicated type.

These surfaces are classified in §§2, 3, and 4. We will assume from the

beginning that all surfaces considered are minimal models, i.e. do not contain

exceptional curves of the first kind.

§1. Values of invariants

We begin this section with several lemmas and will terminate it with a table
of the possible values of the integral invariants of the surfaces with « = 0.

Lemma 1. Let F be a nonsingular Kihler surface with k= 0. Then (K2) > 0.
Moreover, if 0 is an irreducible component of an effective divisor D € |nK| (n is
any positive integer), then (D.6) > 0. _

Proof. Since « = 0, there exists a number n such that the systeui InK| con-
tains an effective divisor D. Let D = Epi'ei , where p; >0 and 6; is an irreduci-
ble curve. By the adjunction formula, (D- Oi) = n(2pa(6i) -2- (6,2)) Let us assume
that (D-@i) <0. Then 2p, (91) -2- (Giz) < 0. This is possible only when (61-2)20
(the values (Giz) =-1, p,(6,) =0 are excluded by the assumption of the minimal-

ity of the surface F). Since obviously- (ei- 9}-) >0 for i # J, we arrive at a contra-

diction. The lemma is proved.
Corollary. Let F be a nonsingular Kdhler surface with xk = 0. Then pa(F)_>_O.
Indeed 12p, = (K2)+ x> x> 4p,~2-2p2>4dp,- 4
Lemma 2. Let F be a nonsingular Kihler surface with x> 0, (K2) > 0. Then

K> 0.
Proof. By the Riemann-Roch theorem

dim HO (F, © (nK)) + dim H* (F, @ (1 — n) K)) > =2 (k?) + pa.

183



184 ALGEBRAIC SURFACES WITH k=0

Since k>0, dimH%(F, Q((1 -n)K)) <1 for n> 1.

Corollary. Let F be a nonsingular surface with k= 0. Then (K?) = 0. More-
over, if 0 is an irreducible component of an effective divisor D € |nK| (n is any
positive integer), then (D-6) = 0.

This assertion follows trivially from Lemmas 1 and 2.

Lemma 3. Let F bea nonsingular Kéhler surface, Pn =1, Pm =1, m#n.
Then either k>0 or P =1, where d = (m, n).

Proof. We denote by D and D | effective divisors of the systems |nK| and
|mK! respectively, and we consider the effective divisors (m/d) DOV"’,-’ (n/d)D 1-
These divisors belong to the system |(mn/d)K|. If they are distinct, then
P .,4>1 and k>0. If they coincide, one of the divisors Dy— D, D;- Dy is
effective (depending on the relative value of the numbers m, n). This divisor (we
denote it by D) belongs to the system |(m = n)K| (or {{n — m)K|). The assertion
of the lemma now follows from the existence of the Euclid algorithm for finding
the greatest common divisor.

Lemma 4. Let F be anonsingular Kihler surface with « = 0. Then either
Pg= 1, or 2K ~ 0, or pg:q-1=0.

Proof. Let us assume that Pe= 0, ¢ # 1. Then, since k=0, we have p, >0,
g=0,and P 2 #£0. By Lemma 3, P3 = 0. By the Riemann-Roch theorem,

dim HO(F, Q(3K)) + dim HO(F, Q(-2K)) > p, > 0. Consequently, ‘
dim H9(F, Q(-2K)) > 0, which, together with P 2 £ 0, gives 2K ~ 0.

The above results permit us to determine those values of the invariants P,
Pgr @ (K?) which can correspond to surfaces with « = 0.

Let Py = 0. Then by the corollary to Lemma 1, ¢ =0 or g=1.

Let Pg= 1. Then ¢=0, 1, or 2.

Surfaces with Pg= 0, ¢ = 1 were studied in Chapter VIL

Surfaces with Pg= 0, ¢ = 0 (Enriques surfaces) will be studied in Chapter X.

Remark. From the results of this section it follows that Enriques surfaces
are defined by the following values of the invariants: P,=9= P3 =0, P2 =1.

In $3, we will describe the projective models of the surfaces with Pg = 1,

g = 0. The question of the “‘number of moduli’” of such surfaces is studied in
Chapter IX.

In $4, we prove that Kahler surfaces with Pg= 1, ¢ = 2 are complex tori.

§2. Surfaces with « = 0, Pg=4= 1

Theorem 1. There do not exist algebraic surfaces with « =0, Pg= 1, g=1.

The proof of this theorem is preceded by a simple lemma.
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Lemma 1. Let (K2)=0 and P_>0. Then all the irreducible components of

an effective divisor D € |nK| have an arithmetic genus of 0 or 1.

Proof of the lemma. By the adjunction formula,
8 (K+0))
2 (0) = (—_2— + 1

for every irreducible curve 6. According to the corollary of Lemma 2, (K-6) =0

if 6 is a component of D. Consequently, (82) <0. Now we have
62
<p®=1+3<1

Proof of Theorem 1. We denote by A{(F) the Albanese variety of the surface
F with k=0, p_ = g = 1, that is a nonsingular curve of genus 1, and by « the
natural mapping F — A (F). We denote by D an effective divisor of the system
IK|. We consider two cases. . -

1) The image of every irreducible component of the divisor D is a point (or
the empty set, if D = 0). We denote by I’ the "fiber’’ of the mapping over a
point C € A(F). As is known, for a generic point C € 4 (F), I'¢ is a nonsingular
curve, Clearly,’(rcz:) = (FC -K) =0. By the Riemann-Roch theorem,

dlm HY(F, Q (¢ —K)) + dim H° (F, Q 2K — T¢))
~ 1+ dim ' (F, Q (T — K)). (*)
- Since k=0, dim HO(F, Q0K - FC)) = 0. Hence it follows from the equation (%)
that dimH?(F, Q()) > 2 (if D > 0, this is clear; if D =K = 0, then
dimH (F, QT —K)=dmH (F, Q T¢c + K)) >1
by a theorem of Kodaira [25], Theorem 2.3).

fixed part by |H NE el =6+ |H,|. Since (6) CFC’ (H, )C(FC) (by M) we
denote the support of the divisor M) for a suitable index vy, we have (6. FC) =
(H,.T¢)=(H,-K) = 0. Since, moreover, ,(va) = 0, the system |H_|is composed

of a pencil L, a generic curve of which may be assumed to be irreducible. Since

We consider the linear S)stem ‘FC| We denote its fixed part by 8, its non-"

(L. FC) =0, all the curves of the pencil L belong to fibers of the mapping a.
As above, it is possible to prove that the linear system |L0| has a positive
dimension, where LO is an irreducible curve of the pencil L, and that the non-
fixed part L 1 of this system (which is a linear pencil) has a zero index of inter-
section with curves of the pencil L. From the irreducibility of the pencils L and
L i it now follows that they coincide. This means, however, that there exists a
regular mapping of the curve P Lof genus 0 parametrizing the pencil L onto a

curve of A{F) of genus 1. We have a contradiction.
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2) There exists at least one irreducible component of the divisor D whose
image under the mapping « is a curve of A(F). 7

We denote by @ the irreducible component of the divisor D) whose existence
we have just required. It follows from Lemma 1 that 0 is a nonsingular curve of
genus 1. Let D = s + B, where 0 is not a component of the divisor D. It is
clear that the divisors € and D do not have common points. It easily follows
from this that the canonical line bundle over the curve 8 coincides with the line
bundle (s + 1) 9|5, where 0], is the line bundle over the curve induced by the
imbedding 6 C F of the line bundle on *F determined by the divisar 0. Conse-
quently, (s + 1)6| 5 ~ 0, where we denote by 0 the trivial line bundle on 6.

By the Riemann-Roch theorem

dim H° (F, Q (D — (25 + 2) 0)) - dim H° (F, Q ((2s + 2) 6))

= @ADL ) 4 dim B (F, QD — @5 - 2) 8)).

Sigce & = 0, we have dimHO(F,Q(D—(Zs +2)6) =0, dim HO(F, QU2s +2)0) = 1.

Since the index of intersection on the right-hand side is equal to zero,

dimHY(F, Q(D = (25 + 2)6)) = 0. We now write the exact cohomology sequence

associated with the exact sequence of sheaves:
0-QMD —(2s+ 2)0) - QD — (2s--1)0) - QD — (25 + 1) 6 ]) —0;
0-H(F, QD — (2s +2)0)) -H (F, QD — (2s+ 1) 8))
- H* (0, Qe (D — (25 + 1) 0}s)) — 0.
Since D - (25 + 1) 6], ~D-(s+ 16l ~~(s+ D8, ~0, we have
dim H2(9, Qg(D - (25 + 1) 6] 5)) = 1, and consequently dimHO(F, D - (25 + 1)6)) > 0.

We obtain a contradiction with the assumption that « = 0. Theorem 1 is proved.

§3. Surfaces with « = g=0, Py = 1

We indicate in this section the projective models of algebraic surfaces with
K=g=0, Pg= 1. We begin with three essential lemmas.
Lemma 1. K(F) ~ 0.

Proof. By the Riemann-Roch theorem ‘
dim H® (F, Q (— K)) + dim H° (F, Q (2K)) > Pa (F) = 2.
Since x =0, dim HO(F, Q(2K)) <1, and thus dim HO(F, Q(-K)) > 1, from which
our assertion follows.
Corollary. If D is an irreducible divisor on a surface F, then HY(F,Q(D)) = 0.
This assertion follows directly from a theorem of Kodaira [25], Theorem 2.5.

Remark. It follows from the proof of the lemma that the surfaces of the type

under consideration are defined by the following values of the invariants: ¢ = 0,
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Pg = Py=1

Lemma 2. If D is an irreducible divisor on a surface F and (D?)> 0, then a
generic curve of the complete linear system |D| is nonsingular.

Proof. By Bertini’s theorem, it is sufficient to show that the system [D| does
not have base points. For this, in turn, it is sufficient to prove that the system
|D| cuts out on the curve D a complete linear system without fixed points.

According to Kodaira (251, §1), we have the exact sequence
0—H'D, QD5 — ) — H (D, Qp (D |p)) — H® (M)
~HD, Q@5 — ) - H O, 2O) ~0, (1)

where ’5 denotes a nonsingular model of the curve D, ¢ is a divisor on ’5 de-
pendmg on the singularities of the curve D, Di’\' denotes the lme bundle over the
curve D which is induced from the line bundle corresponding to the divisor D by
means of the natural mapping D > F, and ¥ is a sheaf concentrated at the pre-
images of the singular points of the curve D.. As is known, the canonical class
KDy is given by the formula KD) ~ K(F)l'b' + Di’bf - ¢, and sinf:e K(F)~o,
K(Fﬁ) ~ D[b’ — ¢. We will now calculate the dimension of the group

HY(D, Qp (DID)) We consider for this the exact cohomology sequence which

corresponds to the sequence of sheaves

0-Q0)>QD)—>DI)—-0 2
H(F, Q (D)) - H*(D, Qp (D |p)) — H* (F, L (0)) — H? (F,.Q D).
1o Lomwal : ’
By Theerem 1 and the duality theorem, the groups at the ends of this exact se-

quence are trivial, and dimHz(F, 000)) = dim HO(F, QX)) = 1. Thus,
dim H I(D, QD (DID)) = 1. Now the exact sequence (1) takes the form

0~ H B, Q0D |y — )~ H D, @ O |o)) — H* (M) — 0.

Since the mapping i is a monomorphism, the sections of H%(D, Qp (D lD)) do not
have common zeros outside the points of the divisor ¢, and since the mapping j
is an epimorphism, they also do not have common zeros at points of the divisor c.

From the exact cohomology sequence
HY(F, @ (D)) & HY(D, Qo (D |p) — H' (F, Q () = 0

corresponding to the exact sequence of sheaves (2), we conclude that the restric-
tion mapping r is an epimorphism, and thus the sections of the group HO(F,Q(D)
do not have common zeros on D. Thus the system |D| does not have base points.

The lemma is proved.
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Lemma 3. If a generic curve of an irreducible linear system |D|, (D?)>0, is
not hyperelliptic, then this system yields a birational mapping of the surface F
into a projective space, while if this curve is hyperelliptic, but has a genus greater
then two, then |2D| yields such a mapping.

Proof. By Lemma 2, a generic curve of the system |D| is nonsingular. De-
pending on the genus and hyperellipticness of this curve, it can be imbedded in
the projective space of the system |K(D)| = [D|y} or |2K(D)| = |2D|pl. Let
|sK(D)| yield a birational imbedding of the curve D into a projective space. We
will show that then the system |sD| yields a birational mapping og the surface F.

In fact, from the exact sequence
r
H® (F, Q(sD)) — H°(D, Qp (sD/D)) — H* (F, Q (s — 1) D))
(corresponding to the exact sequence of sheaves

0= Q((s—1)D) - Q (sD) — Qp (sD|p) — 0)

we conclude by the corollary of Lemma 1 and the regularity of F that the mapping
ris an epimorphism. Therefore the restriction |.sD|D| of the system |sD| on the
curve D coincides with {sK(D)|. On the other hand, if %q is any point of some
curve D € |D|, and x; is a point of the surface F joined with xg under the map-
ping correspoading to the system |sD|, then the point % also lies on the curve D.
Therefore the mapping |sD| is one-to-one at almost all the points of almost all the
curves of the system |D|, i.e. this mappiang is birational. The lemma is proved.

We denote by 7 the minimal possible value of the arithmetic genus of the irre-

ducible curves D on the surface F that satisfy the condition (D?) > 0. We have
_ (D9

Moreover, we conclude from the Riemann-Roch theorem and the corollary of Theo-
rem 1 that dim |D} = 7.

Theorem 2. If 7 =2, the irreducible system |D| maps the surface F onto the
projective space P2 with the nonhomogeneous coordinates x, y. Since (D?) =2,
the field of functions k(F) on the surface F is an extension of second degree of
the field of rational functions k(x, y) and the equation of the surface F has the
form 22 = F™(x, y). Since every divisor {ax + by + ¢ = 0} belongs to the system
|Dl, it has a genus of two, and thus n = 6.

If #> 2, and a generic curve of the system |D| is not hyperelliptic, this sys-
tem maps the surface F into a space P where the degree of the image is equal
to (D?) = 27~ 2, and the mapping is birational.

If #> 2 and a generic curve of the system |D| is hyperelliptic, then the
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system |2D| birationally maps the surface F into the space P47~ 3, and the image
has a degree of 87— 8. The system |D| in this case yields a two-sheeted map-

*
ping of our surface onto a rational surface of degree =~ 1 in P7.

We note that, as follows from results of G.N. Tjurina (Chapter IX), the map-
pings described are defined for a generic surface of the considered type with

uniqueness up to a projective equivalence.

$4. Surfaces with k = 0, P = 1, g=2

It will be proved in this section that every Kahler surface with « = 0, Pe=1,
g = 2 without exceptional curves of the first kind is biregularly equivalent to an
algebraic torus. The proof reduces to the study of the canonical class of a sur-

face and of the surface’s Albanese mapping.

Theorem 3. Let F be an algebraic surface without exceptional curves and
with k=0, Pe=19=2 Then F is an abelian variety.

The proof consists in the analysis of the three a priori possible cases: 1) the
Albanese mapping @ of the surface F is a mapping onto its Albanese variety
A(F) = T2, and the canonical class K(F) is equivalent to zero; 2) a{F) = A(F)
and K £ 0; 3) a(F) is a curve in A(F).

1) We consider the first case. We denote by w; and w, two linearly inde-
pendent holomorphlc differentials of first degree on the surface F. Since
“a(F)=T?2, w1 N w,y#0. Since K ~ 0, the differential of second degree o, Nw,
does not genera_lly have zeros, i.e. the mapping. @ is locally biholomorphic. This
means that the surface F is an unramified covering over its Albanese variety, the
torus T2 , i.e. is itself a two-dimensional abelian variety (and the mapping a is
one-to-one).

The two remaining cases lead to a contradiction.

2) We recall that, by Lemma 2 of $1 and Lemma 1 of $2, (K%)= 0 and K
(an effective divisor, since Pg= 1) consists of rational and elliptic components.

We will show. that the canonical class does not contain irreducible components
' whose geometric genus is zero. Thus, let H be such a component. Then wl'H =

IH 0, and thus the curve H is contracted under the mapping a. If we denote
by 64,+--, -, 0, the irreducible components of the divisor K that have a geometric
genus of 1, and by s,++, s, the multiplicities of these components, then the

effective divisor K - s 161 —+++ =5, 0, will consist of components of geometric

* Added in proof: Such surfaces exist for 7 = 3; they will be studied in my article:
B. G. Averbuh, On special types of Kummer and Enriques surfaces, 1zv. Akad, Nauk SSSR
29 (1965), 1095-1118. For 7> 3 apparently nothing is known. Translator’s note: This
article has been included as the appendix to the present translation.
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genus zero, will be contracted into a certain number of points under the mapping
@, and will have a zero index of self-intersection. This, however, contradicts
the theorem of Mumford {35] about the negative definiteness of the matrix of the

,
indices of intersection arising under the resolution of a normal singular point.

Now let 6 be a nonsingular elliptic component of K. Siace the curve 0 is
elliptic, there exists a nonzero holomorphic differential w of first degree on the
surface F whose restriction to the curve 6 is equal to zero. This means that the
image (@), nontrivial by the same theorem of Mumford, lies completely in some
coset of the group TZ over the subgroup that is the elliptic curve ?"1 Moreover,
the differential o induces a holomorphic mapping &: F — T'1, .

We consider on the surface I the algebraic system {L} of the fibers of the
mapping ¢. Clearly, (L )= (L-0)=0. If H is an arbitrary irreducible component
of‘a curve of the system {L} containing 6, then (H.9) = 0, since (L.6) = (82)=0.
The curve 0 is thus a connected component of its fiber under the mapping ¢.

Considering now a normalization of the curve T'! [in the field k(F), we find a
nonsingular algebraic cirve I' and a regular mapping F — I" such that the curve
6 is a topological, and the divisor s6, an algebraic fiber over some point of T’
(we denote by s — 1 the order of the zero of the differential  on the curve 0).
Since the genus of the curve ' does not exceed one, the divisor 259 on the sur-
face F must change in the linear system. Since 250 < 4K, this contradicts the
assumption that « = 0.

3) If C is a point of a(F), we denote by FC an (algebraic) “‘fiber’’ over
this point ((Fé) =0). Let @ be a rational curve on the surface F. Since w1|9 =

a)21|v5 =0, the curve 0§ lies in some fiber of the mapping .

If 8 is a component of an effective divisor of K that does not lie in any fiber,
then we have (82) =0, (9. I'c)>0. Since ((6+ FC)Z) > 0, for all except possibly
a finite number of irreducible curves D on the surface F, we have (0 + FC) .D>0.
If in particular D is a component of some fiber, then (9. D) > 0, and the curves #
and D have a common poiat. Since Pg (6) = 1, there exists a nonzero holomorphic
differential w of first degree on the surface F that is equal to zero on 6. It can
easily be noted, however, that integration of this differential along a path lying
completely in fibers of the mapping @ and on the curve 0 gives zero. Since, on
the other hand, such a path must connect, by what has been proved, almost every
pair of points of the surface F, we arrive at a contradiction, from which we con-
clude that all the components of an effective divisor of K lie in fibers of the map-
ping a and (XK. FC) =0.

By the Riemann-Roch theorem and the theorem of Kodaira mentioned in $2, we

can conclude for a generic fiber FCO that
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dim HO (F, Q (K + Tc))= dim H' (F, @ K + Te)=m—1+2>2,

where we denote by m the number of connected components of the fiber FC A
we denote by 6 the fixed and by ]DV‘ the nonfixed part of the system !FCO + K,
then it is easy to see that (6. Lo = (DV . FC) =(D,- K) = 0, and thus

(Dg) = 0. The system EDVL consequently, is composed of curves of an irreducible
pencil L. Since (L-T) = 0, the curves of the pencil L lie in fibers, hence
dimHl(F, QK + LO)) = 2 (the same theorem of Kodaira). Since (L-K)=0 we

thus obtain by the Riemann-Roch theorem

dim H° (F, @ (K + L)) = dim H (F, @ (K + Ly)) = 2,

where L, denotes an irreducible curve of the pencil L. We denote by 6, and .
}Eyl the fixed and nonfixed parts of the system |K + LO!; we find that

(61 I'e) = (—D_V T () =0, that (53) = 0, and that all the curves of the system
151/! lie in fibers. Hence (Ev .L) = 0, and thus also (L Z) =0, where L de-
notes the irreducible pencil of curves of which the system lﬁvi is composed.
The equation (L L)=0 implies that the pencils L and L coincide. We now
have LO +K=Lj+++-+ L +0;, where Ll"' », L are the curves of the pen-
cil L.

If L, is a component of the divisor 61, then
K=L,+...+Li+ 8 —Ly.

Since the genus of the curve I parametrizing the pencil L does not exceed two,
it follows from this that the divisor of 3K must change in the linear system and

this contradicts the assumption « =0,

If L, is not a component of the divisor €, then one of the divisors
L e L coincides with L 4; and thus K- 6,>0. The case K-6,>0is
analogous to the one already considered, and we can therefore assume that K= 91.
1t follows from this that EDJ = !LO‘ and L is a linear pencil on the surface F,
all of whose curves lie in fibers. But in this case the mapping a induces a
nontrivial mapping of the line pl parametrizing the pencil L into the torus T?,
which is also impossible. Theorem 3 is thus completely proved.

Remark. We note that the condition k=0 is not.used by us to the full extent
of its meaning; namely, for the validity of this proof it is sufficient to assume
that P4=pg= 1.

Theorem 4. A Kahler variety F with k=0, g = 2 and without exceptional

curves of the first kind is biregularly equivalent to a complex torus.

Proof. We denote by t(F) the degree of transcendence of the field k(F) of
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meromorphic functions on the surface F. If t{F) = 2, our theorem reduces to Theo-
rem 3, since the surface F is algebraic in this case. If ¢(F) =0, our theorem is
proved by Kodaira ([25], Theorem 5. 3) v : :

We consider the case wheu t(F)=1. Itis knoiwn”(cf. [25], §4) that in this
case there exists a unique regular mapping ® of the surface F onto a noasingu-
lar curve A inducing an isomorphism of the fields of functions %(F) and & (A).
Only a finite number of the fibers of this mapping are reducible and a generic fiber
is a nonsingular elliptic curve; every 1rreduc1ble diviscr on the surface F is a
component of one of the fibers. : t

According to Lemma 1, §1, and its corollary, Py (F)>0, (K?)=0. Let K,
be a connected component of the canonical class. Smce (Kz) =0, it follows from
Theorem 2 of Chapter VII, $2, that KO = rFCO, where FC is some fiber of the
mapping ®, and r >0 is a rational number. If r > 0, there clearly exists an n
such that the system |nK| has a positive dimension (it is sufficient to choose n
large enough so that the system lnrco! on the curve A has a positive dimension).
Since k =0, it follows from this that K = 0.

We now study the Albanese mapping o of the surface F. We consider the
cases considered in the proof of Theorem 3.

The first case, if it occurs, leads to the desired result.

The second case is impossible, as was proved.

If the third case occurs, both holomorphic differentials of first degree exist-
ing on the surface F vanish on fibers of the mapping ® (since these fibers must
be components of the fibers of the mapping o). But this implies that
dim HY(F, QT )) =2 ([25], Theorem 2.3) and, by the Riemann-Roch theorem,
that dim :FCI = 1. This, however, contradicts Theorem 2.5 of the same work of
Kodaira, which states that dim H# 1(F, Q(K + FC)) =0 if the curve I'c is irredu-
cibie and dim }FC| > 1. This completes the proof of Theorem 4.
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THE SPACE OF MODULI OF A COMPLEX SURFACE
WITH ¢=0 AND K =0

CHAPTER IX

‘In this chapter we study the local structure of the space of moduli of a com-
pact complex Kihler surface for which ¢ = 0 .and K = 0. Let us consider some

examples of such surfaces.

1. Algebraic surfaces. In §:3, Chapter VIII it was proved that an algebrai‘c
surface for which ¢ = 0 and for which all the plurigenera are equal to one is bi-
rationally equivalent to a surface of the type we are considering. Examples of
surfaces with g =0 and K = 0 are a nonsingular surface of fourth degree in three-
dimensional projective space P3(C), the intersection of three quadrics in P>(C),
etc. In the book of Enriques [59] it is stated that for any 7 > 2 one can find a
surface with ¢ =0 and K = 0 on which there exists a curve of ge‘nusr 7 and on
which there do not exist curves of a smaller genus. (This statement will be proved

in $5 from other considerations.)

2. Surfaces without meromorphic functions. Kodaira [25] proved that if on a
surface V with g.= 0 there do not exist meromorphic functions other than the con-
stant ones, and moreover, if the surface V does not contain exceptional curves of
the first kind, then the canonical bundle of the surface V is umivial (K = 0). It
will be proved in §4 that such surfaces actually exist, and moreover that any sur--
face with ¢ = 0, K = 0, can be deformed into a-surface without meromorphic func-
tions. .

3. ‘Kummer surfaces.” The group of second order whose generator g takes a
point ¢t € T2 into the point —¢ operates on the two-dimensional complex torus T2
This group has 16 fixed points. Let us identify the points ¢ and g(¢). We obtain
a variety with 16 singulat points, which can be resolved with th’e'use of a o-proc-
ess; the nonsingular surface obtained is called a Kummer surface K(Tz). The
cohomology groups of the surface are known. In particular, ¢(K(T?2)) = 0. It is
possible to show that for the surface K(T?), as for the torus, the canonical bun-
dle is trivial.

It will be proved at the end of this chapter that all compact Kahler surfaces
with ¢ =0 and K = 0 are diffeomorphic.

This chapter begins with a general theorem about the subset of algebraic

193
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structures in the family of complex structures of compact Kihler varieties. It is
proved that the points of the base of the family of complex structures that corre-
spond to algebraic varieties can be distinguished by mears of complex analytic
conditions. ;

It is proved in $2that a complex structure on a variety of complex dimension
n with a trivial canonical bundle is in some sense uniquely determined by the co-
homology class of an n-dimensional holomorphic form in this structure. More pre-
cisely, the space of moduli of such a variety can be locally realized as a subva-
riety in a projective space pY (© whose\homogeneous coordinates J%e integrals
of the holomorphic forms kt of the variety V, over the fixed basis of the n-dimen-
sional cohomologies.

In the case of a surface with ¢ =0 and K = 0, the space of moduli can be
locally realized as a 20-dimensional quadric in P21(C) whose matrix coincides
with the matrix of the intersection of the surfaces. In the last two sections, sev-
eral theorems about algebraic surfaces of the type under consideration are proved
with the use of this realization. In conclusion it is proved that all compact Kihler

surfaces with ¢ =0 and K = 0 are c-homotopic, and hence mutually diffeomorphic.

$ 1. Deformations of complex structures of algebraic varieties

A complex analytic family of complex structures is a triple (C, M, 7), where

7 is a holomorphic mapping of the complex variety 0 onto the complex variety M
which is a differentiably locally trivial fibering [26]. In particular, it follows from
the definition that the preimage ¥, under the mapping 7 of each point t € M is
always diffeomorphic.to the same variety X. ,

+ In this section we study the set 4 CM of those points t € } such that
Vs 7 1) is an algebraic variety.

1. Since the family (O, ¥, #) is a differentiable locally trivial fibering, the
restriction 7~ L(U) of the fibering of {0 over a contractible neighborhood U C ¥ is

diffeomorphic to the direct product X x U/, and for any ¢t € U the homomorphisms
of the cohomology groups

i:: Hi(n'_l(U), Z) — Hi(Vt, Z),
induced by the tmbedding it: Vt — n—l(U), are isomorphisms.
By a theorem of Kodaira [24] a compact complex variety V is algebraic if and
only if there exists on it a Hodge metric, i.e. the Kahler metric ds2 =
Zzga/}(d:’adi %) such that the differential form w = iEga—dza'/\ dz # associated

with it belongs to an integral cohomology class. Let t € A, and let o€ Hz(Vto, Z)
be the cohomology class containing the differential form wy of type (1, 1)
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associated with the Hodge metric on the variety VO 77—,1(‘0)- We shall explain for

which ¢ € ¥ the harmonic form ©, on the variety V, belonging to the class

Sk k]
Ct—l-[ lo c

07
is associated with some Hodge metric. Clearly, it is > necessary for this that the

form w, be a form of type (1, 1), i.e.,
0,2, _
7w, =0
where IIP>9¢, as always, denotes the component of type (p, q) of the form ¢.
If t belongs to a suff1c1ently small neighborhood of the point Ly, then the

condition

HLO’Z(‘):::‘O

is also sufficient. ‘In fact, since the form w, is real, we have
HZ,Om =H0’2w =0
t t t ¢~ Y

and hence the form o, has type (1, 1). We shall show that for all ¢t € ¥ which
are sufficiently close to the point to, the form @, is associated with some Hodge
metric. By [27], Theorem 15, for all ¢ of a sufficiently small nejghborhood of the
point ¢, it is possible to choose a Kahler metric on the variety V, depending dif-
ferentiably on t and coinciding at t = ty with the given Hodge metric dsg on the
variety VO On V with this metric the form wq associated with the metric ds

is barmonic and belongs to the class ¢.

Let ¥ bea differential form on the variety Fat) belonging to the class

'B_lco. Then, by the definition of the form ©,, we have

o
wt = Htlt ¥ )
where i: is a-homomorphism of the differential forms that is induced by the im-

bedding Z,. Since on the family of Kihler varieties the operators H, de_p‘vend dif-

ferentiably on the parameter ¢ [27), the forms @, are continuous in !. Moreover,

0
for the family of Kéhler metrics chosen by us. Since the form wg is associated
with the metric ds 2 0o in \1ew of the continuity of the family of forms the form w,
is also associated vuth a positive definite metric a’stz for all ¢ lying in some
neighborhood of the point ¢,. Since the form o, belongs to the integral cohomology
class c,, the metric dstz is a Hodge metric.

2. Let k(1),-++, k;(¢) be a basis of the space of holomorphic two-dimen-
sional forms on the variety V,. Then
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l ——
= El F: () k: (D),

where the F (t) are functions on the variety . We will prove the following prop-
osition.

Proposition 1.1. The functions F (¢) are holomorphic in the variable t for an
appropriate choice of the set of bases k,(1).

For ease in calculation, we will assume in the future that the base M of the
family (O, M, =) is contractible. Moreover, the variety Vt will be asgumed to be
a Kahler variety. The following lemma will be used in the proof of Proposition 1.1,

Lemma. Let By be a harmonic form on the variety V). Then there exists on
the variety O a closed form B such that the form

. Bt = i: B
is harmonic on the variety V, for any t € M, and moreover B = LBB
Proof of the lemma. Let the form ,30 belong to a cohomology class of

b el (Vo, C). We consider the closed form B on the space U belonging to the

class

_ .*_1
b= iy bO'
It is clear that
R
B, = H,i, B

where H, is a harmonic operator on the variety V,. On the other hand,

Hiiip = iif — dm (8),
where
()= 8,C,i, B.
As is known [27], on the family of Kihler varieties the operators H, and G, de-
pend differentiably on t Consequently, 7{¢) is a family of forms on the varieties
Vt which are differentiable with respect to ¢ Since Cis diffeomorphic to the

product X x W, there exists a differential form N on the variety O such that
n(e) = i: N. Thus

Be = itf — diitV = if B — an)
and thus we can set

B=B-dv.

The lemma is proved.
3. Proof of Proposition 1.1. Let % ,(0),-.., k;(0) be some basis of the
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space of two-dimensional holomorphic forms on the variety VO' We construct for
the forms @4 1:1(0),- e, /rl(O) closed forms w, Kl" T, Kl on the variety O sat-
isfying the conditions of the lemma. It is then clear that

Moreover, for ¢ sufficienty close to ty the forms

TS _ 110,2:*

ki(t) = Ht ’ L Ki
are a basis of the space of two-dimensional antiholomorphic forms on the variety
V, because of their continuity with respect to t. Hence

l D ———
2o = ) Fi (6) B (D).
i=1

We will show that the functions F, (t) are bholomofphric with respect to ¢

We consider the form

on the variety Vt. It is clear that this is an antiholomorphic form which is equal
to zero if and only if

OF 4 (f) _ 0
or,

for any ¢ and any k. We will show that this form is d:-homologous to zero on the
variety Vt for any ¢ and any k. It will follow from this that all the functions

Fq (¢) are holomorphic.

We consider the covering of the space ( by coordinate neighborhoods Wi
with coordinates (z‘l,- . z;; t), where

Z = T ARNNN A ) B
2 = fm.]. @ .., zZl, 1)
o=t

This can be done if one takes as a base M a sufficiently small neighborhood of

the point #,. In a neighborhood ¥, in these coordinates the forms 1% 2w and
HO’ZKq have the form

o) =X Fy (R @) + D Pt N dfas ...,
@K ,), =Ry - g Gig N\ dfx + . . .,

where P{-‘ and Gi-c g ate differential forms of the form Zai(z, t)dEi and are
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defined over the neighborhood Wi’ but not over the whole variety. In this and all

the following examples dots replace terms of the form
Az, 04T, N d,

where A(z, t) is a function or a form.
For the rest of this proof we will denote by d and d" differentials on the

variety 0, and by d, and d, differentials on the variety V,. Since
dw =0, dK,; =0
for all i, we have, in particular, - £ -
&0 20 <0, d'TI%2K, = 0. |
We calculate these differentials in an obvious manner. Since the forms ;_q(t) are

harmonic, and thus d';kq(t) =0, we have
ok - _
@2 K = ) ( =t + dict 4) A db +
k k
and analogously,

(@ T o) = 2[ (Z 0 kq )+ diP ]A dfe + .
k

From this we obtain the system of equations

oty /;
d - -
(T)(E Fo®% () = — diPL.
atk q 7
After differentiating the left-hand side of the last equation, we obtain

%jghmam%= “)

0]

and hence

(BZ2% 0) = —d(p-3F 0 c).

&

It remains to prove that for any ¢ the forms
(] R k
Qf = Pi—21F; (0 Gig
q

are the restriction on the neighborhoods ¥, N\ V, of some form on the whole

variety V,. We consider for this the form
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% (@ — 2 Fq (t) Kp)-
In the neighborhood W; this form can be written as

M2 (W — D Fp ()K= D QF Ndfe + .. .
Let .
Qf = Nakdzl.

Then in the intersection ¥, N W]. we have
| (5% gt 5 2 d?)/\d? +
(Moz (@ — 31Fe () Ko)), = S8t S deh + P A AL
and hence
gzt _.
ko k D ii__ Nk
Qi = E%,Ea_—z{ dzy= Q;

in the intersection Wi N W]. N V,. Proposition 1.1 is thus proved.

4. Let ¢ € H2(D, Z). We consider the set B of those points ¢ € M such
that the harmonic form o, ¢
type (1,1). Since the variety V, is assumed to be a Kahler variety, and on Kahler

JX
on the variety V, corresponding to the class i, ¢ has

varieties the operators H: take forms of type (1,1) into forms of the same type,

the set' B is defined independently of the choice of the family of Kahler metrics
on (O, M, 7). Let

M"%0; = 21 Fq (t) kg @),

where a basis of the antiholomorphic forms is chosen as in the previous subsec-
tion. By Proposition 1, the set B is the complex subvariety of the base ¥

which is given by the system of holomorphic equations
| F,(0)=0.
We consider the set

B-UB,, c€HX, 2)

This set is the union of a countable set of complex varieties. It is easy to see
that A C B. In fact, if ¢ € A there exists on the variety V; a form ©, ; associated
with a Hodge metric, which is harmonic with respect to this metric, has type (1, 1)
and belongs to the integral cohomology class of ¢,. Hence the point ¢t belongs

to the set B, where ¢ = i:_lct. Conversely, as was proved in subsection 1, if
V, is an algebraic variety, then for some neighborhood U of ¢ the subvariety B,
belongs to the set A. The following theorem summarizes all we have learned in
this chapter about the structure of the set A.
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Theorem 1. Let (O, M, ) be a complex analytic family of complex structures,
let V= _l(to) be an algebraic variety, and let k%0 be the dimension of the
space of two-dimensional holomorphic forms on V. Then in some neighborhood U
of the point ty there exists an analytic subvariety B, CU with co-dimension not

- greater than hzéo, such that for all ¢ € BC the variety Vz is algebraic (i.e. BCC‘A).
Moreover, the set A CM of all points t € M such that V, is an algebraic variety

is contained in the union of not more than a countable number of such subvarieties.

- “Example 1. We consider the complete, effectively parametrized family (0, M, )
(to be defined in §2. 2) of complex tori T™, where the base M is a set of complex
‘matrices of nth order with a nondegenerate imaginary part, and the preimage of the
matrix Z € M under the mapping is a complex torus with a matrix of periods (E, 7).
For an n-dimensional torus the dimension of the space of two-dimensional holomor-
phic forms is equal to n(n - 1)/2. Hence by Theorem 1, in order for an n-dimeq-
sional torus to be an abelian variety, it is necessary to impose on its periods
nn ~1)/2 complex conditions. This assertion follows from the Riemann-Frobenius
theorem on the felationship between the periods of abelian varieties.

Example 2. Let V be a Kummer surface. As vﬁll be shown in §4, for this sur-
face the number of moduli exists and is equal to 20. Let M be the base of a com-
plete, effectively parametrized family of deformations of a complex structure on a
surface V. In the survey of Grauert on the number of modulj given at the Intema-
tional Colloquim on the theory of functions in Bombay (1960), the follow}ing problem
was formulated: which of the points t € M correspond to algebraic varieties? It
was p:roposed that these points form an analytic surface of dimension 19. It is not
difficult to show that for a Kummer surface 420~ 1. It follows from Theorem 1
that either the set 4 coincides with ¥ or it is the union of not more than a count-
able number of complex analytic subvarieites of dimeasion 19. It will be proved in
§4 that 4 is the union of a countable number of 19-dimensional subvarieties, and
moreover that the set 4 is everywhere dense in the base M.

In the two ‘examples given the conditions {Fi =0} turned out to be independent
if (OM »isa complete family. This is not always true, however. For example,
if V‘is an algebraic surface for which K2 > 0, then any deformation of the surface

V will also be an algebraic surface, although for a surface of that type we have

h2,0=p>0.

$2. Deformations of complex structures and integrals of holomorphic forms

1. Let (C, M, n) be a family of complex structures whose base Y is contract-
ible. As was noted in $1, the variety U is in this case diffeomorphic to the direct
product VO x M, where VO = 77_1(50) for a fixed point ty of M. Thus for any t € )
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there exists a canonical diffeomorphism

by: V,—V,,
which can be written as
b=p-D-i,,
where D is some diffeomorphism’
D: O — VO x M,

and the mapping p is the projection of the direct product ¥ x M onto the variety
Voo ' |

Let ¥, be a compact Kahler variety of dimension n such that its canonical
bundle is trnxal This means that there exists on ¥ an n- -dimensional holomor-
phic form kO’ unique up. to. propomonahty, ‘that does not vanish an)vshere In the

local system (z ;"5 2,) on the variety Vy the form £ can be written as
ky = fdzy N\ ... N\ dzn.

We consider the smooth family of forms

by = HJITP °b,k

on the variety V,. It is clear that %, is an n-dimensional holomorﬁhic form on the
variety V,. The form

vanishes nowhere. Because of the continuity with respect to t of the family of
forms k,, for a sufficiently small neighborhood U of the point to the form kz fo; ‘
t € U also vanishes nowhere. Hence the canonical bundle of the variety vV, ‘
_trivial, and k is an n-dimensional holomorphxc form on the \anety V that is .
unique up to propornonahry .
Let b be the nth Betti number of the variety V and let Cpe .. » € be a

basis of the free part of the cohomology group HZ(VO, Z). We consider the mle-
grals of the form

*-1
bt kt

over the cycles ¢;. The numbers

() = Sb}‘lkt (i=1,...0)
2
may be considered as the projective coordmates of a point in the projective space
P%"1. We thus obtain a smooth mapping F: U — pb- 1 &here U is some neigh-
borhood of the point ty in the base M. This mapping can be described in another

way. Let w,-++, w; be the basis of the space of the n-dimensional harmonic
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forms on the variety V, that is dual to the basis ¢ 1" €. Since the form &,

is harmonic on the variety V,, and thus closed, we have the decomposmon

bﬁm=2h@r+mr , , 2.1)
i=1 '

The numbers @; coincide with the homogeneous coordinates of the image of the

point ¢ under the mapping F. Setting the decomposition (2.1) in the equation

§ ke pke =

v, .
‘we obtain 7
3 @ A0 aia; = 0.

Lly
Hence the image F(U) lies on a hypersurface K in the projective space Pb0~1
that is given by the equation
zHz' =0,

‘s, ab) are the homogeneous coordinates of the space P?1 anq
H is the matrix of intersections of the variety V

Theorem 2. Let a complex analytic fanuly 0[ complex structures (O, M, n) be
effectively parametrized, and let Vo=m" 1, o) be an n-dimensional Kihler variety
,,‘,\:_(uhose canonical bundle is trivial. Then the mapping F of some neighborhood
UCM of the point ty into the projective space pb-l g holomorphic and is
locally an imbedding. ‘

This theorem means, in particulai' that if the mapping F takes the base of
semg.complex analytic family into a point, thea all the varieties V of this fan:uly '
age:mutually biregularly equivalent.” The proof of this theorem is glven in subsec-
tigmi4.

2. Let (z **+, z,); be a system of local complex analytic coordinates on

the variety V. Let there be given on this smooth variety some almost complex
structure. This means that in each space of differentials

T, =Hom(E_, C),

where E_ is the tangent space at the point x, there is chosen an n-dimensional
subspace L such that

-n:L@E

Let )., u, be a basis of the space L. Since dzl, , a'zn‘, a’?l,---, a'z_’Z is

a basis of l:he space T , we have l:he decomposmon ]

;= E a‘-,-dzi + 2 b[jd:?/
=1 /=1
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Let the new almost complex structure be such that the determinant of the
matrix 4 = (ai]-) does not vanish at any point of the variety V (condition (*)).

Then such a structure is uniquely determined by the matrix
-1

given at each point of the variety V. It is easy to verify that this matrix deter-

mines a differential form
a —_—
0= (miiaz)dzi

with coefficients in a sheaf @ of germs of complex analytic vector fields on the
variety V. It is known [ 41] that the condition for the integrability of the given

almost complex structure is that
d'o + - [0, 0] =0. 2.2)

If the given almost complex structure is integrable and corresponds to some
N
complex structure V with local coordinates (£ P Cn), then the differentials

d¢ 1+ *» d¢, are a basis of the space L, where

oz, o, -
dt; = Zgzydz,-—i— Z—ag—fdz,-.

1

4

Consequently, the form o = o} is, in this case, given by the matrix

8L \"1/ OL;
= (3 ()

We note the obvious fact: when the structure ’I\/‘ coincides with the original struc-
ture V, then Wy = 0.

Let (O, M, #) be a family of complex structures on a smooth variety X, and
let V= V. Then if t €U, where U is some neighborhood of the point to € H,
then the mapping b:_l takes the system of local complex analytic coordinates on
o> Which
satisfies the condition (%) if the neighborhood U is sufficiently small. “Thus we
have an infinitely differentiable family w(t) of forms of the type (0, 1) on the
variety VO’ each of which satisfies equation (2.2) and (o(to) =0. Let T be the
tangent space ofrthe base M at the point ty- We denote by p'(L) the partial
derivative dw(2)/0L |z= o of the form @ (¢) in the direction L € T. From (2.2)
and from the fact that w(to) = 0, it immediately follows that d"p’(L) = 0.

the variety Vz Into some system of local coordinates on the variety V

Let p(L) be the cohomology class of the cycle p'(L). The mapping
p: T — HI(VO, ®) is said to be an infinitesimal deformation at the point £, of
the family of complex structures. The family (O, M, ) is said to be effectively’
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parametrized if p is a2 monomorphism [ 26].

3. Let © and Q! be sheaves of germs, respectively of the holomorphic vector
fields and the one-dimeasional holomorphic differential forms on the n-dimensional
variety V. These sheaves are dual to each other by the definition of the sheaf QL
Let us now assume that there exists on the variety V an n-dimensional holomor-
phic form k that is unique up to proportionality. Using this form, one can define
a homomorphism o of the sheaf 0"~ ! jato the sheaf Hom (21, 00) by the formula

w;\Nw
(07, (@)= ——, .
where @, and o, are sections of the sheaves Q"1 and Q! respectively over
some neighborhood, and the right-hand side of the formula is a function holomor-
phic in this neighborhood. It is easy to see that this homemorphism is an isomor-
phism. Thus on a variety V whose canonical bundle is trivial, the sheaves ®
and Q"~! are dual to the same sheaf, and hence are isomorphic. It is easy to

verify that the isomorphism & between the sheaves ® and Q! js given by the:

¢ ~ 1 & . in, 0O
CP(ZAile/\.../\dzi/\.../\dzn)=f—22\—l)+Aia—z[,
i=1 i=1

formula

where f,dz Ao A dz, is how one writes the form % in the local coordinates

(zl,- SN zn). In face, let
T=3Ady N\ ... N&uNA ... \dz

be a holomorphic differential form given in some neighborhood with the system of
coordinates (Zl" *5 z.). Then

(o) (dz; + . . . +aqdz;) = _; z (— 1™ A0
: : A

On the other hand,
(@7) (udz, + . .+ andz) = £ D (— 1" A,

¥4
since the bases 9,/9z pts0/dz, and dz IR dzn are dual.
We denote by AP (V, ®) and 4P (v, Q"—l) the spaces of the differential forms
on the variety V of type (0, p) with coefficients in the sheaves ® and QL. The

isomorphism ¢ between these sheaves induces an isomorphism
D: AP, Q"N - A7, ©),

given by the formula
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CD(E (Aedz, N .. /\dzn ot A’"""'pdz1 A /A\d2n-y)
+n i a
Xz s Nep) = - }_‘,((—1)1 Pt

e (= A a)az,,/\.../\dz,.p.

Since the expressicn l/fz is holomorphic with respect to (z s zn), the iso-
morphism @ commutes with the differential d” (with accuracy up to the sign) and,
if the forms depend on the parameter f, it also commutes with a differentiation
with ‘:esﬂect to the parameter.

4. Proof of Theorem 2. Let there be given on the comnlcx variety V, with
lozal coordinates (z TR ‘fn“ another complex structure v with local parameters
(¢ IR é ) that sati'sfic-s the condition (%) of subsection 2. We consider the

following c’lffLre_ztlaJ form on the variety P ; that has type (n, 0).in the complex

structure Ve
0L ot |1
l Bz 0z,
7 = | RAL A A
o, |
where

ko = fdz, /\ .. - N\ dza

is a helomorphic n-dimensional form in the structure Vy. We denote by

Eseres i 50100 01 the Jacobian

and set

Then the {om

=D fdi A\ ... A\ dLn

is written in the following wa> in the system of coordinates. (zl,- te, zn):

F=tko+F B Duigiiydz Ao Adzgg NGZ N - A dZj,, 2.3)

(ﬁ»..ih)#g

Ny
Since the structure V satisfies condition (), it is possible to construct a form

la ™)
oy corresponding to V. It has the form
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R RN R /S U S
Bz 9z, 921 9z, \ [dz;
0 (2 _0_) : : ; :
7 (021 ERT) 62,, ac.n a-cn agn ‘ fg’i d.Zn,
—az_l T azn 651 a}'n /

Proposition 2.1. The equation
oy = OII" ™" ',
holds. k #
This is proved by directly calculating the left- and right-hand sides of the

equation. By definition of the form £ we have
mieg=j, > DDy, ey psidze N\ - - - Ndz,_ A\ dz;

<ig < <ipgyid
and hence

_ End ! — a -

Ok =3 (S VDD, gy )
i ]

We now calculate the form a)'[‘/‘. We denote by Mij the associated minor of the ele-
ment agi/az]- for the matrix (aé’i/azl-). Then the form Wy has the form

oy = 3 (B 0 M T D7) )

77 R 9z
Since
+ og .
D= DM My—=5 = (= D™Dy, 2,y

k i

we obtain for the form w"V' the expression

. n-+ - a -
Oy = 2(21-"(— 1) ‘D 101,...,?,....n;ia_z[)d2/’

. aY]
from which it is evident that the forms w7 and ®I1" L1k coincide. Proposition

2.1 is proved.
~ ~ . '
In the complex structure V the form & is a dg-cycle, and hence

E = Hck + de5:Gek.
The harmonic part
H. k= ky

is a holomorphic form of type (n, 0) in the structure V. We denote the form
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5,6k by Cy. Then
ky =k — deCy.
Now let (C, ¥, @) be a family of complex structures where
Vo=V,=n1(t), teM.

Then, as was noted in subsection 2, the mapping b:_l takes the system of local
complex analytic.coordinates on the variety Vt into the system of local complex
analytic coordinates (él(t),- L, (1)) on the variety Vo Since V, is assumed
to be a Kahler variety it follows that the V,, for all ¢ sufficiently close to ty,
are also Kahler varieties [27], and in this case the operators ‘Ht and Gl depend
smoothly on £. Therefore all the forms considered in this subsection depend in an’

infinitely differentiable manner on the parameter ¢:
™ ’
kVt =k (- d, C(1),

where, since

kVO kVO =k,
we have
| Clty) = 0.
By definition of the form kvt we have
, o
]th =b, kt, :

where k, is an n-dimensional holomorphic form on the variety:V,. We replace this
- form with its decomposition (2.1) over the basis (w o wb)'of integral har-
monic forms on the variety V. Then. '

b o . ’
Do () @ = = dn () — d;i C () +  (0). (2-4)

=1

Let L be the tangent vector to the base M at the point tO We denote by d,
the operator of taking a partial derivative in the direction L at the point t,. We
.-apply the operator d; to both sides of (2.4), obtaining

b N ’ —
2 @Ora: (1)) @; = — dopm (t) — 0Ld:C (f) + Oik(). 2.5

‘Proposition 2.2. The equation

' AR () =D (D).
kolds, where
| p' (L) = 0L o (f).
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- Proof. Applying Proposition 2.1 to equation (2.3), we can write
E (t) = kO + (D_l (O} (t) + Z sz_lD[h_;_,ih;],,...,i[dzil /\"‘/\ dZ[h/\dEle.../\dE]'l,
>1

We will prove that

O (D' Dy, sty i) = 0,
“if 1> 1. Indeed,

aL (D_lDil',~.,ih: fl,...,f[) = D—l (aLD[,,...,l'h‘, i,,...,l[)) N
since ’

Dy,..ipiji..iy (b)) = 0.

But in order to calculate d; D, it is necessary to take the sum of

, _ Loiksjaeeii
UG

th:deteminants \m(to), where Am(t) is obtained from Dil"'ik;il"'fl by the
application of the operator d/JL to the column with number m. However, since
> 1, in each of the determinants A there will remain a column of the form

(8»4’1./62].), which completely vanishes for ¢ =¢5. Thus
A (tg)=0
for any m, and thus '
0L (D7D i) = D7 B Am (1) = 0
for > 1. As a result we have ' '
ALk () =0, D% () = D90 (8),

since the mapping ® commutes with differentiation with respect to the parameter.

Proposition 2.2 is proved.

.. Proposition 2.3. Thc_ equation

- | aLdiC (&) = d'3.C ()
holds.

Proof. Let the form C(t) be written in the local coordinates (gl(t),- ey Cn ()

in the following maaner:
co=3coa A AN N
We calculate the form 9, C{(s). We have ‘
a. C (b =§1[0LC;(t)dél/\.;./\d/}i/\.../\dzn
) o @5 A - - CANAL A LA dE)]
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. As was noted above

C(z0)=0

and hence
C; (g =0.
For the form 'd; C(¢) we obtain the expression:

n

9. () = % @ O dz A - N & A

From this we have

. 39 t
d’' 9.C(t) = 2 5 ‘“

2 ( 1)z+1d /\
daLC(t)—aL[Z %) /\”,'

It remains to calculate the form 3L dz, C(t). Since

1()

4 C (@) = (2 (— 1y

and moreover
9C(t)) _ ac (to)
ag (o) 62

_o,

0.4 (0 _S 1y 3, (60
=1 .
We also have
ac, () | oC; (t) az, oC, (t) 3%
L —aL( Z 0z, oL,

again using equation (2,6). As a result we get

n

)dgl/\..

ac; (t
) a : ()

. /\ dza.

. A\ dz,

/\dzn]:.' -

A

. after the application of d;, to the form d, C(1) we obtain

) 1/\.../\dz,.

0z,

, . 0C, (¢ .
ALdiC (1) = (01 ) (— 1y a’zf ’)dzl/\-v--/\dzn

=1

and hence

0LdiC (t) = d'9,C ().

Proposition 2.3 is proved.

We use these two propositions in formula (2.5), obtaining

(2.6)
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b

D @y () 0y = — df — d'3.C () + @’ (L), @7

=1
where we denote by B the form d.- 7, .
Proposition 2.4. In order for the mapping F tangent to the mapping F of

subsection 1 to take the vector L into zero, it is necessary and sufficient that

9, a; (1) = Aa;(¢g)

forall i=1,---, b, where A does not depend on i.
Proof. Let O-l(to) # 0. Then for some neighborhood of the point "?0 the num-
bers
a ) -
— i=(,2,..,4L...,0
EN0) ( )

are nonhomogeneous coordinates of the point F(t), and the image of the vector L

under the mapping F is a vector with the coordinates

oL :7:% = o2 (ty) [(Quots () a (f) — e (£5) Do (B)).

It is clear from this that in order for F(L) to be equal to zero, it is necessary and

sufficient that
d,a; (¢) = Aa; (to),
where
6,_ a; (t)
= al (to)

Proposition 2.4 is proved.

Let F(L)=0 far some vector L that is tangent to the base M at the point
ty- Using Proposition 2.4 and the fact that

Zd‘ (tO) Wy = kOv
we obtain from formula (2.7) that

@-1p' (L) = df + d'3.C (f) — Ak,

We apply the hammonic projection operator H-= H‘O to both sides of the last

equation. Since

H d'9.C) = H (dp) = 0,
we can write

H (@' (L) = — M.

Here, however, the left-hand side is of type (n — 1, 1) and the right-hand side is
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of type (n, 0). It follows from this that A=0 and
H@ 1p (L) =0. (2.8)
As was noted in the end of subsection 2,
d"p'(L)=0
Since the mapping ® commutes with the differential d”, we have

4"e71p" (L) = 0

o lp'(L)=d"y. .

From this we obtain

p'(L) = td" Dy,

p(L) =0

Thus we have proved that the kemel of the mapping F is a subspace of the kemel
of the mapping p of subsection 2. If p is a monomorphism (i.e. if the family

(O, M, #) is effectively parametrized), then the mapping F is also a monomor-

~ phism at each point and the mapping F is locally an imbedding.

We will now show-that the mappmg F is holomorphic. Let ty t be .

m
complex coordinates in the nelghborhood of the point L of the base M We denote

by ak the operator of - FaLlng a derivative with respect to tk at the point to, i.e.
, s _ .
Or = 51
0t |,

It is known that for a complex analytic family of structures (G, M, 7) the family
of forms w{t) is holomorphic with respect to the variable . Thus
- =0
Taking this into account, we obtain ‘frém equation (2.7)
N Groi () 0; = — df — d’3:C ().

Since the left-hand side of the last expression contains a harmonic form, we have

D Gro (@) @ =0

and thus
'gkd.[ (t) = O
for any i and any k, i.e. the homogeneous coordinates @,(t) depend holomor-

phically on ¢ The proof of Theorem 2 is codplete.
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§3. Topological properties of a surface with ¢ =0 and K =10

1. We consider a compact Kihler surface V such that ¢ 1(V) =0 and ¢ =
HI(V, Q9 - 0, where Q¢ is the sheaf of the germs of the i-dimensional holomor-
phic forms on the surface V¥, and cl(V) is the first Chern class of this surface.
It is possible to calculate the homology groups and d"-homology groups of a sur-
face of this type. .

By the duality theorem of Serre [47]

BLO — RL2 = J21 = hot = () .
and
dim A% (V, Q% = dim H° (V, Q° (K)),
where K is the canonical bundle on V. The characteristic class ¢ (K) of the
canonical bundle K is equal to —¢ (V) and, in the given case, it is equal to
zero. Since H(V, Q%= 0, it follows from the equation ¢ (V) = 0 that the
canonical bundle is trivial, and hence

k20 = dim H° (V, Q°) = L.

The dimension of the group HYV, Q) is calculated by Noether’s formula,

which is also valid for an arbitrary compact Kahler surface [25],
12 (h20 — Ao + 1) = E + ¢, (V)3

where E is the Euler characteristic of the surface V, and cl(V)2 is the value of
the cohomology class ¢, (V) {Jc (V) on a fundamental cycle of the surface. Since
E=2-4q+2r%04 ALY, we havé‘ihl’1= ZO.I

Since the surface under consideration is a Kahler surface, we have

HL(V, R) = H3(V, R) = 0, dimH2(V, R) = 22, E = 24.

Using the theorem of Hodge about the index, it is easy to calculate the index (V)
of the surface V:
t(V) =2 A 4+ 1) — bt = —16.

2. We will show that the group Hi(V, Z) is torsion-free. For this it is suffi-
cient to show, because of the Poincaré duality, that the group H (V Z) is tor-
sion- free We will show that the surface V does not have finite- sheeted coverings.
Let 7: V- V be an n-sheeted covering of the surface V Then V is a compact
complex Kahler surface, where its Euler characteristic Eis equal to nE = 24n,
and the canonical bundle is trivial. In fact, the sections of the canonical bundle
are holomorphic two-dimensional forms. Since the canonical bundle of the surface
V is trivial, there exists on V a two-dimensional holomorphic form % unique up
to proportionality that vanishes nowhere. Its image n-*k, a two-dimensional holo-

aY)
morphic form, does not vanish anywhere on the surface V. Because of this the
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canomcal bundle of V has a section that vanishes nowhere and which is conse-

quently trivial. Applying Noether’s formula to the surface V we obtain

12 (o) — mo(V) + 1) = 12 2 — hl»O(V)) = 24n.
From this we have '
2-20=kL0(P) 50
and, consequently, .
n<l,
i.e. nontriﬁal finite-sheeted coverings of the surface ¥ do not exist.

3. We now calculate the matrix of intersections of the surface V. As follows
from Theorems 1 and 2 of Milnor [37], the integral quadratic form H (x, x) is de-
termined uniquely up to equivalence by the rank r and the index 7, if

1) the“'form is not of fixed‘sign (i.e. r# %r1), and

2) on integral vectors it takes only even values.

Since for the matrix of intersections of our surface r= 22 and 7= - 16, the

first condition is satisfied. By Lemma 3 of the same work of Milnor, the matrix of
intersections of a given four-dimensional simply-connected variety satisfies con-
dition 2) if and only if the second S_tiefel-Whitney class of the given variety is
equal to zero. Since the proof only uses the formula of Wu for Stiefel-Whitney
classes, the assertion of the lemma is also valid for varieties M4, for which the
group HI(M Z,) is equal to zero. '

Ve will now prove thxs Let W (M) = 0. By the formula of Wu- [13],

W) = Sq (),

where the class V is uniquely determined by the equation
(awV,pd=(Sqa p)

for any class a EH' M, Z ) Here 71 is the generator of the group H (M z )
Since W,(M) = 0 we have: : : :

SqV)=1+ W, (M) + W, (M).
We find V from this. Since H1(M, Z,) = 0, the class V has the form
V=oa,+a, +o;+a, where a, e H (M, Z,)
and hence '
SqV =a, +a, + (S‘q’ a, +a3) + (Sq%a, + Sqlag + ay).

Equating homogeneous components in Wu’s formula, we obtain a ., = 0. Conse-
q 4 2 » 2

quently, for any ¢ € H2M, ZZ) we have
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<awV,p>=0.
But by Wu’s formula

Cawa,py=<(Sqez, pd>=(avV, pd=0.

The sufficiency is proved. The necessity is proved by going in the opposite direc-
tion.

For a surface V of the type under consideration
W, (V) = le; ), = 0, dim H' (V, Z,) = dim H' (V, R) = 0.
. *

Thus condition 2) is satisfied for the matrix of intersections, and the matrix is in

some integral basis a block-diagonal matrix in which there are three blocks of

v=(1o)

and two blocks of eighth order with the matrix — V, where V is a positive definite

second order with the matrix

upimodular matrix of the form

2 100 0000
1 210-1000
0 121 0000
0-012 1000
0-101-2100
0 000 1210
0 000 O0121
0 000 0012

This form of the matrix of intersections will be essential in ’§5

$4. 19 moduli

1. In this section we study the space of moduli of the complex analytic sur-
face V described in $3.

Let ® be the sheaf of germs of the complex analytic vector fields on the
surface V. By the duality theorem

dim H7 (V, ) = dim H* (V, QY(K)).
Since for our surface K =0, we have
dim H° (V, ©) = A1 = 0,

dim H* (V, ©) = ki1 = 20,
dim H? (V, ©) = hto = 0.

By the basic theorem of [ 28] it follows that there exists an effectively
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parametrized family (T, M, m) of coﬁxplex structures complete at each point such »
that its base M is a 20-dimensional complex variéty and VO =V, where to cM
(i.e. the number of moduli of the surface V exists and is equal to 20). If U is a
sufficiently small neighborhood of the point ¢ in the base ¥ of this family, then,
by Theorem 2, using the mapping F the neighborhood U can be identified with
some neighborhood F (V) of the point F(to) on a 20-dimensional hypetsurface

K,y in the projective space P,,. In fact, as was proved in $2, the mapping F

is locally an imbedding of the base ¥ into the quadric K70’ ‘and the dlmen51ons

of the varieties M and K20 coincide.

Let C be a curve (a one dLmensmnal complex subvarlet}) on the surface V

' Smce
(& =0,
C .
we have .
51“1 () 4. o+ Bosons () = 0,
where the integers Bl’ cee, B22 are the coefficients of the decomposition of the

cycle C with respect‘ to the homology basis, ¢ 12" "> C3o; which*was chosen in
§2.1. Thus, in order for a curve to lie on the surface Vt’ it is aecessary that the
point F (1) lie on the intersection of the quadric K,, and the byperplane

EBi z; = 0, where the f3; are integers. This intersection has dimension 19. Since
at least one curve (hyperplane section) always lies on an algebraic surface, it
follows from this that there does not exist an effectively parametrized family of
deformations of the structure of the surface V such that all the surfaces Vt are
algebraic and the dimension of the base of the family is equal to 20. On the other
hand, if V is an algebraic surface of the type under consideration, then for it
h2:0 = =1, and hence by Theorem 1 there exists an effectively parametrized family
(OC, MC, ) of algebraic surfaces with base dimension of 19 and such that

Vto = V. This family is uniquely determined (up to equivalence) by the homology
class C of a hyperplane section of the varieties V,. Moreover, this family is
complete'in the sense that any other family of algebraic varieties with the same
class of hyperplane section and with V= V must be contained in it. Thus, fol-
lowing the definition of Kodaira and Spencer ([ 26], Definition 12.4). we can formu-
late the following proposition. ‘

Theorem 3. Let V be an algebraic surface for which K = 0 and q =0, which
is imbedded in a projective space P", andlet C € H,(V, Z) be the homology
class of a hyperplane section. Then the number of moduli m (V) of the surface
V with respect to the space P" is equal to 19.

Remark. From what has been said so far in this section it follows that if
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M,y is a base of a complete effectively parametrized family of deformations of a
surface V, then almost all (i.e. all except for the union of a denumerable set of
19-dimensional hypersurfaces) the points of the variety M 20 comespond to surfaces
on which there is no divisor, and heace no nonconstant meromorphic function.

2. We saw above that.if there is a curve C ~ E,Bi ¢; on the surface V,, then
the coordinates a;(t) of the point F(¢) lie in the plane ZBi z;’= 0. Conversely,

let Vt be an algebraic surface and let the coordinates a; (2) sétisfy the equation
EB-a-(z) = (4.1)

where the ,3 are integers. We consider the homology class C = zé . The con-
dition (4.1) is equivalent to

gmza
C
Let

w= ok, + obly C-d;t
be.the harmonic form on the surface Vt that is dual to the class C. From condi-

tion (3.1) it follows that [k, A @ = 0. But, as is easily seen,

SmAm=&ghAE
v

14

and hence @ =0 and the form © has type (1, 1).

As is known, on an algebraic variety every integral cohomology class to which
there belongs a harmonic form of type (1,1) is dual to some divisor. Since in our
case the form o is dual to the homology class C, it follows that some divisor
belongs to the class C. Moreover, for the given surface the group Hl(Vt, Q9 is
equal to zero, and hence if two divisors are homologous they are linearly equiva-
lent. Thus the group of classes of divisors on the algebraic surface V, is iso-
morphic to the group of integral 22-dimensional vectors (,81,- cey BZZ) such that

28;a,(0) =0,
where the ai(t) are projective coordinates of the point F (¢).

Thus the base number of the algebraic surface Vt (in the given case it coin-
cides with the rank of the group of classes of divisors) will be equal to p, if and
only if the point F(¢) € K,y lies on the intersection of p linearly independent
hyperplanes with integral coefficients. This intersection has dimension 20 - p.
It is evident from this that “‘almost all”’ (i.e. all with the exception of the union
of a not more than denumerable set of subvarieties of smaller dimension) the

points of the base M _ of the family (LC, M, n) correspond to algebraic surfaces
on which all the curves are multiples of a hyperplane section. Nevertheless the
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following assertion is true.

Theorem 4. The base number of a surface |4 wzth K =0 and ¢=0 can take
all the values from 1 to 20.

Proof. Let (0 M., 7) be a complete family of algebrajc varieties with a
homology class of a h)perpla.ne seéction C = Z,B ¢;. Let a = F(t ), €M, . As
we have already seen, the points of F(} ) lie on the intersection of the quadnc
K20 with the hyperplane S whose equation is EB,' z,=0. Moreover, by Theorem
1 there exists a neighborhood U of the point a such that the intersection
FM )ﬂ U coincides with the mtersectxon Uuns. In any nexghborhood of the
point a in the pro;ectne space P2l ge can choose a point & such that the real
and imaginary parts of its coordinates are rational, and it itself lies'in the plane
S. Itis easy to see that these. coordmates satlsf) twenty lmearl) mdependent
linear equations with integer coefficients. As one of these, we take the equation
of the plane S. We consider the line LX) in the space p2l given by these

twenty equations. We use the following lemma.

Lemma. For any neighborhood U CK ,, of the point a.= F (1) there exists a
neighborhood U' CP2! of the same point in the space P21 such that if daevu,
then at least one point a' of the intersection of the line L (@) with the quadric
K 5o lies in the neighborhood U.

. The proof of this lemma will be given below. It is clear that the point
a'e L&) N KZO’ emstmg by the lemma, lies on the intersection of the quadric
K20 with the plane. S, since the line L(@) lies in S. Since all the points a be-
longing to the intersection U S correspond to certain algebraic surfaces, then,
in particular, the point a’ corresponds to an algebraic surface with base number
20. In order to prove the existence of algebraic surfaces with a base number Ps
it is sufficient to choose from the 20 equations giving the line L (&) p linearly
independent ones such that the p chosen equatiohs contain the equation of the
plane S, and then to consider the intersection with the neighborhood U of the
linear variety given by these p equations. This intersection is not empty, for the
point a’ belongs to it. Hence it has d‘imensionv 20 — P an‘d the algebraic surfaces
corresponding to "poirits of general position’’ on this intersection have base num-

ber p. It remains to prove the lemma.

Proof of the lemma. Let a(n) be a sequence of points with complex rational
coordinates a; (r) = P; (n) + ig; (n) converging to the point a = F(to) with coor-
dinates a; =p, + ig;. It is possible to assume that a ;=1 and al(n) =1 for all
n. Since the point a lies on the quadric KZO’ its coordinates satisfy the condi-

tion zhi].ai a; = 0, where (hij) = H is the matrix of the intersections of the sur-
face VO’ or
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Eh,,-p‘.pl. — Zhiq,9, = 0, Zh,-,—p‘.ql. = 0.

Moreover, since
kt- A Eo + 0'

for the numbers a, we have
Zh,,-a,-o?, + 0

or

Shypp, + Zh,,.q,.ql‘ = 28h;q,9, 7 0. *

From this, in particular, it follows that the vector qg= (qz, sy, q22) is nonzero.
It is easy to verify that it is possible to take as a direction vector of the line
L(aln) the vector q(.rl) = (q 2(n), “any, qzz(n)). This vector can be considered
nonzero, since it tends to the nonzero vector ¢. In fact, let the point 1,

CLz(n), e, azz(n) satisfy the‘equation 265‘1;‘(") = 0. Then the point

Lty (1) + Ag5 (1), - . ., 0z (1) + Mgy, (m)
also satisfies this equation. We will now find the point of intersection of the line
aln) + Ag(n) with the quadric H(z,2) =2 h, . z.z. = 0. We obtain the number A

igeicj
from the equation

H (@) +hq(n), o (n) +2Aq (n)) =
Hence we obtain
H (@ (n), a () 4 24 (2 (n), ¢ (7)) + AH (g (1), ¢ (1)) =
Wﬁén the point a(n) tends to the point a, the free member of this equation tends
H(q, q) = Eh” 9,9 which, as we have already seen, is not equal to zero if the
point 2 € K, 20 corresponds to some complex surface. Hence one of the roots Ay
of this equation tends to zero when a(n) tends to a, and the point a’(n) =

a(n) + /\‘lq(n) tends to the point a. The proof of the lemma is complete.

§ 5. Diffeomorphisms

The basic result of this section is the proof that all surfaces of the type
under consideration (with ¢ =0 and K = 0) are diffeomorphic. First of all we will
prove that an arbitrary compact Kahler surface V for which qg(F) =0 and ¢ (V) 0
becomes, under an arbitrary small deformation, an algebraic surface V on whlch
the group of classes of divisors is generated by a curve of genus 3. It w1ll then

be proved that all such algebraic surfaces are diffeomorphic.
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1. Proposition 5.1. In any neighborhood of the point () = (a.

)
22
l}mg on the quadric KZO in 21-dimensional projective space, there exists a point

()= (¢ nE 122) on the same quadric satisfying the lmear equation with integer
coeffzctents :

%Bszt=0.ﬂr—70 for i>6,

such that the B. do not have a common factor and satisfy the relationshi
i ee b - P

311324-' .33.34+ BSBGZ m-1,
where 7 is any ir'zle;ger larger than one. 7
Proof. Obviously it is always possible to find three real numbers Y173 and
Y 5, not all equal to zero, such that ' .
QY1+ @3y3z+ Osys= 0.

The last relationship means that the point (&) lies in the hyperplane M which is
given by the equation
: 22
Myize =0
i=1
where the coefficients y; are equal to zero for i#£1,3,5,and y Y3 and ¥Ys
. are the real numbers found by us. We use the following lemma.

“Lemma. For any real number x5 and any Lnteger n> 2 there exists a sequence
of integer vectors

B1 (n), B2 (1), Bs (n), Ba (1)),
which satisfies the following four conditions: 7
1) BB+ B; B4= 7-1,
2) lim _,x(,B /Bp= %5
3) hmn_,x(BZ/B )= hmn_.m(B /B4 )=0
4) for any n the numbers B,(n), B, (n) 33(") and ,Bé(n) do not have a

common factor.

Proof of the lemma. We will first prove the lemma in the case 7= 2. We de-

note by N the set of sequences of integer vectors (,31, BZ’ B3, B4) satisfying
conditions 1) and 2) of the lemma (for 7 = 2) for which there exists a limit

B
lim 4
n-—oo Bl
and moreover Bl(n) — oo,

The set N is not empty. In fact, let Bl be an arbitrary integer, and let 63
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be the closest integer to le3 that is relatively prime to 8. In view of the rela-

tive primeness of the numbers ‘81 and f3 there exist integers u and . v such that
uB;-vB3=1
and
lul <IB3l, lv| <|B,I.
The sequence P(Bl) of the vectors

(Bl, u, 33,”— v),

clearly satisfies conditions 1) and 2) and, moreover,
—uvl
" <1,

Because of the last inequality, one can choose from the sequence P(Bl) a sub-

sequence belonging to the set N.
We consider the mapping
¢: N>R
of the set N onto the real line R, that puts into correspondence with each se-
quence P € N the limit of the ratio B4/B;. Itis clear that the set ¢V is
closed. Let us assume that the point O does not belong to V. Then the greatest

lower bound X4 of the set {¢V| (the absolute values of the numbers of GN) is

greater than zero.
We consider some sequence
(1 (n), B (1), Bs (n), By ()
of the' set N. We set

Bs

llmB—1 = X4.
Then, because of condition (1) and the fact that 'Bl — o0, we have
. Ba : 1 Bs Ba
S=lim|; 2.2 = — X3X;.
lim B hrn(i 5 81) X3X4
We choose an integer & such that
1
0 <m < Xy,

and consider the sequence Q(r) of vectors

(Bs + #By, By, 2By — Ba, — B).

We will show that this sequence belongs to the set N. In fact,

(Bs + £By) Bs + (&5 — By) (— BY) = BB, + BiBs = l.‘




DIF FEOMORPHISMS' ’ 221

Further, since

lim3EER = k0,

we have ﬁ4+ lr,Bl—e ~, and also

kBa—Ba . kBi— B

Bs tim

i 5 1o — i = X3.
limg s = M =5 BorEn T
The image ¢ Q is equal, by definition, to the limit
im=P = —
B; -+ kB . Xa + k-

and hence
ICPQl Xa +k<X4'

which is 1mpos>1ble since X4 is the greatest lower bound of the absolute values
of the numbers ¢N. Thus O € ¢N, i.e. there exists a sequence P, €N such
that » '

Bs
11rn B =
and hence )
lxmB = lxm (Y

The lemma is proved in the case n = 2. Itis easy to go from this case to that of

an arbltrary 7. Thus, let

v By (), ﬁz (n), Bs (n), By (n)) ‘
be a sequence satisfying the conditions of the lemma for 7= :2, i.e.
) BBy +B3Bs=1,
2) lim(B,/B,) = %5,
3) hm(Bz/B )—le(B4/Bl) 0.

It is evident from condition 1) that the numbers Bl a.nd B3 cannot have a common

factor. We consider the sequence

B (x — 1) Bzv Bs, (n — 1) Bo).

It is clear that this sequence satisfies the conditions of the lemma.

We now return to the proof of Proposition 5.1. At least one of the numbers
Y1 ¥3: ¥s is not equal to zero, say ¥y # 0. Then, according to the lemma there
exists a sequence P of integer vectors (B;(n)), i=1,---, 4, satisfying the fol-
lowing conditions:

1) B1B2+B3B4=77—1 for any n,
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2) Lim(B,/8) =737y

3) lim(B,/B)) = 1lim (B 4/B = 0. .

We consider the sequence of hyperplanes M, in the projective space P° (C)
whose coefficients f3; (n), i=1,---, 22, are chosen in the following way.

1. B,(n), B,(n), B3(n), ,34(n) coincide with the componeats (,6" (n)) in the
nth member of the sequence P .

2. ,BS(n) is the closest integer to the number Bl(n)ys/y - The remaining
coefficients are set equal to zero. . .

We have thus constructed a sequence of hyperplanes .‘Wn with integer coeffi-
cients f3; (n). These coefficients do not have a common factor and satisfy the re-

lationship
B.B. + BBy + BPs=n — 1.

This sequence of hyperplanes converges to the hyperplane Y. If Y is not the
tangent plane to the quadric KZO at the point (a), then it is clear that in any
neighborhood of the point (@) on the quadric there is a point ¢{n) = (¢ T t22)
lying on-some plane M . If the hyperplane M turns out to be tangent to the quad-
ric at the point (@), then we consider instead of it the plane ¥’ whose coefficients
y; are equal to zero for i # 2, 4, 6, while the Y2, ¥4» ¥ are not all equal to zero,
and which are obrained from the equation

%olfy + 0yly + gl = 0.
Proposition 5.1 is thus proved.
Theorem 5. For any w> 2 there exists an algebraic surface V. with an
irregularity of zero and a zero canonical class on which there lies a curve of genus
m and on which there does not lie a curve of lesser genus. [The points correspond-
ing to the surfaces Vﬂ are everywhere dense in the space of moduli of Kahler sur-
faces with q=0 and K =0.]

Proof. Let VO be an arbitrary Kahler surface for which ¢ =0 and K = 0. Let,
further, ¢, .-, ¢ 5, be a basis of the two-dimensional homology group of the sur-
face VO in which the matrix of intersections has the form indicated at the end of
$3. We recall that, in particular, cp*cp=1 ¢c3-cy=1c5+ce=1, and Ci°cj=0
for all the remaining pairs (i, j) for i, j <6.

We denote by (a ITRRR a22) the integrals of the two-dimensional holomorphic
forms k of the surface Vo over the elements of the basis (c;). These numbers
can be considered as homogeneous coordinates of the point (@) in 21-dimensional
projective space. As was mentioned in $4.1, it follows from Theorem 2 that in
some neighborhood U of the point (2) there corresponds to each point (¢) =

(tl,- SN t22) lying on the 20-dimensional quadric K 4 some complex structure V,
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obtained by a deformation of the structure V;. Here the coordinates of the point
() are equal to the integrals of the two-dimensional holomorphic form kz of the

surface V, over the cycles ¢,*++, ¢,,. As we proved (Proposition 5.1), in the
neighborhood U there exists a point ¢(7) lying on the intersection of the quadric

K,q and the hypérsurface M given by the equation
)
. 2 ﬂ[Z,' =0
i=1

with integer coefficients without a common factor such that

B1Bs + BBy + B:Ps = — 1.

We may assume that the point ¢{7) does not belong to more than one hyperplane
with integer coefficients. » ' ‘

We consider the homology class C = 2i6=1ﬁi c; ‘and the harmonic form o dual
to it on the surface ¥ _ corresponding to the point t{a) = (£q,0 -, t22). The con-
dition e

Mpt: =0

i=1

is equivalent to fck =0 or to the form @ having type (1, 1) (cf: $4.2). Moreover,
{ore =c.cC.
v . .

We calculate the index of selfintersection C-: C of the class C.

¢C= 2 BPici-ci ='2 (Baf. + ﬁ;‘zﬁa + BPe) = 2n — 2.

On the given sutface V. there corresponds to each integer harmonic form of type
(1,1) some complex line bundle whose characteristic class is the cohomology -
class of this harmonic form. Let F be the line bundle vuth characteristic class

¢ (F) to which the form @ belongs. By the Riemann- Roch theorem for Ime bundles

on Kihler varieties [7], we have for our surface V

LA+ I(=F>2+

where [(F) is the dimension of the space of sections of the line bundle F. But
¢ (F)? has already been calculated:

c (Iv:')2
2 ’

c(F)2—Sco/\w 21 —2> 2.

Hence either the line bundle F or the line bundle — F has a section. It is well
known that the set of zeros of this section (which is a complex curve D on the
surface V_) belongs to the homology class that is dual to the characteristic class

of this line bundle, i.e. the curve D belongs either to the class C orto — C.
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Thus D has in any case an index of selfintersection 27 — 2 and hence is a curve
of genus 7.

We have assumed that the point ¢(7) does not belong to any hyperplane with
integer coefficients other than the plane with coefficients 8;. Hence any divisor

on the surface vVﬂ is equivalent to an integer multiple of the curve D. Thus

D? = (kD)® = kD% > 2n — 2,
where D is any divisor. We see that the index of selfintersection of any curve on
the surface ¥ is notless than 27 - 2. Thus the genus of any curve lgingon V,
is not less than .
We will now show that all the curves of the linear system |D| are irreducible.
In fact, let the curve D € |D| be reducible; then each of its components Di is.

equivalent to a positive integer multiple kiD of the curve D, and we have

D=3D;~ (Zk)D, k>0
and hence i =1, k = 1. S

Thus there is an irreducible curve D on the surface V, such that D?=
27—~ 2> 1. By Theorem 3.3 of [ 25] it follows that the surface Vn‘ is algebraic.

2. It follows from Theorem 5, in particular, that ahy Kéhler surface with ¢=0
and K =0 is diffeomorphic to an algebraic surface V3 on which the group of
classes of divisors generates a single curve D of genus 3.

Proposition 5.2. An algebraic surface with such properties can be realized as
a nonsingular surface of fourth degree in three-dimensional projective space.

Proof. As was shown in Chapter VIII, the curve D is nonsingular, and its
linear system |D| either regularly and birationally maps V3 onto a surface of
fourth degree in PS, or maps the surface V3 onto a quadric in P3 in two sheets.
We will show that the second case is impossible. In fact, a quadric in P 3 is bi-
regularly equivalent to the product of two rational curves P 1y P'l and its hyper-
plane section S is reducible and equal to Pl xp' + p xP!' where p and p’ are
points of Pl and P1'. It is clear from this that the preimage of S under a two-
sheeted map'ping, which (preimage) is by definition equivalent to D, is also re-
ducible. But there can be no reducible curves in the linear system |D|.

Thus there exists a regular and birational mapping fD of the surface V3into
P3. Itis easy to see that this mapping must be biregular. In fact, otherwise,there
would exist on the surface V3 at least one curve § which would contract into a
point under the mapping fD' But then 92 < 0, and hence the curve 6 is not equiv-
alent to a divisor £D. Proposition 5.2 is proved.

Two complex varieties V| and V, are said to be c-homotopic if there exists

a family of complex structures (0, ¥, #) with a connected base ¥ such that
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Vi=al(t), Vo=nl(t), t,t,eM

({26], Definition 1.5). Using this definition, it is possible to formulate the follow-
ing theorem.

Theorem 6. All compact complex Kahler surfaces with =0 and K =0 are
c- homotopw

Proof. As follows from Theorem 5 and Proposmon 5 2, each such surface is
c-homotopic to a nonsingular surface that is given by an equation of_ fourth degree
in three-dimensional projective space. We will show that any two nonsingular sur-

faces of fourth degree in P 3(C) are c-homotopic. Let v
{ts, iy, i i}y where iy >0, Zi, = 4

be the coordmates of the space- cV , N =35, and (xo, X3, % 2’ x ) be homogene-
ous.coordinates i in the projective space P3(C). We denote by B the set of those

‘points of the direct produet P? x CN which satisfy the equation

P (x) = 2z‘,-,,l-l,‘,,-,xi;u\"'_lxgxf,’a = 0.
For a fixed t # 0 the equati‘on Pt(x) = 0 gives a surface of fourth degree in P3(C).
In order for this surface to be nonsingular it is necessary and sufficient that all
the pértial derivatives of the polynomial P.z (x) with respect to the coordinates of
the projective space P3(C) never vanish simultaneously at any pointbof the sur-
face P (x) = 0. The subset C of the points of the set B in which all the partial
deruatn es of the pol}nomxal P, (x) vanish is a closed complex subspace of the
complex space B. Let 7 be t.he holomorphic mapping of the set B C P3xch
onto the space c® induced by the pro]ectlon of the product P3x ¢V onto CV.

The Lmage of the set C under the mappmg will also be a closed complex subspace

,mC

, and beuce its complement :
M= CN - UC

is connected. -

It is easy to see that

= (=7 (M), M, =)

is a complex analytic family of complex structures, where for any nonsingular sur-
face V of fourth degree in P3 there exists a t € M such that V = 17_1(1»).

Since the base M of this family is connected, any two nonsingular surfaces
of fourth degree in P3(C) are c-homotopic. Theorem 6 is proved.

It is clear from the definition that c-homotopic varieties are always diffeomor-
phic. The following assertion is an obvious corollary of Theorem 6.

Theorem 7. Any two compact complex Kihler surfaces with q=0 and ¢ 1=0
are diffeomorphic.



CHAPTER X

ENRIQUES SURFACES

In this chapter we will study surfaces with « = pg =¢q = 0. It will be proved
that a generic surface of this type is birationally equivalent to a surface of Gth
degree in P? that paéses twice through the edges of a tetrahedron.

In $1 we prove a series of propositions about linear systems on generic sur-
faces of the type under consideration.

In $2 we present the basic construction of the chapter (belonging to Enriques),
and we prove that on a generic surface with x = Pg=4q-= 0 there exists a pair of
isolated (i.e. not changing in the linear system) elliptic curves (i.e. divisors of
arithmetic genus 1) with a positive index of intersection.

In $3 the basic construction is again applied to obtain a pair of isolated
elliptic curves (irreducible) with an index of intersection of 1. Using these curves
we prove that every surface with « = Pg=q= 0 is birationally equivalent to a
double plane whose branch curve is constructed in a certain way.

In $4 we construct a birational mapping possessing all the desired properties.

Finally, in €5 we calculate the “‘number of modulj"’ of algebraic surfaces

with «x = Pg=q= 0. It is equal to ten.

$1. Linear systems on a generic Eariques surface

+By-a rational (elliptic) curve we will always understand a divisor (possibly
reducible) of arithmetic genus 0(1). If tC1 is some linear system, we will de-
note by |C’| the linear system |C + K! and call this system an adjoint system.
We do not exclude the case when both the systems |Cl, |C'] =|C + K} each con-

tain a single curve; such curves are said to be isolated.

Thus, let F be a nonsingular algebraic surface with k= p = g=0. As was
proved in Lemma 4, $1, Chapter VIII, PZ(F) =1, 2K(F) = 0, and thus for any

effective divisor C on the surface F we have
(62) = 2pa (C) - 2)

dim|C|>%=p, ©) — 1,
2C ~ 2 (C + K).

226




LINEAR SYSTEMS 227

Proposition 1. Let 6, 8’ ~ 8+ K be effective divisors without common com-
porents. Then pa(e) > 1.

Proof. We have p_(0)=(9-(6+K)/2+1=(6-6")/2+1>1

Corollary. If 6 is an irreducible rational curve, then the divisor 6 + K isnot
equivalent to an effective divisor.

Proof. Let 6 "~ 0+ K be an effective.divisor. Then the divisors 8, " must
have a common component, and since @ is irreducible we have 0<8' -0~ K.
This is a contradiction.

Proposition 2. Let C be an'irreducible elliptic curve and let dim [C| = 1.
Then: '

1) the system ,(n = |C+K| is not empty and consists of a single curve;

i €L is an effective d:uzﬂo:, then C'= C/2+(C/D), where /2,
(C/2) denote effective’divisors whose curriers are connected and do not have
commen paints. ‘Moreover, (€/2) ~ €/2 + K. and the divisors 2.(C/2), 2-(C/2)'
belong to-the system |C|- and are uniguely determined by this property, from which
it follows that they ore isolated.

Proof. By a theorem of Kodaira ([25], Theorem 2.5) H'(F, Q(C + K)) =0
and }) follows directly from the Riemann-Roch thecrem. '

‘We will now prove 2). We fix an arbitrary point on the carrier of the divisor
C'; then there exists a divisor ;€ |C | passing throtgh this point. Siace
{C 1 C=(C%) = 0, the divisors €, and c’ have a common component, which we
denote by €/2. Thus, Cl-: C/2+ D, €' =€/2+ D', where the divisors D and D’

are effective, nonzero, and do not have common compenents. Iris also clear that

D' ~ D+ K. Since thesystem | C|-is-irreducible; we have (C.(C/2)) and

(C.D) >0, and since (€C2Y=(C-(C/2)) + (€ D) = 0 we have (C-(C/2)={C. [‘)

‘Hence (_\(,/z D/ -D)=(CAC/ D) =0 cmd (C/2-D)+ DH=(C- D) =

Since (D2) = (D D> G (the divisors D and D' do not have common components)‘,
we have. ((C/2)- D) <0, ((€/2)2) > 0. We set C/2=X s; A4, +~s 4 , where all
the curves 41 .4] are irreducible, AL is.a component of D and }.sj, A’ does not
have any commen components with D. Since the carrier of the diwisor Cl is con-
nected, (DX s j "4 )>0 if Xs) A] # 0. On the other hand, (25 A D) =

(vs 4 D> o0. Hence 25 A # 0 implies that (C/2y- DY > 0, i.e. leads to a con:
trad‘ctwn Thus the camer of the divisor C/2 is a subset of the carrier of the
divisor D,.and hence ((C/2). D)= {((C/2). D) > 0. We thus obtain that {(C/2). D)=
((_C/!Z)z) = (Dz) =0, and the divisors D and D' do not have common points.

We will now show that I} = C/2: By the Riemann-Roch theorem we have
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dim B (F, @ (& —D) + dimi* (F, @ (D' =5 ))> 1, ()

dim H°(F, Q (D — +)) + dim H°(F, Q (+—D))>1 (=)

The second terms in the left-hand sides of the inequalities (%) and (**) are equal
to zero, for otherwise we would have dim HO(F, Q(C) > 2, which contradicts
the already-proved assertion 1). Hence both first terms are nonzero and D ~ C/2.
If D#C/2, then dim|C/2| > 1, which contradicts the irreducibility of the curve C.
The connectedness of the carriers of-the divisors C/2 and (C/g)' =D' also
follows directly from the irreducibility of the curve C.
If, finally, H is an effective divisor and 2H € {C|, then by the Riemann-Roch

theorem

dim H° (F, Q (H — &) + dim H°(F, @ () —H ))> 1,

and if the first term is not equal to zero, H = C/2, while if the second term is not
equal to zero H = (C/2)'. Proposition 2 is thus proved.

Corollary. If C is a curve possessing the properties given in Proposition 2,
and @ is an arbitrary divisor, then the index of intersection (C+6) is even.

Proof. We have (C- 6) = 2{(C/2). 6).

Definition. An Enriques surface F is said to be a surface of special type if
there exists on it an irreducible linear pencil of elliptic curves C and a nonsingu-
lar rational curve 8, such that (C.6) = 2.

In the future we will always assume unless something is said to the contrary
that the surface F under consideration is not a surface of special type.

Proposition 3. Let ]Cl be a complete linear system and let pa(C) > 1. Then
the nonfixed part |D| of the system |C| is irreducible and p (D) > 1.

Proof. We first assume that the system |C| does not have fixed components
and prove that it is irreducible. Let the system |C| be reducible. Then (by Ber-
tini’s theorem and the regularity of the surface F) it is composed of the curves
of (an irreducible) linear pencil H (|C|=|nH|, (H?)>0, n>1). By the Riemann-
Roch theorem we have n = dim |C| > n2(H2)/2 > n?. Now let the system |C| be
arbitrary. If PG(D) > 1 then the system |D| is irreducible by what has already
been proved. We now show that p (D) -1 = (D?) = 0 leads to a contradiction. If
it were not true, then |D| = |nH|, where H is an irreducible pencil of elliptic
curves. Since, moreover, (C2) > 0, the fixed part 6 of the system |C| is nonzero.
Since (82) < 2dim!8] = 0, we have (D.0) = ((Cz) ~(62))/2 > 0. There thus
exists an irreducible component 9 of the divisor  such that (H.8)> 0. More-
over, if the curve 9 is elliptic ((82) =0), then (H-8) > 2 (by Proposition 2),
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and if 0 is rational ((62) = —2), then (H-9) 2 4. In any case, by the Riémann-

Roch theorem we-have
= dim|D | = dim |D + §| > ZHE)+ @) o 5,

This is the desired contradiction.

Proposition 4. Let {C| be an irreducible linear system and let P, (C)> 1.
Then dim’|C| = ‘C+ K| = pa(C)— 1, and the system |C'| = |C + K| - is also irre-
ducible. ‘ :

 Proof. By the theorem of Kodaira already mentioned, H'(F, Q(C + K)=o0
and thus dim C' = dim HO(F, Q(C') - 1= €Y -1=p (C)=1. We set

[C'l = |D| 4 0, where |D! and 6 respecnvely are the nonfixed and fixed parts of
the s)stem |C’]. By Proposluon 3, the linear system |D| is irreducible and
P, (D) > 1. Oa the other hand, p, (D) - 1 < dim {D| = dim [C'| = p,(C) - L Thus '

1<p, (D)<p (0.

We will now prove our proposition by induction on the number pab(C),' Let
p,(C) =2. Then p_ (D)= 2, and hence (D =(CH=UC+ 6)2) 2(D. 0) + (62) =

1f (62) <0, then (D-6)>0, and hence 0 >(D 6) + (62) = ((D + 9). @—(C 0)
which is impossible since the system |C| is irreducible. .

If (62)=0 but ¢ 0, then by the Riemann-Roch theorem there exists an
effective-divisor:0 '~ @+ K. Since 0'£0 and 26 ~ 26’, the linear system |26
is at least one-dimensional, and at least one curve of this system passes through
each point of the surface F." Since (D« 6)= 0, and the system |D] is irreducible,
there exists a divisor- 5 € {26 that can be represented in the form 5 = DO +H,
where D, € |D| and H > 0. Since (D?)>0 and (62) = 0 we have (D?)

2(D-H)+ (H?) =0, 2(D-H) + (H?) <0, D-H) + (H2) = (D'+ H)- H) <0 (since
(D+H)> 0 by the irreduc1b111ty of |D|). This means that (D + ). D} = -
D+ H)2- (D + H)- H)_(62>-((D+H) H) >0, i.e- (D-6)> 0, which contra-
dicts our assumptions. ,

We note further that (92) < 2dim|6| = 0. Thus, it is impossible that (92) <0
and (62)> 0 and (62) =0, for 0 £ 0. Thus .6 =0, and hence the system |C'|=|D|
is irreducible, #'(F, Q(C' + K)Y = H'(F, Q(C)) = 0, from which we obtain our asser-
tion for pa(C) = 2 by using the Riemann-Roch theorem.

We will now show, using the induction assumption, that it is always true that
p,(D)=p, (O In fact, let p,(D) <p_(C); then by the induction assumption
dim |D| = pa(D) -1 <pa(C) - 1=dim|C'|. This is a contradiction.

Now, repeating the argument given in the case p_(C) = 2, we obtain that 6= 0,

the system |C’| is irreducible, and, applying the theorem of Kodaira, that
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dim!C| =p, (C) - 1. Proposition 4 is proved.

§2. The basic construction

1. Let C be an irreducible curve, and et p, (C) = #> 1. By Propositions 3
and 4of $1, dim!C| = 7- 1, dim |2C| = 47 — 4 and the system L =12C) is irre-
ducible. In the space of parameters P 4774 of the system L we consider the sub-
sets 51 and §, cortesponding to curves of the system |2C| that are representable

in the form Cl+ C 5 C' J-CZ respectively, where CLG!C! CL€1Cl,L—1, 2.

A) Each of the subsets S|, S, isa (27 = 2)-dimensional algebfuic subvariety

>Ln P4774

For the proof of this assertion we fix the divisors €, €, € |C|. Let the
functions fO =1, fl,- o, fn 1 form a basis of the vector space’ L(C 1) consisting
of the functions f such that (f) + C > 0.

A Moreover let us assume that the function fl brings about the equivalence of
th%ﬁs;wsors C1 ~ CZ and that a common component of these divisors is either
empty or is an isolated curve. We consider the functions g, =1/f;, g,=1,"-*,
87-17 fﬂ_l/fl' as a basis of the space L (CZ)‘ It is not difficult to see that

under our assumption-_ about the divisors Cl and C2 .the functions 1 = fO’

fl,- -, fﬂ-l’ 8> 82:°" "1 8pmq aTE linearly independent, and thus the space
L(C1+ Cz) admits Fhe basis hy=1, /zl: fl,-_--, hn-1= fﬂ‘l’ h_ =g h,—,+‘1=
8 s o= 8pop b opop oo Ao Apoint (vgieen V477-4) € P47 be-
longs to th(ﬂ? set Sl if and iny if there exist points (aoz cen CL"_I),

(Qﬁ,&gw . ‘8-77‘-1) ep™l ,-such that VOhO toee Y g 4h4n "q =

y@gfo+ e v a1 fo ) x(Bogg+ e+ Bpo18p-1- Setting fig; =

st’i o 1}1 ; removing parentheses and equating the coefficients of hé in the

snd ng‘lt-hand sides, we obtain a parametric equanou of the set Sy:
& : Vk—TZC Jo k=0, 4 —4. (%)

We note here that with our ChOlCE of bases these equations are symmetric with
respect to the indices i, j (since f; 8 = fgL ff/f) and that the:coordinates
of any divisor of |Cl in the chosen bases of the spaces L (C ) and L{C ) are

_identical.

Making an analogous construction for the set S,, we find that both sets are
algebraic and of dimension 27 - 2.

We now study the sets of the singular points of the subvarities 51 and §,.

B) Let € and C be curves of the system |C|, a common part of which is
either empty or is an isolated curve. Let, moreover, the divisor €, + C, be

written uniquely (up to permutation of the terms) in such a form. Then the point of
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the variety S| corresponding to the curve €+ C, € |2C} is nonsingular.

For the proof we continue the analysis of the equations (*). We note that
Cll Clz 8}: , C] = Ck] - 57 a1 U#0, 1), COO 7. In the basis chosen in
the space L(C)) the divisor C has the coordmates (1 0: +-+: 0), and the
divisor C the coordmates (0 1 0: 0) in the basis constructed for the space
L(C,+C ) the divisor €+ C, bas the coordmates (1: 0:++-: 0).

We con51der the symmetric square I of the space P7" ! and the projective
space Pn “1 with the homogeneous coordinates (u 0 <i, ] <7=1). The

formulas ) :
T a[ﬁi +aiﬁp i==],
=28,
determine an imbedding of the variety T into pr¥-l ,-where singilar points of T
can only be points of the diagonal. W= can rewrite the parametric equations (%) in
the form » : ‘
vy = T'Z_Cff (a‘.ﬁj —!—ajﬁi), k=0,... 41 — 4
_ £y .
then the formulas

vy = TZCW”, =0,...,4n — 4

determine a projection pr2-l ——»P4"--4 mapping the symmetric product T onto
the variety §;. ' : . ‘

The point P €T CP-' 1 corresponding to the pair of divisors (C 1, CZ)
does not lie on the dlagonal of T, is nonsmgular in T, and has in P’7 ! the
coordinates /,LOO‘— 0, p19= “'01 Ys #U—O (i? +J 2>1).

Since the point (1: 0:++-: 0) € P4""-_4 is the image of a smgle pomt of T
(namely of the pomt P),.it follows that for the proof of its regula.nty in S we

must establish that the hyperplane in P’ 2- pro]ectmg the point. P is : not tangent
to T at this point. Substituting the values of the coordinates v;, we find the

equation of this hyperplane: 7
0= chp” 0< b dn — 4.

2-1 .
In the nonhomogeneous coordinates of P" lina neighborhood of the point P

these equations can be written in the form

Cku,,—O k=1, :rr—4 ' (%#)
(, 17=(0,1), (1,0)

where Ui = by /y01, and in the right-hand sides there are zeros, since
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Céo Col 89 =0 for k > 1. On the variety T

I e s R el
l]-; agB1 -+ 2130 1+ x1yo

u; =

where we have set x, = yl_l andx,y (G=1,+02,m7=1;7=0,2,000,7=1)
are the nonhomogeneous coordinates in nelghborhoods of the points (1:0:++-:0)
and (0: 1: 0:+ .- :0) €P7T L Let Ly (t), ui/-(t) (:? +j > 1) be the curveon T
tangent to the projecting hyperplane at the point P. We note that u;; (0) =
%;0)=y;(0)=0 (12424 1,040, )# 1). As it is got difficult to calculate,

du,; (O du,, (0) de; 0) .,

uldt( o =@ UF0o

du,; (O du, (0)  dy; (0)

u‘zt() = lgt = / ( 5&0 l)v

dun(0) _ o 4 (0) duoo (0) _9 dyo (0) ’ gu,‘, (0) —0

dt - dt ! dt dt

in the other cases.
The coordinates du, (0)/dt of the vector tangent at the point P to the curve

u; (t) must satisfy the system (+#). After a substitution, we obtain_

du;; (0 dy. (0
0 = Z Ck, u‘/( ) Z (C01 C]O y]( )
(& i) (0,1). (1,0) ,,_1
i Y3 X (O) ; dc (O) O
Y L S PR Ny
{70 >1
E=1,..., 47 — 4.

Giving k the values from 1 to - 1, we obtain dx; (0)/dt=0,i=1,---,7— L

Giving k the values 7,..-, 27 — 2, we obtain dy (0)/dt 0,j=0,2,-+-,m— L
Thus our tangent vector turns out to be zero. ASSGI‘thﬂ 'B) is proved.

" C) The degree of the subvariety S| is not less than _2_(2n T ?)
For the proof we choosé on the surface F (27 - 2) points Ql,- . QZTT -
such that

1) the hyperplane E272 iy P44 corresponding to the curves of L = |2C|
passing through all these points has dimeasion (27 - 2);

2) a single curve of the system |C| passes through any (7 — 1) points of the
system Ql,- <o, 0277-2' Moreover, different curves of the system |C| must corre-
spond to different choices of the (7 - 1) points.

It is not difficult to construct such a system of points (,-"+, 027.-;—2 by
induction: 1) as Ql we take any point of the surface that is a base point for
neither the system |C| nor the system L; 2) let the points Ql,- ., Qs already
be chosen such that a) the system of curves of |2C| passing through all these
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points has dimension 47 - 4 — s, and b) the system of curves of IC'l passing
throug'h the.pomts Qil’ .., Qik’ 1< ll <o Rip <8 k=1, min (s, 7 - 1),
has dimension 7 -1 - k. :

Then we can take as the point Q¢ 4, amy point other than a) base points of
the system of curves of L passing through -all the points 01, -+, @y, and b)
base points of the system of curves of |C| passing through the pOiDtS
Oppros Oy 158y <evv <y <s, k= 1,---, min(s, 7= 1

It is mot difficult to calculate the number of points of the intersection of the
hyperplane E?7™2 CP47— 4 With the subvariety S Such points are in one-to-one

correspondence with the pairs C C € |C| that parutlon the set Q U--su (_)27_2
into equivalent subsets, i.e. by the construcnon the number of points is equal-to

20— ?) . We shall

the number of such partitions, which is clearly equal to 5 ( T— 1

: denote this quantity by G,

Hence, the degree of the subvariéty S1 (and, obviously, of the subvariety e
S,) cannot be less than G, j.e. assertion C) is proved.

We note that, as follows from assertions A) and C), the subvarieties Sl and
S, have at least 62 points of intersection (counting multiples). The curves of
the system [2C| corresponding to such points will be called special.

2. Now we show that on the surface F

1) there exists a pair of elliptic curves with a positive index of intersection,

“each of which, being double, changes at an irreducible point;

2) every divisor with a positive arithmetic genus is equivalent to a sum of
such pairs and some divisor T" > 0.

Remark. From assertion 2) and Propositions 3 and 4 of $1 it follows easily
that the group of the classes of divisors on the surface F is generated by irre-
ducible rational and elliptic curves.

Proof. Let C be a divisor with a positive arithmetic genus. Without loss of
generality we can assume it to be irreducible (by Proposition 3 of §1). By the
results of subsection 1 there exists a special curve L € 12C 1, i.e. a curve

representable both in the form

Ly=C+¢C, C,GC EIC[,

and in the form
Lyi=C+C, C,Ce|C )

We denote by ' the common component of the curves Cl’ CZ’ C c' 5, and

we consider the linear system |2C — 207,
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Since the curves Z(Cl_ D, Z(Cz -, Z(Cll -, Z(C'Z— ") belong to this

system and do not have common components, the system {2C — 2T"] does not have

fixed components (and is nonzero, since otherwise we would have K > 0, which is

not true).

A) We consider the system of equations

D,+D,=C, —T, D, +D;=C;—T,
(%)
D;,+D,=C,—T, Dy+Dy=0Cy—T
) %
and set Cl—r=5_qiﬂi, C2—r=2riHi, C'l—rzzsiﬂi, CE—F:ELL.HL.,
where the H; are imeducible curves, q;, r;, §;5 £; 20, g;+r;+s;+1;> 0,

g;+ry=s;+t;. Ve also write DI:Z,\:‘.HL., D2=27iHi’ D3=22iﬂi,

= Euiﬂi. In this notation the system (#) takes the fonn

Xt ye=q, X+ z=s,
g tu=r, Yy +u==1.

for each .

Since the common component of the right-hand sides of the equations (*) is
equal to zero, ¢;7;5;¢t; = 0, and this condition, as it is not difficult to show, is

necessary and sufficient for the existence of a nonnegative mteger solution
:\'L, 57;’ z;, u of the equations (**) satisfying the conditions x u =0, 3/\;'\; =0.
Setting D | = inHi’ D,= Zyiﬂi, D3—EziHL-, D4_ ZuiHi, we obtain a solution
of the system (x) possessing the following properties:

a) D; >0,

b) the divisors D and Dy (DZ and D-3) do not have common components.

On the other hand, we have
D, +Dy~D, +D, + K, D,+Dy~D,+D,+XK,

ie. Dy~ Dy+ K, D4y~ D, + K. It now follows from Proposition 1 that D; >0
and p, (D ) > 1L Hp,D)>1 (or Pa(Dy) > 1), then we denote by |,C| the non-
fixed part of the system IDl] (ID,1). By Proposition 3 the system }1C| is irre-
ducible and pa(IC)) 1; by Proposition 4, pa(IC) <p,{C) (since dim ! 1<
dim 'C}).

B) Now let (C - F)2> 0. Then we have found either an irreducible curve 1C
whose arithmetic genus satisfies the inequalities 1 <p (,C) <p,(C), or a pair

of elliptic curves Dl’ D2 that do not have common components with their adjoint

curves D4'v D1+K, D3NDZ+K.
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In the last case we consider the systems |2D 1!, lZDZl. Clearly, each of
these systems does not have fixed components (since 2D . ZD € 12D l 20
2Dy € 12D ,| do not have common components), and is thus composed of an irre-
duc1ble pencil of elliptic curves ({2D 1| In lL 1| l2D2| |7l 2|) The curves
L /2, L /2 (cf. Proposition 2) are elliptic, isolated, and have a positive index
of intersection L 1/2 L,/2 (since (D -D ) = ((C -1)%/2) > 0)). The curves
(L 1/ 2), (L 2/2) possess the same propertxes The carriers of the curves L 1/2,
(L 1/2)’(L /2, (L 2/2)') do not have common points, and th‘e linear systems L 1
and L ; are one-dimensional and irreducible.

C) Let (C-T)2=0 (since the system |2C - 2I"| does not have fixed com-
ponents, (2C — )2 > 0). We have (C2?) = ((D1+ D,+ REE ((C N?)+
2D, 1)+ 2(D,-T)+ (M) = 2(D; -1+ 2(D, . D) + (T?) >0.

If (T'2) > 0, we denote by i€ tle nonfixed part of the system IT'|. By Prop-

ositions 3 and 4 we have
1<p(,0) <p (O

If 2(D .T) >0, we denote by 6 an irreducible component of the curve I' for
which (D 6) >0, and by ,C the nonfixed part of the system |0, + @|. Since
the surface F is not a surface of special type, it follows easily from Propositions
3 and 4 that 1 <p,(;0) <p_(C).

D) Let us summarize the results given in A), B), and C): on a given irreduci-
ble curve C with pa(C) > 1 we have found either a) an irreducible curve 1C
whose arithmetic genus satisfies the inequalities 1 < pa(1C) < pa(C) (from A)and
part of B) and C)), or b) a pair of elliptic curves Dl’ D, with a positive index of
intersection possessing the following property: (I) there exist irreducible pencils
of elliptic curves L, L, such that D= L,/2, D,=L,/2 (cf. Proposition 2 of
¢1 and B)). -

Repeating our process as long as we have case a) (because of the inequalities
1<p,( C) < pa(C) this ‘can only be done a finite number of tunes), we finally

arrive at case b).

$3, The representation of an arbitrary Enriques surface

as a double plane

1. Here we will show that there exist on the surface F two elliptic curves

with index of intersection 1 possessing the. property (I).
Let D; and D, be the pair of elliptic curves obtained at the end of the pre-

ceding section, and let (D, -D,) = s > 1. We consider the linear system |C| =
D+ D,
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A) The system |C| is irreducible and p (C) > 2. For, p,(C) = (€C¥/2+1=
(Dl -Dz) +1=s+1>2. Since the systems L;=12D|, L,= |2D,| are irreduci-
ble and one-dimensional, the system |2C| = |ZDI+ 2D2| does not have fixed com-
ponents and is irreducible by Proposition 3 of $1. By Proposition 4, dim 12C1 =
p,(20) - 1.

We denote by ICI the nonﬁxed part of the system IC‘ By Proposition 4,
p,(O) -1 <d1m|C| —dun]Cl =P, (C) - 1. Hence P, (C)>p (C). On the other
hand, dim ]2Cl < dim|2C|, where equality is possible only when |C| ICI We
have

dim]2C] = 4 (p, (€) — 1), dim|2C| = 4 (pa (C) — V).

Comparing the mequahues obtained, we conclud1n that p_ (€)= P (C)
dim |2C| = dim |2C| and, finally, |C| = ]Cl

. We have thus proved that one can apply to the system |C| the process de-
scribed in §2.

___One of the special curves of the system |2C| is the curve H = D, +D,+
D'1 + D'z. We will now show that the points corresponding to this curve on the
varieties Sl’ S, can be assumed to be noasingular on these varieties.

B) If at least one of the curves b,,D,, D'l, D'2 is reducible, there exists on
the surface F an irreducible curve 1€ < C whose arithmetic genus satisfies the
inequalities 1< pa(IC) <p (0). If all four curves D, D,, D'l,‘D'2 are irreducible,
the points on the varieties 51 and S, corresponding to the special curve
H € |2C| are nonsingular by assertion B) of $2.1.

For éxample let the curve D'1 be irreducible and let & be an irreducible com-
ponent of it such that (D - ) > 0. By the assumption of the nonspecialness of the
surface F and from Proposxtlon 2, (D2+ 6)2 > 2. Since dim }D + 6] <dim |C]
the ‘arithmetic genus of the irreducible noafixed part | 1C| of the system ID’,+ 6]
satisfies the inequalities 1 < pa(1C) <pa(C) (by Propositions 3 and 4).

C) If the divisors .Dl’ D,, Dll’ D'2 are irreducible, then the curve H is not
the only special curve of the system |2C|. .

;) >9

(possibly multiple) special curves, it is sufficient for us to show that the point

1
Since by the formula of $2.1 C) the system |2C| has at least Z(

Q € 5N S, corresponding to the curve H is not a multiple intersection of §;
and 52. We can assume here, as was shown above, that this point is nonsingular
on the varieties §; and §,.

Let us assume the contrary. Then there exist on the varieites Sl and §,
curves 01(2), Qz(t), 0 <t <1 tangent to each other at the point ) = QI(O)= 02(0)-
Two curves Cl(t) and Cz(t) (C'l(t) and C'Z(t)) correspond to the curve Ql(t)
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(Q,(2) in the space of the parameters of the system [C]| (i€’]). We can choose
the indices in such a way that

C,(0) =D, +D,, C,(0) =D; +Dy, C; (0) = D, + D., Cs (0) = D, + D

We consider the ruled surface V formed by the lines L (t\ passing through the

points (), Q (1), and the analogously constructed surface V5 formed by the lines
L ,(1). We denote by L the intersection of these surfaces (1 e. the line corre-
spondmg to the common tangent vector of the curves O (2).. Qz(l))

We will prove that all the divisors lying on the line L contain the curve H;

this will be the desired contradiction.

Clearly, every divisor lying on the line L 1(&) (L z(t)) cuts out on the (irre-
ducible) curve D the same divisor as t:he curve C (t) +C (t) (Cl (£) + C’ ).
Thus, ev ery dnlsor Iying on the line L mivally cuts out on the curve D the

dl\lSOI .
least common multiple of {}iT C )+ Cy(®) Dy, 1jm €, () + Cz’ ()) D,

Clearly, H1= limt_,ocz(t)-D1= DIZ'DI’ H2= limt_,o 2(1) D = D2 D . Since
the curves D, and D'2 do not have common points H N H,= 0.

If we can show that liml_,ocl(t)- D1¥ D2 . Dl’ it will then follow that the
divisors of the line L do not have more than 2s = 2(C- Dl) points in common

" with the curve Dl,i e. these divisors contain D

Let us assume, then, that 11mt~061(t) D,=D, +D,. This means that the
divisor D, D belongs to the linear system lC Dll i.e. (C D,)- D =D;-D,

is a dulsor equn alent to zero on D ;- From the exact sequence
0 — HO (F, @ (0)) — H° (F, € (DY) — H Dy, @b, (D110)) — H* (F, 2 (0),

corresponding to the exact sequence of sheaves
Q (0) —'Q (D)) — o, (Di] ) — 0, _

we conclude, ho“féver, that since dim HO (F, Q(O)) = dim HO(F, QW 1)) =1 (the
curve D is isolated), dim H 1 (F, Q(O)) = 0, it is also true that
dim HO(D 1; Qp l(D I‘D 1))'= 0. (If the set D, N D, contains a siogular point of
the curve Dl’ we can consider Iimt_,OC'l(t)- D1 and the divisor D'2 . Dl')

It is proved analogously that the divisors lying on the line L contain the
curves D, D D . Assertion C) is thus proved.

D) A spec1a1 curve H of the system |2C| different from H pemmits one to
find either an irreducible curve C whose arithmetic genus satisfies the inequali-
ties 1 <p,( C) <p, (C), or a pair of elliptic curves D3, D 4 with a positive
index of intersection possessing property (I) of §2.2 D) and such that
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Dy+ D4+ T ~ C (cf. A), B), C) of $2.2).

In the first case (here we eliminate also the curve }1C that can have been
obtained in B)), we apply to the curve lC our basic construction and obtain in the
end a pair of elliptic curves possessing the property (I) with an index of intersec-
tion less than s.

We turn to the second case. We have ‘
(D, +D)D,+ DY =D Dy + (DD Y +(DyDy) +(DyDY=(CH-(C-D) <25 ()

If one of these indices of intersection, for example (D1 . D3), is equal to zero, "’
then the correspondiag irreducible pencils of elliptic curves (L 1= 12D ll"
L 3= |2D3| in our case) coincide.

It thus follows from Proposition 2 of $1 that L 1/2 =D, L 3’/2 = D3 either
coincide or are adjoint to each other. Hence only one of the indices of intersec-
tioﬁ in equation (%) can be equal to zero (since the curves H and Hi are distinct).
Therefore one of these indices of intersection is positive, but does not exceed
s— L

Thus for each pair of elliptic curves possessing property (I) with index of
intersection greater than one, we have found another pair of elliptic curves possess-
ing the same property and whose index of intersection is positive but less than
the original one.

Repeating this process we finally find the curves whose existence is asserted
in the beginning of this section.

2. Here we obtain a representation of the Enriques surface F in the form of a
double plane with a branch curve of eighth degree that decomposes into a curve of

sixth degree and two lines.

A) We first assume that F is not a surface of special type.

We then coasider the linear system C = |D1+ D,+ D'l}, where D and D,
are elliptic curves with an index of intersection of I, whose existence was proved
above. Itis not difficult to prove (and this will be done in the beginning of the
next section), that each of the curves Dl’ D,, D'l, D'2 are irreducible, and
dim ’D1+ D,| =1. Since (C?) = 4, we have dim IC| >2 and since the system C
cannot have fixed components, dim |C | = 2, by Proposition 4 of $1. Each of the
three following curves belongs to ther system C: D+ D,+ Dll’ 2D, +>D'2,

2D'1 + D'z; on the other hand, these three curves do not belong to any

* Added in proof: More precise statements and detailed proofs of the theorems in this
subsection, and also proofs of the converse existence theorems, will be found in my article:
B. G. Averbuh, On special types of Kummer and Enriques surfaces, Izv. Akad. Nauk SSSR
29 (1965), 1095~1118. Translator’s note: This article had been translated as the Appendix
to the present volume, )
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one-dimensional subsystem of this system: the curves 2D, + D and 2D1 + D

generate the pencil |2D o+ Dz, to which the curve D+ D2+ D does not be-
long. Hence each of the points of D D'2 and D'1 N D'2 isa base point of the

system C. Since all such points must obviously lie on the curve DIZ’ and
{C. D'z) = 2, the system C has no other base points. Thus the number of variable

points of the intersection of the curves of this system is equal to two.

Let the functions 1,x,y on the surface F form a basis of some space L(CO),
where CO is an irreducible divisor of the system C. Since the system C maps
the surface F onto a plane, the functions x, y generate in the field k(F) of func-
tions on our surface a rational subfield k (x, ¥). By what has be,.en‘ said about the
variable points of intersection, the field k(F) is an exteasion of degree two of
- this subfield.” Thus our surface is birationally equivalent to a double plane

2= F*(x,y). In order to determ.inebn‘ we note that every 'divi‘sc;r {ax + by + ¢ = 0}
belongs to the systém C, and therefore has a genus of 3. Hence n=8.

The images of the points of Dlﬂ D'2 and D'lﬂ D'2 on our plane are lines
belonging to the branch curve. Hence this branch curve decomposes into a curve

of sixth degree and two lines.

B) Now let the surface F be a surface of special type, and let the irreducible
pencil of elliptic curves L bave an index of intersection of 2 with a rational
curve 6. We will show that the system |L + 8 + K + L/2| plays the same role in

~ this case as the system C in the proof of A).

We first consider the linear system D=|L + 6 + K|. By the theorem of Kodaira
. already mentioned many times, HI(F, Q(D)) = 0, and hence by the Riemann-Roch
theorem dim |D] = (D?2)/2=1. We will prove that the system D is irreducible. Let -
{H| and G be its nonfixed and fixed parts respectively. Since the pencil L is
irreducible, we have (L+H) >0 and (L-G) >0 (if (L-H) =0, the systems L and
|H| coincide, because of the equality of dimensions, but then G ~ @ + K, which
is impossible by the corollary to Proposition 1). Syince"(D-L) =2 and (L. H) is
even (by the corollary to Proposition 2) we have (L-H)= 2 and (L-G) = 0. The
curve 6 cannot be contained in the fixed part of the system D, since dim L' =

(by Proposition 2), and hence (H 6), (G- 6) > 0. Since (D-6) >0, we have
(H-6)=(G-6) =0. Now

(H2) 4 (H-G) = (H-D)=(H-(L + 6)) = 2, (H-6) + (6?) = (G-D) = (G-(L+ 6) = 0
The following cases are thus possible:
1) (H?)=0,(H-6)=2,(6?)=-2 and 2) (#}) =2, (H-C)=0, (G2) =0

In case 1) the system |H| is an irreducible pencil of elliptic curves, which is
impossible by the corollary of Proposition 2, since (H-(L/2)) = 1.
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Case 2) thus holds. We will show that G = 0. Since the divisor L/2 + (L/2)' + 6
belongs to the system D and 8 is not contained in G, we have G <L/2 + (L/2)".
Since ((L/2)2) =0 and the carrier of the divisor L/2 is coanected, this divisor
does not contain a component (even a reducible one) with a zero index of self-
intersection. Since the same may be said about the divisor (L/2)’ and the divisor
G decomposes into two components (g.c.d. (G, L/2), g.c.d. (G, (L/2)")) without
common points and has a zero index of self-intersection, we have G =0. The
pencil D is thus ireducible.

We note that this pencil has two base points not lying on the cdrve 6
((D-9) = 0): namely, if D is an irreducible curve of this pencil, then the base
points are points DyNL/2, DyN (L/2)', since both these points also lie on the
curve L/2+(L/2)' + B € D.

We consider, finally, the linear system C=|D + L/2|. Since (C?) = 4,

dim |C| > 2. On the other hand, the dimension of this system must be smaller
than the dimension of the irreducible system |D+ L| = |2L + 6 + K|.

According to the theorem of Kodaira, H'(F, Q(D + L)) = 0, and since
((D + L)?) = 6, the dimension of this system is equal to three. Thus dim |[C| = 2.

The system C contains the one-dimensional subsystems |D| + L/2 and
{L] + 6 + (L/2)'. Hence this system does not have fixed components, is not com-
posed of a pencil, and thus is irreducible. The base sets of these subsystems
intersect, but only at the points Dy (L/2)', L/2 6. These two points are the
unique base points of the system C. Now repeating the corresponding parts of
the arguments of part A), we can show that our Enriques surface of special type F
is birationally equivalent' to a double plane with a branch curve of eighth degree

that decomposes into a curve of sixth degree and two lines.

$4. The representation of a general Enriques surface
in the form of a surface of sixth degree in P3

that twice passes through the edges of some tetrahedron

1. We now give some properties of the curves D1 and D, that were con-
structed in '§3.1. .

A) If two isolated elliptic curves D and D, possessing property (I) of
$2.2 D) have an index of intersection of 1, then 1) each of the curves D, D,
D', D, is irreducible; 2) the linear systems \Dy+ Dyl 1D+ DY\ are irreducible,
one-dimensional, and have two base points each: D.n D', and D'lﬂ D, inthe
first case, and DD, and DN DY inthe second.

Proof. 1) Let us assume that the curve D, is reducible. Since (D1 -D,) =1,

the curve D1 cannot have the form s, s > 1, where 0 is an elliptic curve;
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bence it has a rational component. Since the pencil |2D2| is irreducible,
(DZ <) > 0 for every component & of the curve Dl‘ Moreover, among these com-
ponents one can find one for which (D2 «0) > 0. But in this case we have
(D -D ) > (D2 :60) > 2 (we recall that the surface F under consideration is not a
su:face of special type). We obtain a contradiction. The 1rreduc1b1hty of the
curves D ,, Dl’ D2 is proved analogously

2) It follows from the first part of our assertion (]ust proved) that the system
lDl+ Dzl does not have fixed components. Since ((Dl + Dz) ) = 2, it follows
from Propositions 3 and 4 of §1 that this system is irreducible and one-dimensional.
The curves Dl + D, and D'1+ D'2 beloog to this system and have two common
points: D 1 N D' and D' N D,. Hence both these points ‘are base points of the

system D+ D2| One proves analogously the assertion about the system

iDy+ D2| = |D + Dyl

B) The curves D, D,, D, and DY, form a quadrangle with the vertices
P,=D,ND,, P,= Dlﬂ 1)2, 3=DND,, Py= DN D%. If an isolated ellip-
tic curve DS possessing property (I) of $2.2 D) has an index of intersection of
one with each of the curves D and D, and passes through one of the vertices

of the quadrangle, then 1) there exists an effectivg divisor I such that
Dy+T ~D,+D,+¢eK, ¢=0,1, D, =D,I = 0;

2) the curve D3 also passes through the opposilé vertex of the quadrangle, i.e.

" is a diagonal of it, and the curve D'3 is its other diagonal.

Proof. 1) Let us assume that the curve D3 passes through the vertex
P1= D,ND,. Then the divisors DB'DZ and D, -D, on the curve D, are

equivalent, and hence dim'Ho(Dz, QD (D3~ DIVID )) = 1. From the exact sequence

— H° (D,, Q o, (Da —Dy|p)) - H" (F Q (Da ——Dl —D,)),
corresponding to the exact sequence of sheaves
0-QD;—D,—D,) - Q (Da—D1) — Qp, (Dg—D,lp) =0
(clearly, HO(F, QD ;- D)) =0), we conclude that
dim H' (F, Q (Dy—D; —Dy) > 1
By the Riemann-Roch theorem

dim H (F, Q (Ds — D, — Dy)) + dim H® (F, @ (D, + D, + K — Dy)
= (= DD 1y 4 dim H' (F, @ (Ds — D, — D).

Since ((03— DI—D2)2)=—2 and HO(F, Q(D3—D1—D2))= 0, we have
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dim H° (F, Q(D + DZ+ K-D )) > 1, and hence there exists an effective divisor
I' such that Dy+T'~Dy+ D + K. We consider the indices of the intersections
of the left- and right-hand s1des of this relationship with the divisor D, (D,),
and verify that (D;-1)=0 ((D,- D) =0).

2) The vertex P ;= D'lﬂ D'Z, opposite the vertex P |, is a base point of the
system |D1+ D,+ K| = |D1+ D’z! and thus lies on the curve D3+ I". Since 1
(r-o )— (F«D,)=0,and D; and D, are irreducible and isolated, this point

does not lie on the curve I, and hence 11es on the curve D . It follows analo-

gously from D + '~ D+ D, that the curve D is the second diagBnal of the
quadrangle.

Assertion B) is thus proved.

2. In this subsection we construct a linear system mapping the surface F
onto a surface of sixth degree in the space P3 that twice passes through the
edges of a tetrahedron. For this it is necessary for us to find a triple of isolared
(irreducible) elliptic curves Dl’ D,, D3 such that (DL- . Di) =1- Bj- v, j=1,2,3,
and moreover such that no three of the curves D;, D;, i = 1, 2, 3, pass through
one point.

A) There exists on the surface F an isolated elliptic curve possessing
property (I) of $2.2 D) and distinct from the curves D Dy Dl, D

Proof. Let us assume that such a curve does not exist. We w111 show that
then every divisor on the surface F is equivalent to a divisor of the form
mD | +naD,+ K, ¢=0, 1.

The first step of the induction on the value of the arithmetic genus is the
proof of the absence of irreducible rational curves on the surface F. Let § be an
irreducible rational curve on the surface F. If (D1 «0) =0, then the curve 0 is a
component of some divisor of the pencil |2D 1|. In this case the other components
of this divisor are also rational, and there thus exists on the surface F- a rational
curve 61 that has a positive index of intersection with one of the divisors Dl’
DZ’ Ve have pa(Dl + 91) >1, if D -60,>0; moreover, the system |D1+ 91‘, is
irreducible in this case, and the basic construction can be applied to it. We obtain
a pair of distinct elliptic curves possessing property (I), each of which is clearly
different from the curves Dl’ D'l’ which contradicts our assumption.

If pa(e) =1, and @ is an irreducible isolated divisor, then, by assumption,

0 coincides with one of the divisors D, Dll’ D,, D’2'

If p_(6) =1, and 6 changes in the pencil, then the same can be said about
the divisor 4/2.

If, finally, the arithmetic genus of the irreducible curve 6 is greater than one,

it is equivalent, by the basic construction, to some reducible divisor, all of whose
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components have, by Proposition 4 of $1, a smaller arithmetic genus, and we can
apply the induction assumption.

We now obtain a contradiction from what has been shown. It is known that
a form of type (1, 1) represents an algebraic cycle if and only if it represents an
integral class of cohomologies. Since the geometric genus of our surface is equé.l
to zero, every closed 2-form has type (1,1). Knowing the values of p,(F) and
(K?), it is easy to calculate that the second Betti number of the surface F is
equal to 10, and thus it contains 10 independent algebralc cycles.

B) Let Dl’ DZ’ D be zsolated elliptic curves possessing property (I). Let

(D, -D; J=1- 8‘ , and let the curve D pass through one of the vertices of the

quadrangle formed by the curves D, D,, Dl’ D2 Then there exists on the sur-
face F an'isolated elliptic curve D, also possessing property (1) and distinct

from the curves D, D,, Dy -and their adjoint curves.

Proof. We first note that by assertion Bj 1) of subsection 1 the condition of
our assertion is symmetric with respect to the curves Dl’ D2’ D3' We thus have
D1+T‘1w D,+ D3, Dy+ Ty~ D1+ D3? D3+ l_'3~ D,+ D2’ where Fl’ r,,
F3 >0, (I7; - Dj) =0 for i #j (if necessary we replace some of the curves D,
DZ’ D3 by their adjoint curves). It is not difficult to see, moreover, that
(I'; +D;) = 2 and (FLZ) =-2. From the last equation it follows that each of the

divisors contains rational components. Since each of the components of the

- divisor I'; is a component of some divisor of the pencil |2D].l (j £1) that is dis-

tinct from the divisors ZD]., ZD;, all of the components of the curve I are
rational. _

If the divisor I, is reducible, we denote by 6, its imreducible compbnent for
which (Di . Gi) > 0. It is possible to apply the basic construction to the ireducible
linear system ‘Di + 6;|, whose arithmetic genus is greater than one; we find iso-’
lated elliptic curves -Hl’ H , possessing the property (I) aqd a divisor G > 0 such
that D; + 6, ~H  + H,+ G. If the divisors H |, H, were contained among the
divisors Dl’ D,, D3 and their adjoint divisors, we would obtain 6, ~T'; + G + €K,
€=0,1. For e= 0 this contradicts the reducibility of the curve Fi’ and for ¢=1
the corollary to Proposition 1 of $1.

We would argue analogously in the case when there exists on the surface F
an irreducible rational curve @ different from Fi such that (Di -@)>0.

We note, finally, that if the curves '}, T',, "5 are irreducible, then arguing
as in the proof of assertion A) we can show that there exists on the surface F
either the desired elliptic curve, or one more irreducible rational curve. This
rational curve 6 must have, by what has been proved, a zero index of intersection
with each of the curves Dl’ DZ’ D3. Since ((D1 + D2 -6)2) = 0, there exists an
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~ .
effective divisor D4 ~ D1+ Dz- §. By the basic construction we can assume

. ~

that all the irreducible components of the divisor D4 either are rational, or are
elliptic and isolated. It is clear, moreover, that none of the curves D 1 02’ D'l,

D F can be a component of this divisor (since each of the divisors D -0,

- @ is not equivalent to an effective divisor). Since (D D4) = 2, the divisor
’\J
D4 contains a rational component (different from T’ ) havmg a positive index of

intersection with the divisor D3, or contains the desued elliptic curve - D This
completes the proof of assertion B). ,-.'

C) Let D and D, be isolated elliptic curves with an index of intersection
of 1. If there extsts an Lsolated elliptic curve M possessing the property (I) of
§2.2 D) and such that one of the numbers M.D 1), M. DZ) is greater than one,
then there exists a four-tuple of isolated ellipti.c curves H, H,, Hy, H posses-
sing oroperty (1) and such that (H,;- H]-) =1- 5]‘. (G, ) # (3, 4).

“~ Proof. Let (M- Dl) =a, (M. DZ) =b, a>b, a>1. We consider the linear
system |M + D 1]. By assertion A) of §3.1 this system is irreducible. By assertion
B) of §3.1 either the divisors M, M’ are irreducible, or there exists an irreducible
linear system [C| <|¥ + D il whose arithmetic genus satisfies the inequalities
1<p,(O) <p, (M + D). In the first case the system |2(M + D))} contains a

special curve dxfferent from the curve ¥ + D, + Mo+ D (cf. assertion C) of $3.1).

Now considering this special curve or a spec1al curve of the system [2C ]|, we
find by the basic construction a pair of isolated elliptic curves M, MZ and a
divisor I'> 0 such that ¥ + D~ M+ M, +T. We now have

(M .D )+(2‘12-D )=a—(F-D1), (M -D2)+(MZ-D2)=I) +1—(F-Dz). (%)
Each of the numbers (U D ) (M . D ) (W m, (”2 M) is positive. For if, for

example (U D ) =0, then, as was shown in the proof of assertion D) of 63 1,
Ml_ D or Dl’ and hence M =M, + I"'or M= M + I'. But the curve M cannot
have proper elliptic components (Proposition 2 of 5 1), and hence I'=0, M= M
or M. 2» which contradicts our choice of a special curve. Since moreover (r. Dl)
(r. D ) >0, we have (Wl- Dl)’ (MZ'DI) < a. If both of the curves Ml’ M2 are
d1fferent from D D , then the second of the equations of (%) gives us that
M 1+ D5)s (‘[ D )<b Let the curve M, coincide with D,. Then M;-D )<
a—l a.nd UI D b+l

We considet the case when (.UI-DI) =W 1 DZ) =1 (and M, = DZ)' For
suitable >0 and s > 0 we can assume that the difference between the divisor
'} > 0 taken from the relationship M + D~ y+sD,+T;+eK(€=0,1andis
chosen in a suitable manner) and each of the duxsors W v Dy M D is not

equivalent to an effective divisor. Let us assume that one of the 1nd1ces of




o

REPRESENTATION AS A SIXTH-DEGREE SURFACE IN P3 245

intersection (M ;. I' ). (D,-T)) is positive, say the first of them. Then there
exists an irreducible component 6 of the divisor T'; such that (M ,-6) > 0. Con-
sidering a special curve of the system iMl + 01, we armive at the relationship
Mi+6~ Ml + :172 +T By the construction, both of the divisors ﬁl’ ;172 cannot
be simultaneously included among the divisors Dl' DZ’ Ml and their adjoints.
Thus in the case under consideration we can either set H1= Dy, H2= D,,

H3= My, H4= ﬁ’\jl (if Ml #Dy, Dll, Ml’ M'l, D,, D'Z) or without loss of generality
assume that one of the indices of intersection (Ml' Dl), (Ml' Dz) is greater than
one. ‘

1f (Ml- F1)=(D2- rl) = 0, then, on the one hand, '(F%) =M. T+
(D 1 1“1) > 0, and, on the.other hah'd, (F%) <0, for otherwise each of the indices
of intersection (Ml' Fl)’ V(Drzi Fl) would be positivé.v HCI'VIVCC‘ (Fi)? M- rl) =
(’Dl- 1“1) =0, and thus on the one hand, (¥. Dl) = s + r and, on the other hand,
. Dl) =sr,i.e. s =r=2. From this we have (M.} 1) =M. DZ) =1, and we can
set H,=D,, H2=M1,H3=DI,H4=M.

We can now assumerthat (Ml- Dl) or (Ml- DZ). is greater thaa one if MZ = D2
(or, analogously, D'z). We assume that (Ml- D 1) + (Ml- DZ) > (Mz- Dl) + (M5 D2)
and we set a; = (M. D), b =M. D,). if a>b+ 1, then a> mazx (ay, b,), and
moreover, a; + b 18a+ b. We will repeat our construction, replacing in the first
repetition ¥ by M, and D, by the divisor D, or D,, taking the one whose index
of intersection with Ml is greatest. Since a; remains greater than b, + 1, the
maximum of the indices of intersection is reduced, and their sum is not increased,
while it remains constant only in the case }, - D, or D'z, (r. Dl) = (. DZ) =0.

We consider the critical moment when a=b+1 or b, M2 =D, or D',
r-D)=(T. Dé)‘,: 0. We will show that then ['=0,a=b+1, (M-}¥))=1. We
bhave ’

(%) =((M + Dy — M, — Dy)*)= 2 — 2 (MM)),
a = (MD,) = (MM,) + b + (TM).

Since (I'-M) >0, M. M 1) >0, we have a=b+1, (M-Ml) =1, ("2) = 0. On the
other hand, the divisor T, if it is effective, must consist of components of some
divisors of the pencil ‘ZDII. Since (Dl- DZ) >0 and (- DZ) = 0, all these com-
ponents are proper, and hence (I'?) < 0, which contradicts the equation already
proved: (I"?) = 0. '
Thus, for the critical moment we have M + D1 ~ Ml+ D2 (or Ml + D’z). Since
M-M 1) = 1, the divisors M and Ml are irreducible (by assertion A) 1)), and since
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a=b+1>1, we find ourselves in the conditions under which assertion C) 1) of
$3 was proved. According to the proof of this assertion, the system |2({ + D1)| =
IZ(MI + DZ)] contains a special curve that is different from the curves M + D +
M+ DII, My+D,+ M '1 + DIZ' This third special curve permits us to find isolated
elliptic divisors M}’ M 4 possessing property (I) of §2.2 D) that are different from
the divisors Dl’ D,, M, M, and their adjoints. Each of the divisors M3, My
allows us to continue our process.

Our construction is now completely described. It is clear that the process
described breaks off after some number 7 of steps, and we obtain in addition to
the curves Hl = Dl’ HZ = DZ a pair of divisors H3 = MZn-l’ H4 = MZn , whose
existence was asserted. ;

D) Let Hi, H,y, Hs, Hy be is.olatea' elliptic divisors possessing the property
(D) of $2.2D), let (H;- H]-) =1- 5; ((5, ) # (3, 4)); and let the divisors H5, H
pass through vertices of the quadrangle formed by the curves Hl’ H,, H’l, H'z.

Then there exist isolated elliptic di-z.zisors“ D,,D,, D, also possessing property
(1) and such that 1) (Di' Di) =1- 5;- , Lj=1,23; 2)the divisor D3 does not
pass through any vertex of the quadrangle formed by the curves D 1 Dy DY, DY,
Proof. Without loss of generality we can assume (if necessary, replacing the
divisor H3 by its adjoint), that the divisors H3 and H 4 pass through one pair of
vertices of the quadrangle H1 +Hy+ Hll + H'2 (cf. assertion A) 1)). Since H3 +
Iy~ Hi+H,, Hy+ T y~H + H, (assertion B) 1)), it is easy to calculate that
(Hg,‘H4) =2, (H3-I_'4) = (H4-F3)= 0. By assertions A) 1) of $4.1 and C) 1) of
€3, the divisors H3, H4, H; and Hii are irreducible, and the system |2(H3+H4)!
contains a special curve different from the curve H3+ Hg+ H; + H"4. Using this

curve, we find divisors HS’ HG (isolated, elliptic, etc.) satisfying (for some

[' >.0) the relationship H3 + H4 ~ H5 + H6 + I'. Siace the divisors HS’ H6‘ are
different from the divisors H3, H4, H;, H’4’ and (HS'F)’ (H4- I") >0, we have
(Hj-Hy) = Hy-H )= H)=HH)=1, (H# 3+T) = (H 4+ T') = 0. Neither of
the divisors H5 and HG can be contained among the divisors Hl’ HZ’ H'l, H'Z'
For otherwise we would have H3+ H4~H1+ Hy+ K+ T, H3+ H4~H4+ L+
I'+ €k, Hy~T + "4+ K, which contradicts the irreducibility and isolatedness
of the divisors H3, H'3' Hence one of the divisors H5 and H6’ say HS’ differs
from the divisors Hl’ f,, H'l, H'2 and has an index of intersection of 1 with one
of them, say with H,. Now let us set D,=H,,D,= HS’ D3= HS' By assump-
tion, the vertices of the quadrangle D, +D,+ D'1+ D', coincide with the vertices
of the quadrangle Hl + H2 + H'l + HIZ’ and the curves H4, lei are diagonals of these

quadrangles (cf. assertion B) 1)). If the curve D3 were also a diagonal, we would
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have (D3~ H4) > 2, which is impossible.

E) There exists on the surface F a triple of irreducible isolated elliptic
curves Dl’ D,, D3 possessing property (I) of $2.2 D) and such that 1) (Di' Dj) =
1- 5’ , L,j=1,2,3; 2) the curve D3 does not pass through the vertices of the
quadrangle formed by the curves D D D

Proof. By the results of 53 1 there exists on the surface F a pair of xsolated
elliptic curves Dl’ D2 with index of intersection 1. By assertion A) 2) there
exists on F a third isolated elliptic curve, also possessing property (I). This
curve is either the desired curve D3 or satisfies the conditions of either asser-
tion C) or assertion B). If it satisfies the conditions of assertion B), then there
exists elther the desired curve D3, or a curve satisfying the conditions of asser-
tion C), or a pair of curves satisfying (along with the curves Dy, D) the condx-
tions of assertion D). If it satisfies the conditions of assertion C), in this case
also there either exists the desired curve Da' or a pair of curves satisfying the
conditions of assertion D). Using the last assertion, we obtain a proof of asser-
tion E). _

3. We consider the lineat system |C| = |D + D2+ D3| where Dl’ D D3
are the curves constructed in assertion E) 2), We will show that this system
regularly and birationally maps our surface F onto a surface of sixth degree in
the space P3 that passes twice through the edges of some tetrahedron.

" A) The linear system |C| is irreducible, has a dimension of three and does

not kave base p‘oints, i.e. it regularly maps the surface F into the space P3.

Proof." Since (€C2) =6, dim |D1+ D,|<2<dim [D1+ D,+D;l. Since the
system ID + D2| does not have fixed components, and the curve D is irreduci-
ble (cf. assertion A) 1)) and is not a fixed component of the system iCI it follows
that |C | does not have fixed components and is irreducible by Proposition 3 of
$1. By Proposition 4 of 81 dim |C| = 3. We will show that the system |C| does.
not have base points. In fact, this system contains the curves D,+D,+ D
D1+ D + D3, D +D’ 2+ D3, D +D,+ D3v, if a base point P of the system
1C| hes on the curve D2, then it does not lie on the curve D'z, and hence lies on
Dl or D In the first case it does not lie on Dl’ and thus lies on D 30 i.e.
P=D ﬂ D,N D3’ in the second case it does not Jie on D and hence lies on
Dl,xe P=D ﬂDzﬂD

Analogously, assuming that P lies on D1 or D3, we obtain two more possible

“values: P = Dlﬂ D'2 N Dli'v’ P= D’lﬂ D‘zﬂ D3. There can be no other base points
of the system |C|. But the four intersections obtained are empty, by the con-
struction of the curves Dl’ Dz, D3 (cf. assertion E) 2) and assertion B) 1)). Our

assertion is thus proved.
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B) The system |C| maps the surface F birationally.

Proof. We denote our mapping by ¢&. From the imeducibility of the system
|C| it follows that the image under the mapping ¢ is a surface. Since (C2) =6
and the system |C| does not have base points, the degree of the mapping ¢ is a
divisor of the number 6.

We consider the subsystem lD1+ D,| + D3 of the system |C| consisting of
the curves containing D; as a component, and the subsystem |D, + D | +Dy.By
assertion A) 1) the system Hl = lD +D I is one-dimensional and has exactly‘
two base points: the point D D and the point Dlﬂ D2 Analogously, the
system H,=[D,+ Dil‘ is irreducible and has two base points: D, D3 ,

D'Zﬂ D ;. Thus by the construction of the curves D, D, D3 the systems H,H,
do not have common base points. Let Fl (Fz) be a generic curve of the system
H':il‘ (Hz). We have ((1"1 + D3) . (FZ +D 1)) = G, where, of the six points of inter-
section three are points of intersection of Fl and Fz, and the other three lie on
the curves Dl and D3. On the curve I'; there are only a finite number of points
identified under the mapping ¢ with points of the curves D1 and D3’ and none of
these points is a base point of the system H2‘ We can thus assume that none of
the three points of the set I')NT, is joined with a point of the set D 1UD;

This means that these three points can be joined only with each other, and hence
by the generality of the construction, the degree of the mappmg ¢ is equal to 1
or 3.

Since (C-Hl) = 4, and the systems {C| and Hl do not have common base
points, analogously, the degree of the mapping is a divisor of the number 4. Hence
the'degree of the mapping ¢ is equal to 1, i.e. the mapping is birational.

C) The image under the mapping & is a surface of sixth degree in P3 that
twice passes through the edges of a tetrahedron.

Proof. Since dim |C| = 3, the system |C| maps our surface into P 3, and
since (C?) = 6, (the system |C| does not have base poiats), the degree of the
image is equal to six.

We consider the curves D,+D, +D3, D +D +D D +D, +D

1+ D2 + D3 of the system |C|. The i lmage of each of these is some plane sec-
tion. Since (C- Dl) > 0, the curves Di’ Di’ t=1,2,3 are not contracted under
the mapping ¢, and hence the intersections of the plane sections described are
one-dimensional. This means that each of these intersections is a line, the image
of one of the curves Di’ DE. Thus the surface ¢(F) contains the six lines
#(D)), $(D).
Clearly, the preimage of their union coincides with the set { uby ulyub D

We will show that no two of the six curves D;, D are joined under the mapping .
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Indeed, let P € Dl’ Q€ D,, &(P) = ¢((). This means that every divisor of the
system |C| passing through () also passes through P. One such divisor is the
divisor D'1+ D,+ D’3, and hence P =D, D,or DN Dl3' The proof is analo-
gous for any other pair.

We will now show that the surface ¢ (F) passes twice through each of the v
lines gﬁ(Di), ¢(D;) It is sufficient fdr us to show that the mapping is of two ‘
sheets on each of the curves D, D;. Since (C:D,) = 2, this mapping is not more
than two-sheeted on D;; on the other hand, it is ramified as a mapping of a non-
singular elliptic or singular rational curve onto a nonsingular rational curve dz(Di).

It remains for us to prove Vth’at the six lines qS(D,-), ¢(D£) form a tetrahedron,
or, what is the same, that the four indicated plane:sections do not pass through
one point. If this were not true, the six lines Q‘)(D ) (;’J(D') would all pass through
one point, i.e. the mapping ¢ would 1denufy the nineteen points D;n D :
D, ﬂD D ﬂD (i # Jy b= 1,2,3). We have alteady shown, howﬂer that if the
point P € D, is identified with the point ( € D,,then P = D,ND,or DiN D3,
i.e. the points D ;N D and DN D, are not identified under the mapping ¢.

This completes the proof of assertion C).

§5. The “‘number of moduli’’ of an Enﬁques'surface

In this section we calculate the ‘‘number of moduli’’ of an Enriques surface.
By a well-known theorem of Kodaira, Nirenberg, and Spencer [28],‘ a complete

space of moduli of a variety F that is effectively,paramevtrized in a neighborhood

of each of its points exists if the zero-dimensional and two-dimensional homology

groups with coefficients in the sheaf @ of gérms of holomorphic vector fields are

_trivial. Moreover, the dimension of this space is equal in this case to the dimen-

sion of the one-dimensional homology group with coefficients in this sheaf.

Thus we will show that HO(F, ®) = H2(F, @) = 0.

Since 2K (F) ~ 0, there exists a two-sheeted algebraic unramified algebraic
covering surface Fl’ of F, with a zero canonical class K(F). Cleatly F, is
regular. ‘

If there existed on the sutface F a nonzero holemorphic vector field, such a
field would also exist on the surface Fl' Since K(Fl) = 0, it would follow by
duality that hz’ll(F 1) =q(F 1) # 0. We obtain a contradiction. Let us assume that
H2(F, ®) ~ HO(F, QK ® T* (F))) £ 0, where we denote by T*(F) the fiber bundle
on F dual to the tangent space. Then HO(FI, Q(p*K ® p* T (F))) =
HO(FI, Q(p*T*(F))) = HO(F v QT™(F 1))) # 0 (where p denotes the projection
F | — F), which contradicts the regularity of F .
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Thus the desired ‘‘number of moduli’’ exists. It is not difficult to calculate
with the help of the Riemann-Roch theorem that it is equal to ten.
We note further that, according to a theorem of Kodairar ([25], Theorem 3.5),

every Kihler surface with Pg= 0 is algebraic.




APPENDIX

ON SPECIAL TYPES OF KUMMER AND ENRIQUES SURFACES"

This work studies Kummer and Enriques surfaces of special types. It is
proved that such Kummer surfaces exist and that they form a subset of codimension
one in the space of moduli. A theorem (and its converse) about representation of

the double plane is proved for Enriques. surfaces of both special and general type.

Introduction
The classification of Kummer 'bandbEnriques surfaces found in Chapters VIII

and X is pot complete. In fact, these chapters do not consider at all particular

cases of surfaces of the two kinds. Our goal is to fill this gap.

In speaking of classification we mean the following: starting from given
values of the invariants, geometric models of the surfaces under-consideration
must be constructed and then the converse theorems must be proved. It is under-
stood. that an intermediate-step in this program must be the determination of some
geometric construction that is characteristic for surfaces with the given values of
the invariants. The chapters mentioned above contain such constructions, appar-
ently due to Enriques, for both Kummer and Em’ique's surfaces. These construc-
tions, however, are not suitable for all surfaces of both types, and hence particu-
lar cases must be considered separately; here the fact that a given surface is a
surface of a particular type is determined by various degeneracies in its iqternél
structure. ‘ ' ‘ »

The first section is concerned with Kummer surfaces, i.e., with regular alge-
braic surfaces with zero canonical class K. As was proved in Chapter VIII, almost
every such surface is birationally equivalent to a surface of degree 27 — 2 in
n-dimensional projective space; here the number 7 is equal (for each specific
surface) to the smallest of the dimensions of the complete linear systems on this
surface increased by one. For a general Kummer surface such a system is unique
(see Chapter IX) and determines the indicated birational mapping. The special

case consists of surfaces for which this minimal linear system consists of

* Tramslator’s note: This article, by B. G. Averbuh, appeared in Izv. Akad. Nauk
SSSR 29 (1965), 1095-1118; it is the forthcoming article referred to by Averbuh in his
‘‘added in proof’’ notes to Chapters VIII and X. For this reason, and because of its own
intrinsic merits, we have included it here as an appendix.
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hyperelliptic curves. For 7 =3 we shall construct all such surfaces; the question
remains open for 7> 3. '

The second and third sections are concemed with Enriques surfaces, i.e. reg-
ular surfaces for which the double canonical class is equivalent to zero. Surfaces
of special type here are those surfaces on which there exist a pencil of elliptic
curves and a rational curve with an index of intersection equal to zero. We shall
show that every such surface is birationally equivalent to a surface of sixth de-
gree in P3 whose ramification curve has completely determined singularities. For
comparison an analogous theorem is also proved for Enriques surfaces®f general
type. Finally, the converse theorems (under certain additional restrictions) are

studied in $3.

§1. Kummer surfaces of special type

1. Let V be a Kummer surface. As was proved in Chapter IX, the family of
such surfaces is nineteen-dimensional. To a generic point of the base space of
this family there corresponds a surface with a base number one, and to each in-
crease of the base number by one, there corresponds a decrease of the dimension
of the corresponding subfamily (see Chapter [X). We note that al! Kummer surfaces

are simply connected.

Let C be a divisor on the surface V. We denote by |C| the complete linear
system containing this divisor, by pa(C) =(C, €)/2 + 1 the arithmetic genus of
this divisor, and by dim|C| the dimension of the system |C|. By the Riemann-
Roch theorem, dim|C| >p,(C) if (C, €) >0 and the system |C! is irreducible.

Further, let 7> 1 be an integer such that:

1) there exists on V an irreducible curve C whose arithmetic génus is equal
to w;
. 2) the arithmetic genus of every irreducible curve on V is either less than

two or greater than 7 - 1.

If the generic curve of such a system |C| is not hyperelliptic, then this sys-
tem birationally maps the surface V onto a surface of degree 27 - 2 in a n-dimen-
sional projective space.

If this geaeric curve is hyperelliptic, then for 7> 2 such a map is given by
the system |2C{, and the mapping associated with the system |C| is two-sheeted
(see Chapter VIII).

A Kummer surface ¥V with 7> 2 will be called a surface of special type if
the generic curve of every complete irreducible linear sy stem of curves of arith-

metic genus 7 is hyperelliptic.

Now let the surface V' be of special type, let 7 =3, andlet C be an
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irreducible curve of arithmetic genus 3. Let the functions y,, y;=1, ¥, Y3
form a basis for the space £ (C) of the factors of the divisor C. By what was
said above, the field of functions on V is an extension of degree two of its sub-
fielld K (yo, Y Yo Y 3) generated by these functions; if, on the other hand, y,
¥1:¥2,¥3:"" ' ¥g is a basis of the space £(20), then the subfield generated by
the functions Yor ' 's Yo coincides with the whole field of functions on »V. This
means that the functions»yiyi, i,j=0,1,2,3, of the space £(2C) do not generate
this space and are thus linearly dependent.

Let us assume that
Yo =Yoo Ys = VYl Ys=Yls Y1 =Yn Ys= Yy

then the function Y ¢ satisfies a quadratic equation over the field K(yo’yl’yZ’yS)

" and, as is easily seen, can be chosen so that this equation has the form

2 ‘ ,
Yo = P* (yo, Y1, ¥2» ¥a),
where P4(y0, Y1.¥oo y3) is a polynomial.
We now consider the image of the special Kummer surface V under the map-
ping associated with the system |[2C|. If a basis of the space £(2C) is chosen

as indicated above, then this image, according to what has been said, lies within

the set given by the equations:

§* (%o, L1, T2, 23) = 0, @* (24, To, 735, 26) = 0,
Iy = I, : Tyxy = 22, "
T1Tg = LTy (1 == 05, ZyTy = ZoT5 (ze=E 0),
{ X1k = ToZs i T,.%3 = ZTyZs '
x1%7 = 2, Z427 = 72, '
| T1Xg = TaZ3, T3Ty = T35,
2222 = ' (o, 21, T2, T3), 2222 = n* (4, o, Ts, %),
@* (25, o, 77, 25) = 0,
Ty = 22,

"L'ql‘o = ;’[512

1 X9Tg = Ty (*)

TZy = 1’%»

T7Xy = Talg,

242 — md
.'177.1'9 =1 (1-'5, Xo, X7, IB)'

Since, moreover, the intersection of the divisor C with the zero divisors of
the functions Yq= y% and y 4= yg can be assumed to be empty (the system {C |
does not have any base point, as was proved in Chapter VIII § 4), the image of the



254 KUMMER AND ENRIQUES SURFACES

surface V lies in the union of the sets
Uy={2,=%=0}, U,={z,50}, U= {z;=0}.

2. We shall now investigate the equations () and shall prove the assertion
converse to the one proved above.

First of all, in the intersections of the neighborhoods UpUsy, U3 these sys-
tems of equations determine the same sets (for example, for the intersection
Ulﬂ U2 this follows from the relations xO/x4= xl/xo = xz/x5 = x3/x6), and,
taken together, some algebraic set. We shall-show that its subset V, which is in
the union v,ut,u U3, is (for general forms ¢2 and 1;4) a nonsingular compact
surface. We shall begin with compactness. Let () be some limit point of the
given subset that does not belong to the subset. As itis easy to see, for every

point P € V the equation x;(P) =0 implies

zo (P) = z; (P) = z, (P) = 0,
x4(P) =0 implies

zy (P) = 2 (P) = 4 (P) =0,

and, finally, x_(P) = 0 implies
2, (P) = 2, (P) = 0.

Thus the point ¢ must have the form (0:0:---:0:1). Setting Yi=%; /x9 ,we

can write the last equation of our first system in the form

i = n* Wor Y Y ¥o)-
We shall now approach the point  along a curve lying on the set V, on the hyper-
plane 'xl - X3= 0, and outside the hyperplanes x=0,%4=0,x,=0. Then the

coordivnates Yor Y3 will decrease faster than \,/y_l (since y 1Y 4= yg 2 YYo= yg ,

)’4(0) = }’7((2) = 0), but the coordinates Y and Y3 with the same speed as /y—i
We have a contradiction.
For the proof of nonsingularity, we assume that the equation

éz(xo, X1 X2 x5) =0 determines a nonsingular quadric in P3 and that the system

{‘P2 (zg) 1, T30 x3) =0
n* (2o, 21, 2y, 23) =0

is a nonsingular curve. The proof is carried out in an analogous manner for each
of the neighborhoods Ul’ U,, U3, and we shall give it only for the neighborhood
Ul' Ve set

= o

Yo=—, Y, =

Iy

, =2

T1

then the corresponding functional matrix will have the form
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o2 o2

a2 .

T T 5%000000
— 2y, 0 0 10000 O
— Yy — Yo 0 01000 0
—ys 0 —y% 00100 0 .
0 —2, 0 00010 O

0 —ys —y 00001 0

and and ont
“a;]o _a—; _73:00'00023,9

If Yo #£ 0, the rank of this matrix is-equal to seven, since one of the derivatives

a¢2/ayi is different from zero; if Yo = 0 the rank is again seven because the
¢* =0,
{n“ =0

Ve consider on the surface V the linear system of curves

curve

is nonsingular.

hoZy 4 Mzy + Agzy 4 dhyzy = 0.

This system consists of a fixed part x;=0, 5"'4# 0, which we denote by CO’ and
a nonfixed part |C|, which is given in the neighborhood U1 by the equation

Aoy + Mz -+ dyzy - Ayzy = 0,
in the neighborhood U, by the equation | -

hoZy + Mzo + Aoz + hszg =0
and in the neighborhood Ua,by the equation

ko:c; + Mz, + Aozy + Az = 0.

‘The divisor 2C is given by the equation xl‘= 0; hence the system [2C| isa
system of hyperplane sections of the surface V. Obviously, this surface is a two-
sheeted covering of the quadric ¢2(u0, Uy, tiy, U 3) =0 in P3 with ramification

curve

{ CPZ (uO, u11 u21 u3) = O,
-1 (o, U1, s, us) =0.

The divisors of the system |C| are the pre-images under this covering of
hyperplane sections of the quadric, i.e., they are two-sheeted coverings of the
rational curves with eight ramification points. Thus the curves of the system |C|

are hyperelliptic and have a genus of three.

It remains for us to prove that the surface V has the necessary values of the
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invariants and does not contain systems of genus two and three other than |C|.

We begin with a calculation of the canonical class of the surface V. Again

we set

& Ta

yO_Tlv y2*—xl'

and we find the zero divisors and the polar divisors of the differential 2y, A dyz.
As is clear from the functional matrix presented above, at points of the set

Ul NV where Yo £0 and 8({)2/'0)'3 # 0, the functions Y. ¥, are local coordi-
nates and the differential dy; A dy, has neither zeros nor poles. Let#

a3 _ ap?
T =% 3, 0 B0

We have
g2 agr .
Fgs Wo N dyr = — 55 dy, /\ dy.

Hence the differential a'yo A dy , has a zero on the curve 8(,{)2/(3)‘3 = 0. This

curve, as can be easily seen, belongs to the system |Cl.
Now let Yo =0. We have
_ome ot ant
Yo dys= e dyy + By dy,+ Bys dys,
_ g3 dg? ag?
0= Byo Wo+ a—y;dyz-l- ys 3Ys-
Since the isolated points do not interest us, we can assume that the determinant
A formed from the coefficients of the first and third columas of the right-hand

side is nonzero. This means in particular that the functions Y9, ¥ 5 are local co-

ordinates. Solving the system of equations

I dyo A dys + 2 dyy A dys = g4 d Ad
3Yo 4 2 dys 3 Ya Yo @Yy Y2,

og? Op?
-c—,y—odyo/\d!/z-}- mdya/\dyz =0,
we find that‘:
a2
Ys ?:;? dys N\ dys
dyo N\ dys = x '

i.e., the differential dyo A dyz has a zero also on the curve Y9 =0 which be-
longs to the system |2C] of hyperplane sections.

In order to calculate the differential dyy A dy 5 on the complement of the set
Ulﬂ V (it consists of the curve CO), we set x; /x4= z; (i # 4).

We have
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d(ﬂ ﬂ)/\d(ﬂ _ﬂ)__dzo/\dzz __zduAdn zedn/\dn
s m s w1/ 22 3 3 )

Since z,= Zg, this expression can be put in the form

dZD/\dlz .
—_—
2

5

and then, Sil:)CC Zy= 12424, in the form

—d.’.o/\dz_r,
—3 .

%y

The functions z( and z4 are local coordinates at a generic point of the set
UZ NV (just as the functions ¥go» ¥ 5 are in U1 N V),v and under a general choice
of the original equations, also at a generic poirt of the complement of the set
U U V. Thus the-differential dy A dy , has a pole of third order on the curve
CO‘ Since the zero divisors and polar divisors of the differential dy, /\ dy, be-
long to the system |3C|, the canonical class of the surface V.is equivalent to
zero. It also follows from this that this surface is a minimal model.

" We now consider the system |C|. Since the index of intersection of the
hypérpléne sections of the quadric is equal to two, the index of intersection of
two curves of the system |C| is equal to four. Further, since by the theorem of
Kodaira ([ 25], Theorem 2.5)

dim H! (V, Q (€)) = dim H (V, Q (K + C)) = 0,
we obtain from the Riemann-Roch theorem

p,(V)=dim|C|+ 1 — D50

By Chapter VIII, ¢1, pa(V) <2 for k=0; consequently, pa(V) =2, dim|C| =3,
g{V) =0, i.e., the surface V actually has the necessary invariants. (We denote
by x (V) the degree of transcendency of the subfield of the field of fuhctions on V
which is generated by the factors of positive multiples of the canonical class.)
We shall now show that for a general choice of the coefficients of the forms
(;52 and 1]4 the surface V does not contain linear systems of genus two and three
other than |C|. For this we shall find the number of parameters determining the
birational equivalence classes of the surfaces we constructed. This number is
equal to seventeen. It follows by a result of G. N. Tjurina (Chapter I1X), that the
base number of a generic one of our surfaces is equal to two, and this leads to

the desired result without difficulty.

Thus the family of surfaces we constructed depends on ten coefficients of

the quadric ¢? (which when considered from the point of view of factors of
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proportionality, gives nine parameters), and on 35 coefficients of the form 7]4.

However, the forms nii and 17‘21, whose difference is divisible by ¢2, yield the
same surface V, and hence the coefficients of the form r; yield 25 parameters,

» the whole family of etamples ‘depends on 34 parameters

We now find the dimension of the class of surfaces projectively equivalent to
V. For this we consider on the surface V the functions Y;i=%; /xo. The func-
tions Yor Yo V3 have as their polar divisor the divisor CO’ and the remaining
functions have the divisor 2C,. Moreover, the functions 1, ¥Yg:¥ 2> ¥3 form a
base of the space S;)(CO) of the factors of the divisor €y, and the fundtions 1,
Yo0:¥3:' "5 Yo form a base of the space g(ZCO) (the last assertion follows from
the Riemann-Roch theorem). From the first system of equations of the surface V

we obtain

Ys=¥2 Ys=1Yo¥Y2 Ys= YolYs,

Yy1=193 Ys=1¥2¥35, ¥2=10"(Yo, 1, ys, ¥3).
If f,=0 is the local equation of the divisor Cgy> we obtain

={yf), i=0,...,09,

and obtain a base of the space of the sections of the line bundles [2C]. Clearly

we have

(S (P) s (P)i. i (P) = v (2g(P): 2y (P):...: a2 (P))

Thus to every imbedding of the surface ¥ in the space P? under which it falls
into our family there corresponds some divisor CO and a base of the space £c )
such that its functions ¥, satisfy the above relations. Since the sections s;
yield the original imbedding V C p? , this correspondence is one-to-one. Moreover
the imbeddings g1 and g, are projectively equivalent if and only if the systems
of hyperplane sections |7C It and 12C3| corresponding to them coincide, and this
last condition is equivalent to the coincidence of the systems |C1| and {sz
since the surfaces of the type under consideration are simply connected (see
Chapter IX). ‘

Since the dimension of the system |C| is equal to three, the choice of the
divisor CO depends on three parameters. The choice of the sy stem of functions
L, ¥9, ¥ ¥ 3, i-e. the basis of the space SL')(CO), depends on 12 parameters, and
the functions Y4 ¥5:¥g» Y7, ¥g are uniquely determined by this choice. As for
the function Y9 it is determined up to proportionality as is easily proved.

Thus, the class of surfaces of our family which are projectively equivalent
depends on not more than 16 parameters: the three parameters of the choice of the

divisor CO’ the twelve in the choice of the functions Yoo Y20 V3 and the
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proportionality factor in the choice of Yo

Finally, the class of surfaces birationally equivalent to V consists of the
collection of classes of projectively equivalent surfaces, each of which corre-
sponds uniquely to a choice of the system !C[ on V. Since V is regular it con-
tains no more than a denumerable number of such systems, and hence the number
of parameters of the class of surfaces birationally equivalent to V is also equal
to 16. Thus the family of examples we have constructed corresponds to no more
than an 18-dimensional subset of the space of moduli of the Kummer surfaces, and
hence the base number of a general example is not larger than two. This means
that there exist two divisors Fl and F, in terms of which every divisor may be
expressed with integral coefficients (we recall that since our surface is simply
connécted, there are no cycles of finite order on:it).

- We now consider two families of straight lines on the quadric -
(f)z(u.o, U, Uy, u3) = 0. To each of theni there corresponds on the surface V a
pencil of elliptic curves (two-sheeted coverings over a line with four ramification

points); we denote these pencils by Ll and L ;- We have:

L= vm1F1 +mFy, Ly, =myF, + nyFs.

Denoting the determinant by A, we obtain

m2n2

F,= R2L1—Aﬂ1L2 . F,— mle—Am,_ZLI .

Since ‘
.(Li, L) = 2pa (L)—2=0, (L, L)=2

(a single point of intersection of the straight lines on the quadric corresponds to

two points of intersection in their pre—image), we have

(P Py = | (p, Fy = =i

—x
Hence thevnumbers 4nvln2,/A.2v and 4m 1mz,/A2 are integers. Let ka , where p
is a prime, be a factor of the number

A*=m2n2 + m3 n? — 2mm, min,.
n

1
(m,, n,) are relatively prime (the pencils L 1» L 5 are clearly irreducible), it fol-

If pk # 2, then nyn,and m 1™, are divisible by p. Since the numbers m

lows from the divisibility by p of the number n 1 that m, is divisible by p and
m, and n, are not. But the divisibility by p of the number A? implies in this
case the divisibility of the product m  n,, and, on the basis of the contradiction

obtained, we can assert that |A| is equal to one or two.

Let |D| be an arbitrary linear system of curves of genus two on the surface V.
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Then
r
D~FLit F L,
where 7, and r, are integers. Since

(DyD) =2Pa (D) —2 =27

we have

2rira(Ly, L) A?
sl L) _ o rirg = 2.

’ r1r2=2,

Since |C| =L 1+ L, (aplane section of a quadric is equivalent to the*sum of two
lines, one taken from each family), we have |C - Dl ~L 1/2 (ot L,/2) and
(C-D, C-D)=0. By the Riemann-Roch theorem,

dim|C—D|> w-#i

7

and thls contradicts the irreducibility of the pencil L (L )

Let further, |D| be an arbitrary linear system of curves of genus 3 different
from |C| Setting

D"'%LI‘F %Lz

1

we obtain, as above, that riT2= AZ2. Since the solution rI/A =r,/A =1 gives
|Di = [C|, we conclude that r1=4,1,=1 (or ry=4, ry=1). Hence

D—Cm~Li—3t, (D—C,D—C)= —(L,, L)~ 3.

By the Riemann-Roch theorem,

dim H*(V, Q (D — C)) + dim H (V, Q(C~D))>w—"+—¢2+2>1

Thus either the system |D - C| or |C - D| is not empty. Since the systems 1C|
and !D| have the same dimension, this contradicts theu‘ irreducibility.

We have thus proved the following theorem.

Theorem 1. Every Kummer surface of special type with n=3 is birationally
equivalent to a surface of sixteenth degree in P? that is given by equations ()

and lies in the complement of the hyperplane

1‘1=0
x4=0
1‘720

conversely, a generic surface of this kind is a special Kummer surface.

Moreover, the family of special Kummer surfaces with == 3 depends on 18

parameters, and a base number of a generic surface of this family is equal to two.
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§2. Representation of Enriques surfaces as double planes

We recall first of all that an Enriques surface is a regular surface whose
double canonical class K is equivalent to zero. The Riemann-Roch formula on

such a surface has the form
dim|C|= %Q)_ + dim HY(V, Q(C)),

where Q(C) denotes the sheaf of germs of factors of the divisor C. If this divisor
is equivalent to a divisor D + K, where D is a curve, then the last member is equal
to. the number of connected components of D reduced by 1 (cf. [25], Theorem 2.3).

We now present certain assertions proved in Chapter X which we shall need
for the future. ) ) )

Proposition 1. Let V be an Enrigues surface which is not a surface of special
type, and let |C| be alinear system without fixed component and such that
p;(CO)> 1. Then |C| is irreducible and

dim |C| = dim |C + K| =pa (O) — 1;
moreover, the system |C’'| = |C + K| is also irreducible.

Proposition 2. Let V be an arbitrary Enriques surface, let L be an irreduci-
ble elliptic curve, and let dim|L| = 1. Then:

1) the system |L'| = |L + K| consists of a single curve;

2) if L' is that curve, then L'=(L/2) + (L/2)', where (L/2) and (L/2)' are
connected curves without common points, such that (L/2)' ~ (L/2) + K.

Moreover, the divisors 2(L/2)" and 2(L/2)" belong to the system |L| and
are determined uniquely by it. :

Corollary (to Proposition 2). If |L| is an irreducible pencil-of elliptic curves
and 6-is an arbitrary divisor, then the index of intersection {L, 6) is even.

Proposition 3. On an Enriques surface which is not a surface of special type
there exist irreducible elliptic curves Dl and D2 with index of intersection 1, -
each of which, when doubled, belongs to an irreducible pencil. Moreover, there
exist irreducible curves D'l ~ Dl + K and D'2 ~ D2+ K, and the systems
\D+ D,l|, \Dy+ D,+K| are one-dimensional. '

We now establish our results.

1. Let us first consider a surface V which is not a surface of special type.
We consider a linear system lcl = |D1+ D2+ D'zl, where D1 and DZ are the
elliptic curves with index of intersection 1 which exist by Proposition 3. Siance

(C, C) = 4 we have dim |C| > 2, and siace the system |C| does not have a fixed
component, dim [C| = 2 by Proposition 1.
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Each of the three following curves belongs to the system IC|:
D+ D,+D,, 2D,+D, 2D;-+Dj;

on the other hand, these three curves do not belong to any one-dimensional sub-
System of this system, since the last two of them generate the pencil 12D, + D% 1,
which does not contain the first. Hence the points P 1= Dlﬂ D'2 and
P2 = Dllﬂ D'2 lying on each of these curves are base points of the system !C!,
Since the pencil {2D 11 has no base points, all the base points of the system |Cj
lie on the curve DIZ’ and since (C, DIZ) = 2, the system |C} has no base points
other than the ones indicated. Thus the number of variable points of intersection
of the curves of this system is equal to two.

We now perform a g-process at each of the points Pl and P, and denote the

- [a¥]

curves introduced by the o-process by I'), T, the surface obtained by V, and

the minimal pre-image of a curve # C ¥ under the projection V¥V — ¥V by A we
have

(€,0)=2(@C, D)=, Dy=(T, D=0, (T, B)=2.

The system |C| maps the surface i onto P2 in two sheets; hence this surface
can be mapped regularly onto the double plane z2= F7 (x,). Since each curve
ax+by+c=0on V belongs to the system |C| and hence has genus three, we
have n = 8.

We proceed to the study of the ramification curve F8(x, y) = 0. The mapping
associated with the system 15} contracts each of the curves 51, b‘ll’ 5'2, and

thus the images of the curves Fl’ I, coincide with the images of the curves
2Dy + Dyt 2Ty (T, 2D, + D, + 2T, =Ty,
L.e., they are straight lines. We denote these lines by p and ¢. Each of them

belongs to the ramificarion curve F8(x, ¥)=0. In face, if this is not so, the image
of the curve Fl (rz) on the double plane is a two-sheeted covering of p(g). This
two-sheeted covering must intersect a generic plane section of the form

ax + by + ¢.= 0, which is the image of some curve on [E}, in two points. However,

la¥ o
the indices of intersection (c, rl), (C, FZ) are equal to one. Hence,

F8(z,y) = p-q-F8 (z, y).

We denote by CG the zero divisor of the function FG(x,y) on the surface V. The
divisor

(2D, + D, 4 2Iy) + (2D + D, + 2T,) + €,

is given by the equations F8(x, ¥) =0 and z2=0; hence it belongs to the system

I8C] and is divisible by two. Similarly, the divisor Cy: C6 = 2(5 belongs to the
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system l6’E| and is divisible by two.

We now study the singular points of the ramification curve. Clearly, on the
surface V there corresponds to each of them a curve that contracts to a point
under the mapping associated with the sy stem ]Cl Hence such a curve corre-

sponds to each of the points

pNag pA{F(z,y) =0}, g {F(z,p}=

These curves intersect F' or 1—‘2; and thus their images on the surface vV pass
through one of the base points Pl’ P, of the system |C]. On the other hand,
every curve which is contracted under the mapping VP2 assocxated with the
system |C| intersects curves of this system only in their base points. If such a
curve passes through the point Pl and does not coincide with D, and D , then
its index of intersection with 2D + D € lC] is not smaller than three Hence
of the curves intersecting- 1_' (F ) on V only D and D (D' and D ) can
contract.

Thus each of the lines p and ¢ intersects the Curve FG(l y) = 0 in no more

thé.n two points. We denote the image of the curve D (lying in the intersection
PN {FG(A y) = o) by 01’ the image of the curve Dl’ which lies in the intersec-
tion ¢ {F%(x,y) = 0}, by @, and the image of the curve DZ’ which lies in the
intersection p N ¢ and, possibly, in {FO(x, y) =0}, by O.

We consider on the surface V the pencil lZD I Since \2D + DZ' € CI the

images of the curves of this pencil on the plane P2 are lines passing through the
point 0. Since, on the other hand, p (|ZD 1) = 1, their images on the double plane
are also elliptic. Hence a generic line passing through the point O in the plane
P2 must have exactly four geometrically distinct points of intersection of odd
multiplicity with the curve Fs(x,)) = 0. Thus thé po'int 0 is a point of intersec- -
tion of multiplicity four or five and lies on the curve F¢ (x, )) = 0. If this point
has mu]uphcxty five, then a genenc curve of the- penc11 IZD | intersects the divi-
sor C3 on V in three points; which lie on the curve Dz Bur thJS is 1mposslble
since {ZD | has no base points, and the index of intersection (ZDI, D’ 5) is equal
to two. Hence the point O is a double point of the curve FG(z, y) =

We now consider the pencil |D'1 + DZ!’ whose nonsingular generic curve has
R . "\/\-‘/Wv\a ~ ~ . .
genus two. Since lD1+ DZ' + D1 € |C|, the images of the curves of this pencil
N la¥] ‘ -
under the mapping associated with the system |C| are lines passing through the
point 01 These lines must have six points of intersection of odd multiplicity

with the curve F8(x, y) = 0, and hence the point 01 is either a double or triple
point of the curve FS(x, y) = 0. This choice is determined by the mulnphcxty of
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AV AV eV oV o )

the point D, N D, (a base point of [D’,+ D,|) on the divisor C3. We obtain
AV AV VW W
analogous information about the point OZ by considering ID + P L

We consider the pencil |2D2| As can be easily seen, f.(ZD ;) Cklxy), and

thus curves of this pencil are mapped by the system |C[ in two sheets Since

(ZDZ , Cl) = 4, their images are quadrics. Since (ZD 2 Dl) = (2D2, Dl) = 2, these
quadrics pass through the points Ql and QZ, and since (252' 1-.1) _ (ZBZ,F?_):O,
they have no other common points with the lines p and ¢. Hence 01 and @, are

either singular points of these quadrics or dre points of contact with thée corre-

sponding lines p, ¢. On the other hand, a generic curve of each of the pencils
ANAAAN W/\M N

1D + DZ" [D' + D, also intersects a generic curve of [ZD | outside the singu-
lar set of the mapping given by the system I?jl and this means that a geaeric
curvé'passing through Q (QZ) intersects the quadric under consideration not only
in this point. Thus, a generic one of these quadrics is nonsingular at the polnts
¢, and Q, and touches the lines p and ¢ at those points. Since curves of IZDZ!
are elliptic, their images have four points of intersection of odd multiplicity with
the curve F8(x,y) = 0. The index of intersection of IZD | with the divisor C,

at points of the curves Dl’ 51 is equal to the index of intersection of the quad-
rics under consideration and the curve F6(x y)=0 at the points Ql and (,.
Since }ZDZI has no base points and (2D2, D )— (2D2, Dl) = 2, each of the indi-

ces of intersection at the points Ql and 02 is also even, However they cannot

be larger than four, since the points 51 N D ﬂ D2 are of muluphcu:y two on
r_he d1v1sor C . Hence each of them is acmally equal to four, the points D 1N D

ﬂ D2 are of multiplicity two on C 3, the points Q and Q, are double on the
curve Fé(x,y) =0, and the curve F6(x y) = 0 has at these points an order of con-
tactof not less than four not only with the quadrics under consideration, but also
with“their generic tangents, the lines p and q.

With this we have proved the following theorem

Theorem 2. An Enriques surface which is not of special type is birationally
equivalent to a double plane with a ramification curve of eighth degree whick is
composed of a curve of sixth degree F6(x, ¥) =0 and two lines p and q. Further,
the curve FO(x, y)=0 necessarily has three double points:

O — the point of intersection of the lines p and g, where its tangents are
different from p and g;

@, and QZ — double points, where the lines p and g are tangents and the
order of contact with these tangents is equal to four. Here the indices of intersec-

tion at these points with the curves of the pencil of the quadrics passing through
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the points Ql and (, and tangent to the lines p and g at these points are also
equal to four. . o

2. Now let the surface V be a surface of special type and let an irreducible
system of elliptic curves L have index of intersection two with a rational curve
0. We shall prove that the system |L + ® + K + (L/2)| plays in this case the
same role that the system |C| did in the proof of Theorem 2.

We first consider the linear system |D| = {L + @ + K|. By a theorem of Kodaira
(cf. [25], Theorem 2.5), H1(V, Q(D)) = 0, and hence, by the Riemann-Roch theo-
tem,

(D, D)

5 =1.

dim|D|=

We shall prove that the system IDI is irreducible. Let |H|, G be its nonﬁxed and

ﬁxed parts respectively. Since the system |L| is 1rreduc1ble we have
(L, H)>0, (L, G)>0

(if (L H) =0, the systems |L| and |H| coincide because of the equality of dimen-
sxons, but then G ~ @ + K, which contradicts the rationality of the curve @),
Since (D, L) = 2, and (L, H) is even (by the corollary to Proposition 2), we have

(L, =2 (L, 6=0
The curve @ cannot occur in the fixed part of the system |D|, since dim [L'] = 1

(by Proposition 2), and hence (#, 0), (G, @) > 0. Since (D Q) = 0, we have
(H,8)=(,0)=0. Now we obtam

H,H)+H, 6)=2, H, 6+ (G, G)=0
Therefore the following cases are possible:

HH H=0, H G =2 (GG =-2
and

2) (0, M =2, #, 6)= (G, 6)=0.

In case 1) the system |H| is an irreducible (since dim |H| = 1) pencil of
elliptic curves, which is unposmble in view of the corollary to Proposition 2, for
(H{L/D) = 1. |

Thus we must have case 2). We will prove that G= 0 Since the divisor
(L/2) + (L/2)" + © belongs to the system |D}, and @ does not belong to G, we
have G <(L/2) + (L/2)". Since ((L/Z), (L/2)) = 0, and the carrier of the divisor
(L/2) is connected, this divisor doés not contain a component (not even a reduci-
ble one) with zero index of selfintersection. Since the same can be said about the

divisor (L/2)’, and the divisor G decomposes into two disjoint components G.C.D.
(G, (L/2)), G.C.D. (G, L/2)") and has zero index of selfintersection, we have
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G = 0. Thus the system D] is irreducible.

We note that this pencil has two base points not lying on the curve
© (D, ©) = 0); namely, if D, is an irreducible curve of this pencil, then
Dy N (L/2) and Dy N (L/2)" are base points since they both lie also on the
curve (L/2) + (L/2)"+ © € |D\.

We consider, finally, the linear system C = |D + (L/2)|. Since (C, C) = 4, we
see that dim |C! > 2. On the other hand, the dimension of this system must be
smaller than the dimension of the 1rreduc1ble system |D+ L] =|2L + ® + K|.

According to the theorem of Kodaira, &
HY Vv, QD+ L)) =0,

and since (D + L, D + L) =6, the dimension of this system is equal to three. Thus
dim | C} = ' v

The system |C| contains the one-dimensional subsystems |[D] + (L/2) and
L1 +® +(L/2)'. Hence this system has no fixed component, is not composed of a
pencil, and is thus irreducible. The base sets of this subsystem intersect, and do

so only in the points
pn (L) =p (L)ne=n

These two points are the only base poiats of the system |C|.

At each of the points P  and P, we perform a 0 -process and introduce nota-
tion analogous to that of Subsectlon 1. We again obtain a regular mapping of the
surface V onto the double plane z2= F8(x, y) with ramification curve F8(x, y)=0
which decomposes into two lines p and ¢ and a curve F6(x, y) = 0. The pre-
image of the last can again be written in the form ZC Finally, as in subsection
1, the lines p and ¢ will intersect the curve FG(x, y) 0 only in the images of
the contracted curves, namely the curve @ + (m, which is contracted to the
point O = p ) g, and the curve (%, which is contracted to the point Q € p.

We now study the behavior of the curve F8(x,y) at the points O and (.
First, it is clear that the point O is the only point of intersection of the line q
and the curve FG(x,)) =0, Hence their index of intersection at this point is

equal to six.

We consider, further, the peacil of elliptic curves |Zl on the surface rﬁ Since
~ ~ ~ T\
IC1=1L1+6+(5),
the images of the curves of this pencil are lines passing through the point 0. Each

of them must have four points of intersection of odd multiplicity with the curve

F8(x, y) = 0. The pre- image of the point O on the generic curve of IU consists
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of two distinct points of its intersection with the curve G) and hence the point O
is not a ramification point under the mapping of the curves of lLl onto their im-
ages. This means that a generic line passing through O has at this point an in-
tersection of even multiplicity (namely, of multiplicity four) with the curve
F8(x, y) = 0. Hence the point O is a double point of the curve FO(x, ¥} =0, and
this curve itself is tangent to the line g.

Analogously, considering the pencil lbl and the images of its curves, i.e.
lines passing through (), we see that Q is also a double point of the curve
Fb(x, y) =

We now turn to the system lC | on the surface V Smce (C €'Y = 4 and
©(C") Ck(x,y), the images of the curves of the system \C | on the plane are
quadncs Just as for the quadrics of subsection.l, we can prove that they inter- -
sect the line p-in the points "0 ‘and Q and the line g only in the point O. Hence
the index of intersection of such a quadric with the curve F6(x, y)} = 0. at the point
O is not less than three, and at the point ( is not less than two. Correspondingly,

the indices of intersection with the curve F8(x,y) =0 at these points are not

less than six and three. Further, as is not difficult to see, each of the points 0,

Q is a ramification point under the mapping of a generi'c one of our quadrics onto
the plane (since (¢, L72) = (C () 1, and the point 19 N )
is a base point for the system lC D); hence the indices of intersection with the
curve F8(x,y) which we have been dlscussmg are odd. Since the genus of a non-

. . : Hey . : . .
singular generic curve of the system |C'] is equal to three, there are in all eight

points of intersection of odd multiplicity, which is possible only in the case when

the index of intersection at the point O is equal to seven and at the point ( is
equal to three. Correspondingly, the indices of intersection with the curve
FO(x, y) =0 at these points are equal to four and two, and outside them, to six.
The indices of intersection of the generlc curve of the system IC | with the
divisors n(L/2), m(m + s@ where m, n, s are the coefficients with whlch
these curves occur in the divisor C3, are also equal to two and four, mme
index of intersection of a curve of the pencil |L| with the divisor m{(L/2)" + s6

is equal to two. Since -

(Z, ) = 2, (E (

we have s =1, m—3,n—2

We consider finally the system 12Dl As it is not difficult to prove, this sys-

tem has pno base points. Moreover, if ZDO is a divisor of this system, then
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g(zbo) € k(x,y), and thus the curves of this system are mapped onto a plane in
two sheets. Since (25, C) = 6, their images will be curves of the third degree
which pass through the points O and @, analogously to the quadrics consider:d
above, and do not intersect the lines p and ¢ in other points. The systems |L|
([5]) and |2’b] on ’I\/‘ have index of intersection four, where the generic curves of
these systems do not intersect the pre-image of the ramification curve Fs(x, y)=0.
Hence the lines passing through O(() intersect a generic one of the cubics under
consideration in two points which are different from O((Q). Thus our cubics are
nonsingular at O and @ and have at O a point of contact of third ordsr with the
line ¢ and of first order with the line p, and the point ( is a point of contact of
these cubics and the line p. The indices of intersection of a generic cubic with
the curve Fé(x, y) = 0 and a generic curve of the system |25| with the divisor
C; coincide both at the point O and at the point Q and on its pre-image. Hence
the index of intersection at the point O is equal to six, and at the point @ to

four, since
(22,32 48)=, (:5.2(Z) -a.

We have thus proved the following theorem.

Theorem 3. An Enriques surface of special type is birationally equivalent to
a double plane z%= F8(x,y) whose ramification curve decomposes into two lines,
p and g, and a curve of sixth degree FS(x,y) = 0. The line p intersects the curve
F8(x,5) = 0 at two points O and Q and the line q at the point O. Each of these points
is double on the curve F®(x,y) = 0. The order of contact of the curve FO(x,y)=0
with the line p at the point Q is equal to four, and with the line g at the point O
to six. The same orders of contact with the curve FO(x,y) = 0 at these points are
possessed by the cubics passing through the points O and Q, tangent to the lines
q and p respectively, and having no other points in common with these lines.

We calculate now the number of parameters upon which the family of such
curves F8(x, y) =0 on the plane depends (up to projective equivalence). We can
assume here that the lines p, ¢ and the point () are given such that the equation
of p is x=0 and the equation of ¢ is y =0, and Q = (0, 1). The total collection
of the coefficients of the curve F8(x, ¥) =0 considered up to proportionality is
equal o 27.

The conditions on the decomposition of this curve with respect to the lines
p and ¢ reduces the number of parameters to 11. These conditions automatically
take into account that the point O is double; moreover, if they are satisfied, the

singularity of the point Q on the curve F%(x, ¥) =0 decreases the number of free
parameters by only one more.
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We now turn to the condition for the cubic. A local uniformizer of this cubic
at the point O is a variable x, and the expansion of the variable y with respect
to this uniformizer starts with terms of third degree. Our condition is that the ex-
pansion of the function F6(x,y) in powers of x at the point O, being obtained
after a substitution of expansion for ¥, must begin with terms of the sixth degree.
All the coefficients of the polynomial Fb(x, y) for powers of x that are of degree
smaller than six are equal to zero (the condition of tangency of sixth order with’
g), and the coefficient for y is also equal to zero (the point 0 is double). Hence
the powers of the uniformizer that are of degree less than six can be obtained only
from the products xy, xzy. This means that the coefficients of these products in
the polynomial Fé(x, y) are equal to zero (one cannot get rid of the x3 tem of
the expansion at the expense of the relédons, since the whole family of corre-
sponding cubics is béing considered). ‘ ‘

In an analogous way, the condition on the contact at the point () of the curve
FO(x, y) = 0 and the cubic decreases the number of free parameters by one more
(the coefficient of the prdduct x(y = 1) in the expansion of the polynomial FO(x, y)
with respect to powers of x and y — 1 must be equal to zero).

We are thus left with 12 free parameters. However, the family of projective
transformations of the space PZ taking into themselves the lines p, g, and the
point Q is a subgroup of dimension three. We shall show that a general trans-
formation of this subgroup operates on our set of curves without fixed points. In
fact, if (xO: xq: x2) are homogeneous coordinates in P2-such that x = X-O/xz,

y = ':cl/x2 , then the transformations of our subgroup can be written in the form
z, = azx,, z = (c+d)z, z3=>bxy,+ cx; -+ dz,

(we recall that they leave in place the lines x; =0, x; = 0 and the point 0:1: ).
From this we obtain the relation ’ -

azy — 2 + 3 =d (azy — 7, + z,),
where a = b/(d - a). Thus the line axg—x;+x,=0 also remains invariant.
After a transformation of coordinates we can assume that this line is at infinity,

and our transformation can be written in the form: x' = ax, y' = y. Clearly, such a

transformation does not leave fixed any of our curves.

Hence, with accuracy up to projective equivalence, the family of curves
F8(x,y) =0 depends on nine parameters. It follows easily that an Enriques sur-
face of special type corresponds in the space of moduli of Enriques surfaces
(which has dimension ten, as was proved in Chapter X, §5) to a subset of dimen-

sion not greater than nine.




270 KUMMER AND ENRIQUES SURFACES
§3. The converse of the theorem of the preceding section

L. Theorem 4. Let z2= F8(x,y) be a double plane whose ramification pos-
sesses the properties indicated in the formulation of Theorem 2; let, moreover, the
curve F6(x, y) =0 be irreducible and have no more than double singular points.
Then V, the relatively minimal nonsingular model of this double plane, is an
Enriques surface. -

Proof. Let ¢ be the natural regular mapping of 4 onto P2, We shall calcu-
late the canonical class of V. We consider on P2 the meromorphic differential ,
which has no zeros, such that the polar divisor of 1, which does 'notspass through
singular points of the curve FB8(x, y)=0,is given by an equation of third degree
G3(x, y) = 0. We shall find a zero divisor of the differential " (Q); for this it is
sufficient to find zeros of the differential dx A dy. If the point P € v belongs to
the pre-image of a singular point of the curve Fs(x, y) = 0, then this point is a
zero of dx N\ dy, as follows from the equalities

depdy = BN iz i

a2 (P) Ty (P)

We shall show that if a curve I belongs to the pre-image of a singular point of
the curve Fé(x, ¥) = 0, then the order of the zero on this curve of the differential
dx Ady is no more than half the order of the zero of the function FO6(x, y). It will
follow from this that the zero divisor of the differential (dx N dy)2 contains a
zero divisor of the function Fs(x, y) which is equivalent to the polar divisor
(G3(x,9)2= 0 of this differential, i.e., it will follow that the double canonical
class 2K of the surface [2 is equivalent to an effective divisor containing as a

component the minimal pre-images of the lines p and g — the curves Fl and T', -
and that «(V) > 0,

Thus, let P be a noansingular point of the curve I'. We shall choose local
coordinates u, v in a neighborhood of this point such that the equation u =0
gives the curve I'. We have

F¢ (z, y) = ubfu, v), == usg (u, v), y = ush (u, v),

where £k, $1» S, are the orders of the zeros that the corresponding functions have
on the curve I' (without loss of generality, we can assume that x(P) = y (P) = 0).
Since, by assumption, the point ¢(P) is a double point of the curve FG(x, y) =0,
we can assume that '

02F6 \
Sr (®(P) =0,

As is easily seen,
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dz /\ dy = us*er1.A (u, v)du A dv,

v dz/\dy = ut+s-lg (u, v)du AN dv.
Denoting by m and ¢ the orders of the zeros of the functions Az, v) and ¢(u, v)

on I, we have

e = uh—s,—m+:.¢ (ll v)

Differentiating this identity and multiplying the result by dx, we obtain
arre

By o dz /\ dy = uks-smmiety (y, p)du A dv,

and, since (82F6/3y?)(P) 4o,

sl—}—sz—i+m>k+rsl—sz—m+e—1.

Hence 232+ 2m > k and 2(s +s —1+m)>k

We shall prove that K(V) <0. We consider on the surface V the linear sys-
tem |L|, where L is the minimal pre-image of the generic line passing through
the point 0. As is easy to see, the geometric genus of this pre-image is equal to
one. Let L, and L, be two divisors of this system. Since the index of intersec-
tion of the lines do(L 1) and d)(L ) is equal to one, the index of intersection
(¢~ 1a(L s L) is equal to two. For an appropriate divisor @ that contracts to
a point under the mapping ¢,

99 (L) =L, + O,

where the carriers of the divisors L2 and O intersect. On the other hand, the
pre-image of the point O on L o consists either of two nonsingular points, or of

one singular point. Thus
(L, 0) > 2, (L, L) <O

Since the divisors L 1 ‘and L, cannot have common components, (L v L 2) =0
and the system |L| is a pencil without base points, a generic curve of which is
nonsingular. Hence the surface 7V contains a pencil of elliptic curves, and it fol-
lows that K(V) <1 (see Chapter VI).

We consider, further, the linear system |D|, where D' is the minimal pre-image
of the generic quadric passing through the points 01 and 02 and tangent to the
lines p and ¢. If D1 and D2 are two generic curves of this system, then each of

the indices of inter‘section ‘
@D, 2 Do, (@ (DY), ¢ (DY),

is equal to two, and hence the indices of intersection *

(CP-ICP (Dl)v DZ)[;’;-! Q) ((P-lq’ (D1)1 'D2)[¢—l Q)1
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are equal to four. The divisor (3 1¢(D1) is equal to the sum of the divisor D

and appropriate divisors ®1, ®, which contract into the points Q1 Q, under the
mapping ¢; here the indices of intersection (® p D ) (@2, D,) are positive. If
the index of intersection (Dl’ Dz)[@“(Qx)] {or (D B DZ)[Q—l(Qz)]) is positive, then

the system |D| has a base point on the curve qS_l(O 1) (or ¢;-1(QZ)). If the
curves Dl’ D2 are singular at this point, then their index of intersection at this

point is not smaller than four. Hence the assumption that one of the numbers
(D, Dﬁ)[w-‘ Q1 (D, DZ)[:;:—x Q)] L

is positive leads to a contradiction. Since the quadrics ¢(Dl), Q‘)(Dz) intersect
only at the points Ql’ QZ’ the index of intersection (Dl’ DZ) is in general equal
to zero. Hence the system |D| is a pencil without base points, a generic curve of
which is nonsingular. Since the geomemc genus of a generic curve of the system
IDI is equal to one, the surface v contains two pencils of elliptic curves. If
K(V) = 1, some multiple of the canonical class varies in a pencil. Since (K, L) =
(K; D) =0, this system must coincide simultaneously with the systems |L| and
ID]. We have obtained a coatradiction.

Hence x(V) = 0. Since a divisor of |2K| is equivalent to an effective one,
on the absolutely minimal model V¥ it is equivaleat to zero (for all surfaces with
k =0 other than the surfaces with Py =9 ~1=0, this follows from the results of
Chapters VIII and X, and for surfaces with Pg=q9-1= 0 it follows from Chapter
vID.

We shall now prove that our surface is an Enriques surface,

First of all, it is not Abelian, for there can exist no linear system of elliptic

curves on an Abelian surface.
; N~
Let, further, K(V) ~ 0, q(V) = 0. We denote by ICI the linear system on V
of the pre-images of lines on P2. Itis clear that

Psg (E) = Pa (5) = 3.

Since

€, C+K)=2p, (C) — 2 =4,

and (Z'l, E) = 2, it follows that (2", K) = 2 and the canonical class of the surface
?/‘ consists of exactly two exceptional curves (we recall that ’ﬁ was assumed to
be relatively minimal, i.e., not to contain exceptional curves of the first kind that
contract under the mapping ¢ associated with the system IEI, in other words
curves whose index of intersection with Ia is equal to zero). These curves are
the curves F = ¢ Hp) and F qS_l(q) If we contract them, we find on the
minimal model V a system |C] of curves of genus three with two base pomts

here (C, C) = 4. Further, let |H| be the system of minimal pre-images on V of
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lines on P2 passing through the point 02. The geometric genus of the curves of
this system is two. If #, and H, are two generic divisors from |H|. the index of
intersection (H{(H 1), ¢(H2))02 is equal to one, and hence the index of intersec-
tion ((;‘:'lqﬁ(Hl), H 5)e-%Qa) is equal to two. Hence (H, H) < 1. We shall show
that (H, H) = 1. In fact, let the index of selfintersection (H, H) be equal to zero.
Since the curves of |H} intersect I, in a single point, do not pass through the
pre-image of the point ¢, on T', (since (H, ) = 0 the system |H| has no base
points), and cannot pass through other points of I'., (for their images on the plane

do not do that either), we have

pa(H) — (H:H+2F1+F2) +1= 1"5.'

" Since (H, H) = 1, the unigue pre-image of the point Y, on a generic curve of the
system |H| is a nonsingular point (the argument is analogous to the one given
- above for the systems |L| and |D}), and p_(H) = 2. Now we have

(HK)Yy =1, (HT, = _1, (HT,) = 0.
Since the index of intersection of the systems |H| and [EI on ¥V is equal to two,
their index of intersection on V_- will be equal to three; moreover, the index of
selfintersection of the system |H| on V is not less than two. Since each of the
sy‘éfem-s |H1 and |Cl is irreducible,

dim H* (V, Q (€)) = dim H* (V, Q (K + C)) = dim H! (V, Q (D)) = 0,
by the theorem of Kodaira already cited frequently. Therefore by the Riemann-
Roch theorem we find that dim {C| =3 and dim |D| = 2. Since (C-D, C-D)>»
4-6+2=0, we have dim|C - D| » 1. But this contradicts the irreducibility of
the system |C|.

It remains for us to prove thar the surface rﬁ cannot be a suffafe with
K= PE.' =¢—-1=0 (see Chaptér X, §1)'. Ve sha.ll_-as_sume that it nevertheless is
such a surface, and shall then show that the pencil 11| contains four divisots of
multiplicity two, and then obtain a contradiction. We consider on the surface V
the system |nL|. This system is n-dimensional, and a generic curve of it consists

of n connected components. According to the theorem of Kodaira, there exist no

holomorphic differentials vanishing on this curve. Hence _
dim H' (V, @ (nL +- K)) =n — 1, dim H°(V, Q (nL. +- K)) = n — 1.

Denoting the nonfixed part of the (n - 2)-dimensional system |nL + K| by D,
and the fixed part by @, we obtain

(Dv, L}y = (8, L) = (8, 8) =0,

and thus the system |0 | is composed of the pencil iL{, and each component of
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the divisor © is also a component of some divisor of |L|. If @1 is a connected
component of O, then, using the standard algebraic lemma about nonpositive defi-
nite quadratic forms (see for example [35]), we find that @ =rlL T where the num-
ber r is rational and less than one, and the divisor L belongs to |L|. Since

(C, L) = 2, the number r is equal to !4, and this means that the divisor L 1 is of
multiplicity two. Now let © I @s be the connected components of the divisor
©. Since 2K ~ 0, the systems IZ(DV+ ®)| and |2nL| are equivalent. We now have

2(n —2)L + 206, + ...+ 20, ~ 2nL, 20, 4+ ...+ 20, ~4L.
Hence the system |L| actually contains four divisors of multiplicity —two.

We now consider the line (L ). If its equation is ax + by + ¢ = 0, then we
have established that the function ax + by + ¢ on V has a zer~ of second (or
higher) order on the support of the divisor L ;- This, however, is possible only
when the line & (L l) belongs to the ramification curve F8(x, y) = 0. Since this
curve contains only two curves, we have obtained a contradiction. Theorem 4 is

thus proved.

2. In this subsection we will prove for Eariques surfaces of special type an
assertion analogous to Theorem 4.

As it is not difficult to see, all the above arguments remain valid in the case
now under consideration. The only exception is the proof of the inequality
k (V) # 1. Moreover, we must prove that the surface V is a surface of special type.

We begm with the proof of the inequality, assuming it to be false. We con-
sider on V the linear system |B|, where B is the minimal pre-image of the
generic cubic occurring in the proof and formulation of Theorem 3. As is easily

seen, the geometric genus of such a pre-image is equal to five (eight ramification

- points under the mapping onto the elliptic curve), and the index of intersection of

two curves of the system |B| outside the pre- images of the points O and Q is
eLght Moreover, a generic curve of |B| does not have a singularity outside the
pre-images of these points. We shall prove that it has no singularities on these
points either, or that otherwise |B| has a base point there. So let there be no
base point, and let I" be a curve of the pre-image of the point 0(Q) at the inter-
section with which each divisor of the system |B| has a singular point. Let f be
an arbitrary function effecting an equivalence among the divisors of |B|. Then the
differential of this function is zero at each point of the curve T', and it is thus
coastant on I. This in turn means that either the index of intersection (B, I is
equal to zero, or the system |B! has a base pointon T

Hence curves of the system |B| can have singularities only in base points
lying in the pre-image of the points O and Q. We now resolve these singularities

with the aid of o-processes carried out at these base points. We obtain a surface
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= e .
V and on it a linear system !B of geometric genus five and with index of self-

intersection equal to eight. N

o Par
We now recall that on the surface ¥, and thus also on the surface V, there

exists a pencil of elhpnc curves |L|. Since (B, L} > 0, and some multiple of the

canonical class is composed of the pencil |L|, we have (B I\(V)) > 0. We obtain
a contradiction by setting the values found for the invariants in the formula
g _ (B EE()
po(B) = p, (By = BV 4y

We now turn to the last part of the proof, i.e. we find an irreducible rational
curve B soch that (L, ®) = 2. Considering the total and minimal pre-image of the
generic line passing through the point O, we first find a divisor M, each of whose
components coatracts to a point under the transformation ¢b, and which is such
‘that M ~ C - L. Considering, further, the line p on P2, we find a divisor N,
each component of which is a component of the divisor M (only here do we use
the difference of the ramification curves in the general and special cases), and
such that 2I") + N € L. We now contract the curves I'} and T', and consider

the images of our divisors on the minimal model V. Since (C, L} = 2, we have
(M, M) = (C,C) —2(C,L) +(L,L) = 0.

Since, further, the pencil |L| contains two divisors of multiplicity two (by Prop-
osition 2, $2) and since such divisors can arise only from pre-images of the lines
p and g, the divisor N is of multiplicity two. We denote the divisor N/2 by
(L/2)'. According to the classification of singular fibers of the elliptic pencil
{see [65]), each of the components of N has the same multiplicity. Siace

(C, LY=AC, N) = 2, this multiplicity is exactly two, i.e., the divisor (L/2)' is a

curve. Hence the divisor M - (L/2)" is effec:.ti\'e, and since

Ly Ly 1. S
M —{5), (7)) =wtCn=1,
it is nonzero. Further, since the index of intersection of the pencil |L| wich any
divisor is nonnegative, and with any component of one of our divisors is equal o

* zero, the divisor M - (L/2)" contains a component © not occurring in (£./2)" and
such that ' '

Loy=2{{%) 0)=2

here M > (L/2)' + O. If the index of selfintersection (@, @) were nonnegative,
i.c., if the curve @ were not rational, we would have
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() +o.(z) +e)>0,
dim|c—L1=dimle>dim|(%)'+e[>1 — dim|C|—dim|L|,

i.e., the system |C| would not be ireducible.
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