Cohomological Study of
Weighted Projective Spaces

Abd’Allah Al Amrani

Département de Mathématiques,
Université Louis Pasteur,
67084 Strasbourg, France

Introduction

Let 7 : E — X be a complex vector bundle of constant rank and
with a compact base X. Assume given an operationo : C*xE — E
of the multiplicative group C* on E, compatible with the natural
operation of C*. In the algebraic (resp. analytic) situation, o is
supposed to be defined by polynomial (resp. holomorphic) functions,
so that E splits into a direct sum of vector bundles £ = Ey®---® E,
(over X), such that the operation o is determined by the characters
of C* in the following way

a(X, (w0, -+, un)) = (xo(A) uo, -+, Xa(M) un)  (wi € i),

where x; are characters of C*. These have the form x;(A\) = A%
(A € C*,¢q;: € Z). Consider the case g > 0,:--,¢, > 0, and denote
by

P(E) = P E:;q, - ",q.) (with projection p on X )
0

The author thanks Feryal Alayont for her excellent typing.
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the (topological) quotient of E*= E\ X modulo the operation o. The
problem we are interested in is the computation, a la GROTHENDIECK,

of the integral cohomology H*(P(E)) (étale cohomology in the alge-
braic case). More precisely we want to describe:

~

1) the additive structure of H*(P(E)), as an H*(X)-module (via
p*). The result is that H*(P(E)) is a finitely generated free H*(X)-
module, and an explicit basis can be constructed.

2) the multiplicative structure of H*(P(E)). Let us recall that in
the standard case of the projective bundle P(F) (i.e. n = 0 or
go = -+ = qn = 1), the multiplicative structure of H*(P(E)) is given

by a unique relation

T+1 )
Fl==> cép ! (see l11.3)
1

which, at the same time, defines, in an algebraic way, the CHERN
classes of the vector bundle E (after GROTHENDIECK [G1]). So the
question is to find a generalization of the preceding relation for the
weighted projective bundle P(E), and to see how much it deter-
mines the multiplicative structure of H*(P(E)). Instead of the usual
CHERN classes ¢;(E) of E, we encounter here the following “charac-
teristic” classes (given by their total class)

&(E) = ($!c(Eo)) - ($'*c(En))

where | = lem{qo, -*,qn}, %' is the i-th ADAMS operation and
c(E;) is the total CHERN class of F;. These “twisted” classes have
the same properties as CHERN classes, except the additivity one

which is replaced by the following. Assume given E' = € E!
0

!
nl

with weights qg, -+ ,qL and E" = EBE," with weights qq,- -, qnn

0
(two copies of the situation above). Put I’ = lem{qy,---,q./}, " =
lem{qg, -, qnn} and m = lem{l’,1"}. Weighting E' @ E" by ¢/, ¢
in the obvious way, we obtain

S(E' @ B") = (v™'E(B)) (s™/"E(E")

~

We shall say here nothing more about the multiplication in H*(P(E)).
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This, and other more explicit results, will be the subject for a forth-
coming work [Al].

To construct a basis of the free H*(X)-module H"‘(IF’(E)), we first
study (in details) the case when the space X is a point, i.e. P(E)
is a weighted projective space P’, and then use the LERAY-HIRSCH
theorem.

The integral cohomology H "‘(I’l;’r) has been first computed by KAWA-
SAKI [K]. Then the author determined the étale cohomology of the
scheme P . For this he first recomputed the integral cohomology
of the space P’ using algebraic methods, in such a way that these
extend to the calculation of the étale case. This is done in Chapter
I for integral cohomology and in Chapter II for étale cohomology.
In these two chapters we tried to be as “self contained” as possible,
having in mind beginners in the subject, like young researchers from
Turkey (Tuba, Ali, Handan, Yakup, ... met in Ankara, Agustos
1995).

In Chapter III we explain by a fundamental particular case, how the
results announced above for H*(P(E)) are obtained. No proofs are
given. The general case (with proofs) will be treated in [Al].

The study of H*(P(E)) was submitted to me by Jean-Pierre JOUANO-
LOU. Computations in Chapters I and II were achieved under his
advisement. I would like to thank him warmly here, for his encour-
agement and for his help.
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I. Integral Cohomology of Weighted
Projective Spaces

Before computing integral cohomology H*(--, Z) of weighted pro-
jective spaces, we first recall definitions and some properties.

Through all this chapter (I), the ground field is the complex numbers
C, with multiplicative group C*.

Let n be an integer > 0 and fix qo, - -, ¢n, n + 1 integers > 1. The
group C* acts on the space (C**')* = C**'\(0) in the following way:

Aoz =Mz, -, ATz,) (%)
where A € C*, z = (zo, -+, ,) € (C*1)*.
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Notice that this action is free if, and only if, ¢ = --- = ¢, = 1. We
denote its quotient topological space by

P" = Pc(qo, 1 qn) -

It is called weighted (or tw1sted) projective space, of type (qo, -+, qn)-
If go = =g¢q,=1, then P" = P" is the usual complex projective
space. For any integer d > 1, we have a natural homeomorphism

P(dgs,- - ,dgs) = P(go, -, qn) (given by A — A% in C*).

1 First Properties of the Space P"

(a) Local structure of P
For : € {0,---,n}, put

Ul-={x:(xo,---,xn)elﬁ"uiﬂ}, Y =P\U; .

Then Y; is nothing else but P°~ = = P(qo, -, §i, -, qn) considered
as a closed subset of P* (defined by the equation z; = 0)'. Let us
now identify the open subset U; C P .

For an integer ¢ > 1, consider p, C C* the subgroup of ¢-th roots
of unity. So p, acts on the space C**' by the formula (*) above.
Denote the topological quotient-space by

CnH/ﬂq = (Cnﬂ//‘q) (Qo, e ,qn) .

There is a homeomorphism U; ~ (C*/pq.)(90,- -+, Gi, -+, ¢n) (send-
ing (2o, -, &i, -, 2n) € C*/py to (zo,---,1,--+,2,) € U;, in the
obvious way!).

This shows that the space P is locally of the form C"/pq since the
U’s cover P'. In particular, P is an orbifold.

'z = (zo, -+, z,) denotes a point in C™*! or the class it represents in P .

The symbol @ means that the letter a is omitted.



Amrani
(b) Maps between P* and P"

There are two maps, ¢ : P* — P" and v : P" — P", where
P" = P(qo, -,¢qs) and P* = P(1,---,1) (the usual projective space
over C). The first one is defined by ¢(zo,--,2z,) = (2, -, z7").
For the second, put m = lem{qo,---,¢.} and ¢; = m/q;. Then ¥ is
defined by ¥(zo, -, zs) = (2, -+, z!").

'Y n

Let us make precise the fibers of ¢. Consider the group

G = (g X -+ X fg,)/pa Where d = gecd {qo,- - ,qn}, and py is a
subgroup of gy, X -+ X pg, via the diagonal. There is an operation
of G on P" given by (Ao, -+, n) - (z0, -, Zn) = (AoZo, "+, AnTn),
with A\; € p,, £ = (2o, -+, 2zn) € P". This operation is faithful, i.e.
no non-trivial element of G fixes all points of P".

The fibers of ¢ are the G-orbits, and ¢ induces a homeomorphism

P"/G—-P". Note that G has order |G| = (IT:)/d. We will see
0

later that ¢ has a degree equal to |G|.

The map 1 allows to define a “canonical” line bundle L over P". Let
L be the canonical line bundle over the projective space P". Then
put L := ¢*(L), the pull-back of L by . Recall that *(L) is defined
by

YL=P xp L={(z,u) e P x L|y(z)=r(u)},

where 7 is the projection of L on P".

(c) Another way to describe L is the following. Let ¢ be an integer

> 1. Consider P = P(qo, -, qn+1), the (complex) weighted pro-

jective space of type (qo, ", qn+1), With ¢.41 = ¢. Then the space

FE = IF’nH\( .-,0,1) projects on P = P(qgo, - - -, gn):

p:E———)ﬁin7 ($07"'7$n+1)'_')(‘1:07'"7:1:71)-

If each ¢: (0 <7 < n) divides ¢, then E is a (complex) line bundle
over P". This s not difficult to see. The vector space structure on the
fibers p~!(z) = E; is the obvious one. To explain the local triviality,
one uses the standard open subsets U; C P~ (see (a)). Let V; be
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. . mn+l .
the corresponding open subsets 1n P""". We have a commutative
diagram (0 < ¢ < n):

n+1 R n .
p—l(Ui) — ‘/1 ~ (itq'- (qo,...,qi,...,qn+1) :(E—q(qo,...,qi,...,qn)) X C

p / 1st proj.

U,'.'l’ C (qO,"',in,"',qn)
Ha;

This shows that there exists an isomorphism E|U; ~ U; x C over U;
(linear on the fibers).

In case g=m=Ilcm{qo, - -, ¢n} the vector bundle L=1"L is isomor-
phic to E (over P").

Proof. Write L = P**'\(0,---,0,1). Then the map
E—y*L = I’P,’n XIP’"L : (‘TO, Tt 7$n+1)H(($07 Y 71771)7 (:I::)()? T 7:1":1"7 $n+1))
(cf. (b) for notation) is an isomorphism of vector bundles (over P*).

More generally, if ¢ is a multiple of m, and s = q/m, then one has

v*(L®*) ~ E, since L® =P"*'(1,---,1,5)\(0,---,0,1) .

(d) Consider the real sphere
S2n+1 — {(1'0,' . ,xn) = Cn-H | leilz — 1} C (Cn-H)* )
0

The operation (*) of C* on (C**')* induces, by restriction, an oper-
ation of S! on S?"*!. Denote the corresponding quotient-space

52n+1/51 — (52n+1/sl)(q0,”.’qn) '

The natural map $**+!/S! — P is a homeomorphism. In partic-
ular a weighted projective space is compact Hausdorff.

Proof. The mentioned map is induced by the closed inclusion §2**+! C
(C**1)*. So it is continuous and closed. To see injectivity, let
z,y € S¥*1 X € C* such that: y; = A\¥z; (0 < 7 < n). Since
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S |zi|?> = 1 and T |A|*%|z;]* = 1, one has |A] = 1. For surjec-
tivity, given (yo, -*,¥n) in (C*1)*, it is enough to find A € C*
such that 3 |/\|2q'|y | = 1 (since then (zo, - +,z,) € S?"*! maps to
(Yo, ,Yn) € P , with z; = A%y;). But any equation of the form

aplt® + -+ +at™ =1 (alla; >0, someq; #0, t € R)
has a (unique) solution to € R, o > 0. In case a; = |y;|?, take A = 1/%o.

Now P" ~ §2*+1/6" is Hausdorff since S! is a compact Hausdorff
group acting on a Hausdorff space!

2 Further Properties of the Space P"

First we establish a special cellular decomposition of P", where the
cells have the form B™/pu, (B™: real ball, u,: ¢-th roots of unity).

(a) A cellular decomposition of P

Here we identify P° = P(qo,---,gn) with S2"+1/S1 (after 1.(d)).
Consider the real ball

n—1
B*™ = {(z0, +,za-1) € C*| D |zi)* <1} .
0

The action C*x (C*)* — (C*)* which defines P"~' = P(qo, - -, gn_1)
induces an action of the ¢-th roots of unity g, on B**, where ¢ = ¢,
(see (*) at the beginning). The boundary S**~! C B?" is stable
under this action. So we obtain a canonical closed inclusion

a:S7  ug — B g,
and a map p : B>/, — S*"*1/5' well-defined by:

1
n—1 2
,0(:1:0,' . 7:1:71-1) = (:L'O,. . ,:L-n) Wlth Ty = (1 - 2 |:I:il2)
0

Let g : §?"1/81 — S§27+1/G1 be the canonical closed inclusion
~n—1

P C P (defined by z, = 0).
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We can now state the main result in this paragraph.

Proposition There is a commutative diagram

Szn_]//‘q @ . an/ﬂq

can. |y p

SZn—l/Sl c IB S2n+1/51

where p maps homeomorphically the open subset, complementary to
Im(«) on the open subset, complementary to Im(f3).

This means that P" is obtained from P ' by adjoining a “cell” of
the form B?*"/u,. Such a structure could be called VCW-complex or
orbi-CW complex (think of V-manifold, orbifold).

Proof. Commutativity of the diagram is clear. Let us see that the
map p induces a bijection

,0, : (BZn\S2n—1)/uqé(sﬁn-{-l\‘s&n—l)/sl .

() p'_is onto: let z = (zo,..,x,) € S**! with z, # 0. Choose )
such that A? = z,/|z,|, and put y; = A7%z; (0 < ¢ < n—1). Then
Y= (Yo, " Yn—1) € B*, y € S~V and p'(y) = z.

(i1) p’_is one-one: assume p’(z) = p'(y). So there exists A € S! such
that y; = A%z, (0 <7 <n —1) and

n—1 % n—1 %
(1 -y |y,-|2> = ) (1 -y |;z,-|2> £0.
0 0
Therefore |y;| = |z;], and so A = 1. Hence z = y in (B*"\ 5?7 1)/ u,.
Corollary The diagram

S2=1/y %‘. §2n=1/61 Lﬂ_,52n+1/51

is a cofibration, that is S***1/S' is the mapping cone C(v) of v and
B is the canonical injection of S*"~1/S! into C(v).
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, with

It is enough to see that B**/u, is the cone of S~ '/u, =: X
canonical inclusion a. This is given by the homeomorphism

CX= (XXI)/XX{O} _’an/ﬂq: ((‘T())' o axn—l)’t) H(t‘ro’ T ’t"rn—l)
where I = [0, 1].

REMARK. From the preceding we deduce (1.(a))

~n, ~n—1
C"[pg = (C/uq) (qos s gnr) =P \P = CX\X

where X =S5*~1/u,, CX =cone of X,qg=¢q,. The point 0 € C"/p,
corresponds to the vertex of C'X.

(b) Degree of the map ¢

We show that the map ¢ : P* — P has a degree, and that the
degree is equal to ([ ¢:)/d (cf. 1.(b)).
0

Because of what we saw in 1.(b), our situation is a particular case
of the following.

Theorem Let X be an orientable connected manifold. Assumne a
finite group G acts faithfully on X, and that G preserves the orien-
tation. Then

(1) H(X/G, Z)=7Z (r=dim X, H,= cohomology with compact sup-
ports).

(ii) the canonical projection # : X — X/G has a degree equal to

el

This result must be “well-known”, but we do not know a reference
for a proof.

Proof. (i) We may assume G # {1}. Let ¢ € G, ¢ # 1. Then
X9 ={z € X|gz =z} is a closed submanifold of X, with dimension
< r—1. The open subset U = X'\ Upz, X" is non-empty, G-invariant,
and the action of G on U is free. Assume for a while that we have
proved dim (X9) < r —2. Put Y = Uh¢1Xh. The Mayer-Vietoris
exact sequence ([B] 11.13.(1)) shows that H:(YZ) =0 for : > r — 1.
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Hence we obtain the following commutative diagram (cohomology
groups have coeflicients in Z).

(mu)”

H'(U/G)—=— HI(X/G) - 0 (U is connected; 7, r, are proper)
I

Z

So HI(X/@G) has the form Z/aZ (a > 0). But 7* ® Q is an isomor-
phism ([B] II (19.1)), whence a = 0. This proves (i).

It remains to show dim (X9) < r—2. We can assume X? # (). Con-
sider a point z € X9. The subgroup (g), spanned by g, acts on the
tangent space T(X) (by automorphisms), and one has T,(X9) =
T.(X)?. Let us assume that dim (X9) = r — 1. It follows that
T.(X)/T:(X)? = R and that (g) acts on R (by homotheties), pre-
serving orientation. Now g has finite order, so it acts on R as a
homothety the coefficient of which is 1. Hence T, (X)? = T,(X)
(The action of (g) on T,(X) is semi-simple, by Maschke theorem).
This gives a contradiction!

(it) The commutative diagram above shows it is enough to see that
p =7y : U — U/G has a degree equal to |G|. Since G acts
freely on U, there exists a non-empty open subset V C U such that
V = UV, (g € G), where the V,’s are connected disjoint open subsets
with the property:

pg = py, : Vg — V/G is a homeomorphism for all g € G.

One obtains a commutative diagram (coefficients are in Z) of coho-
mology groups
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[@p; [P*
HI(V/G)—H(U/G),

the square of which is

DZ — Z, with A(z) = (z,---,2), o(z1,- -, 25) =214+ -+ + 24,
g
& ]

where s = |G|. This implies that y is multiplication by s, as desired.
(c) We shall need the following topological property of P".

In the space P every point has a fundamental system of contractible
open neighborhoods.

Since P" is homeomorphic to P"/G (see 1.(b)), our assertion is a
corollary of the more general following fact.

Proposition Let X be a manifold on which a finite group G acts.
Then every point in the quotient-space X/G has a fundamental sys-
tem of contractible open neighborhoods.

Proof. Take z € X/G and an open subset U C X/G with z € U,
Let U be the inverse image of U in X and z a point in the fiber over
z. Then there exists ((HM] 1.6. SATZ page 7) a neighborhood V of
r, V C U, and a coordinate system

f:(fh"',f'r):v—’Rr

such that f(z) = 0, f(V) is an open ball with center 0 and the
following are satisfied.
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(1) the stabilizing subgroup G, acts linearly on R", V is G -invariant
and f is G -equivariant;
(ii) there exists a G -invariant linear subspace L in R" so that
T=f"1f(V)NL)is a “slice” of U at the point z,
i.e. (1) z €T and T is stable under the action of G,

(2) for every g € G, if (¢T)NT # () then g € Gy,

(3) for every local section s : E — G of the canonical pro-
jection G — G/G,, where E contains the identity element, the
map

EXT —U: (e t)— s(e)

is a diffeomorphism on an open subset of U.

Now (f(V)NL)/G, is contractible, so T/G, is also contractible. On
the other hand, the projection 7 : U — U = U/G induces a map
T/G, — U/G which is a homeomorphism on 7(T') ((HM] 1.6. FOL-
GERUNG page 8). But 7(T') is an open subset in U containing Z (in
(11)(3) above, take E = {1} and s(1) = 1), and =(T') is contractible.

(d) Consider the open subset P" = P(q0,-:,qn)
C* /g =(C* /1) (0, -+ 1 gn—1)
where ¢ = ¢, (see 1.(b)). We want to show that the natural map
Hg(C*/pg, Z) — HI(C"/pq, Z)

is an isomorphism (Hj= local cohomology at the point 0 = (0,---,0) €
C"/pq, Hi=cohomology with compact supports).

The remark in (a) above shows that this result is a particular case
of the following one.

Proposition Take a compact topological space X and put
Y = CX\X, where CX = cone of X .

Call O the vertex of CX. Let § be a constant abelian sheaf over C'X.

Then the natural homomorphism

H5(U, 3|U) — HZ(U, $|U)
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is bijective.

Proof. Denote by : : U — C'X the natural inclusion of U in CX.
For any abelian sheaf A over C'X, one has a morphism between exact
sequences

0 —= [o(CX,A) — T[(CX,A) — I(CX\0,A)

| | |

0 — D(CX,i(AU)) — I(CX,A) — I'(X,AX)

where ¢; means extension by zero. Apply this morphism to an injec-
tive resolution of § and take cohomology. One obtains the following
exact sequence morphism:

= HY(CX,§)— HI(CX,§)— HI(CX\0,§) - HE" (CX, )

| ) | J

= H{(U,$|U) = HI(CX,8) — HY(X, 81 X) = H§* (U, §|U) — -

(the inclusion X C CX\0 is a homotopy equivalence). By the five
lemma it follows that we have isomorphisms

H{(CX,¥)——HI(U,3|U) (j=0).

But the homomorphisms H(CX,§) — HJ(U,T|U) are bijective
(U is open in CX and 0 € U), and there are commutative diagrams

H{(U,3|U) — HI(U,3IU)
H}(CX,3)
which ends the proof.
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3 Grothendieck Theorem

Here we state some notation, and recall a theorem by GROTHENDIECK
we shall use later.

Let X be a topological space on which a group G acts. Denote by
m: X — Y = X/G the canonical inclusion. Let § be an abelian

G-sheaf over X. Put

I'$(F) =T(X,3)¢ (invariant sections)
and write 78(§) for the sheaf over Y

Vi T(V,7.8)%, V open subset in Y,

(G acts identically on Y, 7,§ is a G-sheaf). So one has two left exact
functors

FH I3, - ()7,
and can consider their derived functors
H{(X;G,3) = RT$(3) , 5(G,3) = RTEE) (i>0).

Alexander GROTHENDIECK established the following results [G2].
(a) Theorem ([G2]5.2.1) There are two spectral sequences

'Ey = H'(Y,%(G,3)) = H*(X;G,3),
"By = HYG,H'(X,§)) = HY(X;G,3).

Let us call (D) the following condition:

for every z € X, the stabilizing subgroup G, of z is finite, and
there exists a neighborhood V; of z such that (¢V;)NV, =0
for all g € G\G,.

For instance (D) is verified if X is Hausdorff and G is finite.
(b) Theorem ([G2] 5.3.1) If the condition (D) is satisfied, then

there are natural isomorphisms

ﬁi(Ga S)y = Hi(G:r,Sa:)
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forally €Y and all z € X with v(z) = y.

(c) Corollary ([G2] Corollaire 1 to 5.3.1) Assume (D) is true. If,
for every z € X, multiplication by |G.| is a group automorphism of
Sz, then there is a spectral sequence

"By’ = HY(G, H'(X,§)) = H™(Y,75%)
(by Theorem (b), $5'(G,T) =0 fori > 0; apply then Theorem (a)).

The following theorem is a consequence of Corollary (c) ({G2] Corol-
laire to 5.2.3).

(d) GROTHENDIECK Theorem: Assume G finite and X Haus-
dorff. If multiplication by the order of G is an automorphism of §,
then

H (Y, 7(F) = H(X,8)° (720).

4 The Groups H(P",z)

Consider an integer a > 0, and put A = Z/aZ. If X 1s a topological
space, we write Ax, or simply A, for the constant abelian sheaf
defined by A over X. For instance, cohomology groups of X with
values in Ax are denoted by H*(X, A) (z > 0).

Recall that P is the weighted projective space P(qo, - - -, g, ) over the
complex numbers C, defined in the beginning. The main result in
this paragraph is the following.

(a)Theorem We have

. JZ ifr=2r,0<r<n,
H(P’Z)—{ 0 ift is odd or: > 2n.

To prove this problem we first compute the groups H‘(IP’ Z/aZ)
where a > 0, and then deduce the groups H'(IP’ Z) by use of the
universal-coeflicient formula. Denote Z, = Z/aZ.
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Lemma 1 For any integer a > 0, one has

. =n ) Ze fi=2r,0<r<n,
H(P’Z“)“{o ift£2r, 0<r<n.

Proof. We may assume a = p* with p prime number # 1 and a > 0
(if not, decompose Z,!). Because P(dqo,---,dqs) = P(qo, -, qn)
we may also assume gcd {qo, -+, qn} = 1. Now let us proceed by

induction on n. The case n = 0 is clear since P is a point. So let
n > 1. There exists 3, 0 < j < n, such that p does not divide g;.
Consider then

~n—1

P = P((Io,- 7QJ7 e ,qn),(cn//l’q - (Cn/luq])(qO, e 7éja cr )Qn)(Cf- 1(3'))

Put ¢ = ¢;. Since C"/u, is the complement of the closed subset
~n—1 ~n

P C PP, there i1s a cohomology exact sequence, with compact
supports, and coefficients in Z,a,

= HICug) = H'(F") = HI(F™) — HI*'(C"/ptg) —
Hence it 1s enough to show the following, and to use induction.

Lemma 2 We have

i n Za lfl——-Qn,
Ifc((C /ﬂq’ZP°) - { Op if 2 75 m.

where (p,q) = 1.
Proof. Lemma 2 is well-known in case ¢ = 1. So it suffices to show:
H(C*/pg, Lpa) = [H(C", Zpe )" (i 2 0) (1)

(since p, acts identically on H!(C",Z,=)). Consider the open inclu-
sion in the usual projective space

C*— P": (2o, -, Zjy "+, Ln) — (2o, ++,1,--,z,) (1 is at the j-th place),

and the action of yx, on P" is defined by

A (zo, -, Za) = (A0, -, A"z,) .
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The inclusion above is then y,-equivariant and there is a commuta-
tive diagram

C n IPTL

open

can. 1 1can.

C*pg — P*/pq -

open

Therefore (1) is a particular case of the following proposition.

Proposition Let X be a compact Hausdorff topological space on
which a finite group G acts. Let U be a G-stable open subset of X
with canonical projection 7 : U — U/G. Suppose § is an abelian
G -sheaf over U such that the multiplication by the order of G is an
automorphism of §. Then

HA(U/G,xJ%) = [HAU,5)° (12>0)

(for notation see 3.)

Proof. There is a commutative diagram, with obvious notation,
U c__z__. X
7rJ 1 o
UG — X/G .
1
We have
HE(U, ) = HY(X,48), H:(U/G,n7§) = HY(X/G,iun5),

where 4, 2, are extension by 0. Multiplication by |G| is an automor-
phism of 1§ (e is exact). Therefore, Grothendieck theorem shows
that we have only to verify (3.(d))

wrlE =003 .

But one has
109§ = 78i*0,F = 7SF
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and, because 17 is left adjoint for ¢*, one obtains a natural morphism
Wy — oliF,

which is an isomorphism over the open subset U/G of X/G. To see
that is an isomorphism over the whole X/G, it is enough to check

(654,F), =0 for ally € X/G, y ¢ U/G .
But ¢4, is a subsheaf of 0,§ and
(0.i18)y = H(6 7' (y), (i§)le ™' (y)) (o is proper!),
and ()|~ (y) =0 (7' (y) C X\U).

The proof of the Proposition is finished. Hence Lemma 1 and Lemma
2 are proved.

(b) Proof of the Theorem

To simplify notation, we put H*(A) = H(P", A), where A = Z or
Z, (a > 1). The exact sequence 0 — Z = Z — Z, — 0 induces a
cohomology exact sequence

s H(Z) <% H(Z) — H(Z,) — HY(Z) 2 -
which in turn gives the following exact sequences
0 — H(Z)® Z, — H'(Z,) — Tor(H'*(Z),Z,) — 0.

By [D] 3.8., these sequences split. This proves the universal coefhi-
cient formula:

H'(Z,) = (H'(Z) ® Z,) ® Tor(H*(Z),Z,) . (2)

The groups H*(Z) are finitely generated (2.(c) and [B] 11.16.5). Fix
¢ > 0 and write H*(Z) as

ZﬁGBZmGB“’EBZﬂs (820,82 1).
(i) If 2 is odd or ¢ > 2n, then Lemma 1 and (2) imply

Zo ® HY(Z) =0 for all a > 0,
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andso: 3=0,6,=--=f8,=1,ie. H(Z)=0.
(i1) If ¢ = 2r, 0 < r < n, then Lemma 1, (2) and (i) imply

Z,=7Z,® Hi(Z) foralla >0.
Whence 8 = 1 (choose a prime with all the 8;’s). So
Lo =2 ®Lapy)® D Lap,) ,

which means (a,8,) = 1,---,(a,s) = 1, for all @ > 0. This gives
Bi=1,---,8,=1,ie H(Z)=7Z. The theorem is proved.

5 The Homomorphism ¢*

Our purpose here is to compute the homomorphism

" : H*(P",Z) — H*(P",Z) induced by the map ¢ : P* — P"
(see 1.(b)). We need first to define some notations.

Take k € {0,---,n} and consider

Iz{io,"',ik} Wlth0§20<<lk§n
Then put

l1 = lI(Qio,"',Qik) = iy qiy "'qik/(qi()’" ’ aqik)’

where (ao, --,ax) = gcd{ao, --,axr}. The following integers will
play an important role in the sequel.

b = l(qo, -y qn) = lem{]I C {0,---,n}, |I| =k +1} .

For instancelyp = 1,1, =lecm{qo, - -,q.} and [, = qo--- ¢/ gcd{qo, - - -,
¢r}. Notice that [, = deg(¢) (2.(b)). To compute the integer l;, con-
sider £ = {p prime |p divides some ¢;, 0 <7 < n}. Then

Iy = H Pa(p’k) J
peE

where a(p, k) = v,(l;) is determined as follows. Put a; = v,(qi) and
order the a;’s: a;; L ay; <+ < @, (p € E is fixed). Then

a(p,k):ain+"'+ain—k+1 (OSkSTL)
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Let £ = c;(L*) be the usual generator of H*(P",Z) (L is the canoni-
cal bundle over P"). It is well-known that {1,£,---,£€"} is a Z-basis
of H*(P",Z) [BO].

Theorem For each k, 0 < k < n, there exists a unique & €
H*(P",Z) such that ¢*(&) = L&, and {1,¢, - ,€"} is a Z-basis
of the free abelian group H*(IP’n,Z) (cf. 4.(a)). In other words there

are commutative diagrams

H*(F" Z) —2~ H*(P",Z) (0<k<n)
1] I

Z — Z

Proof. Let k € {0, --,n}, fixed in all the proof. For I = {0, -, %},
with 0 <49 < -~ < i < n, we put

111)]Ic = P(C(qio’ T ’qik) )
and denote by u; the closed inclusion IP’I; C P" defined by z; = 0 for
all 2 € I. Let m; be the integer defined by the diagram
H*(F",2) 2L 1M (B, 2)
I 1

Z — Z

.mI

Lemma 1: The integers, elements of the set
M= {my|I C{0,---,n}, |I|=k+1},
have gcd equal to 1.

Proof of Lemma 1. We use induction on n. If n= 0, then M =
{1}, and the lemma is clear. Assume then n > 1 and the result true
in casen—1. If k = n, then M = {1}. So we can suppose k < n—1.

: , ~n—1 X
Now, for 0 < 7 < n, consider ]P’:1 = Pc(qo, " Gi," " »qn), Ui :
~n—1

P.” C P" the inclusion defined by z; = 0. Denote by m; the integer

1

defined by the diagram



22 Amrani

Take I = {19, -+,2}, With 0 < i < --- <2 < nm,and ¢, 0 <1 < n,
such that : ¢ I. Then the map u; factorizes through f”?_]:

~k uy ~n
P, P

u“‘\ /u,-
~n-—1

1

*

Hence u} = uj; o u}, which shows that m; = mj;m;. Therefore M
is the set of integers m such that:

there exist I C {0,---,m}, |[I|=k+1,and:, 0 <1<, 1 ¢ 1
verifying m = m;myp;.

(Recall £ < n —1). But, by induction hypothesis, for each 7, 0 <
1 < n, the elements of the set

M; = {Mf,ill C {07"'an}a z€17 lll = k+1}
have gcd equal to 1. So we need only to show the next lemma.
Lemma 2: One has gcd{mg, - ,m,} = 1.

Proof of Lemma 2. Since P(dqo,--,dq.) = P(qo," -, gn), We may
assume gcd{qo, -+, ¢.} = 1. The inclusion u; : I?’?_l C P has C™/pq
as complementary open set (1.(a)), showing that there is an exact
sequence (with coefficients in Z, = Z/aZ, a > 0):

n—1

H*(B") =5 H*(B]™') — H**(C"/pg) — 0

1

Assume a is a prime number which does not divide ¢;. Then, by
4.Lemma 2, H**1(C"/u,,, Z,) = 0, which means that multiplication
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by m; is an automorphism of Z,. Hence a does not divide m;. This
implies gcd{mg, -, m,} = 1.

To prove the theorem, take I = {ip,---,2x} with 0 <29 < -+ < 1 <
n and consider the commutative diagram

PTL__QP_’IP) , WheI‘e (fol(:ri())...)‘rik):(‘T:I;O,'..7 ;I;k)
L]
Pk—‘—’ EDI

VI

Thus induces a cohomology commutative diagram (coefficients in Z)

sz(l'fmn) _(&*_ sz(ﬂmn) 7, a
i =]
~k
H* (P) —— H(P¥) Z — Z
P1 !

Whence a = mpay, for all I C {0,---,n} with |/| = £+ 1. Lemma
1 implies then lem{a;|l C {0,---,n}, |I| = k+ 1}. But a; =
deg (¥;) = Gio - Gir /(Gin> -+ 5 ¢i,) (2.(b)). The proof of the theorem
is finished.

Consider the closed inclusion P*~' = P(go, -, qn_1) C P (n > 1)
and its complementary

C* /g = (C"/ptg)(gos* -~ 1 gn—1), Where ¢ =g, (cf. 1.(a)).
For 0 < k < n —1, consider the integer (see beginning of this §5.)

mg = lk(Qo, T ,qn)/lk(CIo,-' " Gn-1) -

Corollary The cohomology groups, with compact supports, of
C"/u, are:

| Z if 1t =2n,
H(C' e, Z)y = Z/myZ if i =2k+1,1<k<n-—1,
0 if not.
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Proof. There are exact sequences (coeflicients in Z)
0= HE(C[py) = HH(B") — H¥(F™) — HX(C/pg) = 0.

On the other hand, putting f = ¢(q0, - ,¢n) : P — P

g=(qo, " qno1) PPN — P (1.(b)), we have commutative
squares

1

H*(P") — H¥(P")
I g

H2i(ﬁ1m) H2i(ﬁ1m—1)

Then apply the theorem above.

6 The Ring H*(P",Z)

We are going to make precise the multiplicative structure of the
cohomology H*(IP’TL,Z). Since p* : H*(IP’n,Z) — H*(P",Z) is a ring

homomorphism, 1t follows from Theorem in 5.

. 61']'&+j 1fz+]§n,
&id; —{ 0 if not |

where e;; = ;{;/liy;, 1 < 1,5 < n.

[n the polynomial ring Z[Ty,- -, T,], let a be the ideal generated by
the elements

TiTj (Z +3>n and TITJ — eijTiH (Z +] < n) .
We obtain a ring isomorphism
H*(P",Z) ~ Z[T}, -, T.]/a

where &; corresponds to the class of T;.
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7 The Generator ¢

Let us determine the homomorphism ¥* : H*(P*,Z) — H*(P",Z)
(1.(b)). Write ¥ = 9¥(q), ¥ = ¢(q), ¢ = (90, -, qn), and make the
identification P* = P"(m,---,m) where m = l; = lem{qo," -, ¢n}.
Then it holds 1 (q) o¢(q) = ¢(m). This implies ¢*(¢) = & (Theorem

in 5.), which determines completely *.

~

Since { = ¢;(L"), it follows that & = ¢;(L*), where L =
the canonical line bundle over P (1.(b)). Denote £ = ¢;(L*
From 6., we obtain

& =I5/ l)ék, 0 <k <n.

II. Etale Cohomology of Weighted
Projective Spaces

We fix through all this chapter (II) a field k. Schemes, morphisms
of schemes, will always mean k-schemes, k-morphisms of k-schemes
... For basic facts about schemes one may consult [M1], [H].

First of all, we want to define weighted projective spaces-as quotients
of A®*1\{0} by the multiplicative group G,, in the category schemes
(A™*! is the affine space, over k, and G,, = GL(1)).

1 Quotients of Schemes by Groups

A) Let X be a scheme and G be a group scheme acting on X [M2].

(a) DEFINITION. A geometric quotient of X by G is a couple (Y, ),
where Y is a scheme, 7 : X — Y a morphism of schemes, such
that (in the category of locally ringed spaces) the following sequence
be ezxact
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(1) GxX —-x .y,

where o stands for the action of G on X, and p s the second pro-
jection. This means that the next conditions hold.

(QG), (i) moo =mop,

(it) if z, ¢’ € X and 7w(z) = 7(z'), then there erists z € G xx X
such that o(z) = z and p(z) = =/,

(111) m is onto;

(QG)2 the topology of Y is the quotient topology defined by X and

Ty

(QG)s of f = Moo = 7op, then the sequence of sheaves (given by

(1))

(2) 0 OY W*OX f*OGxX

is exact. 2

The kernel of the double arrow in the sequence (2) is, by definition,
the subsheaf of invariants of 7,0 x under G and is denoted (W*OX)G.
The condition (QG); says that the structural sheaf of the scheme Y
1S (W*Ox)G.

The next proposition justifies the preceding definition.

Proposition ([M2]0, §2, 0.1)

A geometric quotient (Y,7) of X by G is a (categorical) quotient
of X by G, i.e. for any commutative diagram (in the category of
schemes)

2In this definition, the condition (QG)5 is weaker than the corresponding one
in the first edition of Geometric Invariant Theory, by D. Mumford (Chap.0, §1,

0.6).
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Gx, X 2+ X
p lh
X TZ,

there is a unique morphism h:Y — Z with hom = h:

h
X? YTZ.

Hence a geometric quotient is unique up to tsomorphism.
(b) Existence of a geometric quotient in the affine case

Assume the scheme X is affine:
X = Spec (A), where A is a k-algebra.

Then the operation o : G x3x X — X induces a k-algebra morphism
f:A— R®r A, where R=T(G,0q) .

An element ¢ € A is invariant under G if f(a) = 1 ® a. The set
AGC of invariant elements is a sub-k-algebra of A, and the inclusion
A% C A defines a morphism of schemes 7 : X — Y = Spec (A°).

Theorem ([M2] 1, §2, 1.1 and 1.3)

If G is a linearly reductive algebraic group (over k), and if the or-
bits of geometric points of X are closed, then (Y, 7) is a geometric
quotient of X by G. Moreover, if X is noetherian (resp. algebraic),
then Y is noetherian (resp. algebraic).

Recall that linearly reductive means linear and that every represen-
tation G — GL(n) is completely reducible (cf. [M2] 1, §1).

B) Let now X be a scheme and G be a finite abstract group, acting
on X by automorphisms. That is, we have a group homomorphism
G — Aut (X). This is equivalent to the datum of an action
Gr X X — X, where G} is the constant group scheme associated
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to (G. A geometric quotient of X by GG is a geometric quotient of X
by Gi (in the sense of A.(a)).

Assume X is affine: X = Spec (A) ( A k-algebra). Then Aut (X)) =
Aut (A), and let AS C A denote the subalgebra of invariants (No-

tice that AS = A% ACGk being defined in A.(b)). This induces a
morphism 7 : X — Y = Spec (A%).

From [G3] Exp. V, 1.1, 1.2, 1.5, 1.8, we have the following theorem
about the existence of a geometric quotient of a scheme by the group

G

Theorem

) (Y,7) s a geometric quotient of X by G. If X is algebraic, then
so isY.

it) If X' is a scheme on which G acts, then a geometric quotient of
X' by G exists if, and only if, X' is covered by affine open subsets
which are stable under (.

2 Weighted Projective Spaces as Geo-
metric Quotients

Remember that a ground field k& has been fixed.

Let qo, - - -, g, be positive integers. Set
X = A"*"\{0} = Spec (R) \ Spec (k)

where R = k[To,---,T,] is the polynomial k-algebra with n + 1
indeterminates. Denote G the multiplicative group over k

Gm = Spec (k, [T, T7']) .

(a) Action of G on X

Consider the localizations

Ri=Rr, , Rij=Rrr, (0<4,5<n),

[ p—
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and the associated affine schemes
Xi = Spec (Rl) y X,'J' = Spec (R”) .

There are canonical k-algebra isomorphisms R;; ~ Rj;, inducing
isomorphisms X;; >~ X;;. We shall view X as the scheme obtained by
gluing the X.;’s along these isomorphisms between the open subsets

X C Xi.
There are k-algebra homomorphisms
R, — k[T, T7'|®« R; , Rij — k[T, T7'] @k Rij

defined by T, — T @ T, (0 < s < n). This gives actions of the
group G on X; and Xj;, let us say o; and o;;, such that the open
immersions X;; C X; are G-equivariant.

The operations o0;’s (0 < 7 < n) glue together along the natural
isomorphisms o;; ~ 0j;, into an operation ¢ : G Xz X — X of
(G on X. To make precise that this action depends on the integers
o, * " gn, we shall write o = o(qo, -, ¢n)-

(b) Quotient of X by G

For each ¢, 0 < ¢ < n, put ¥; = Spec (RY) and 7; : X; — Y; the
morphism induced by the inclusion RY C R;.

Lemma The couple (Y;,7;) is a geometric quotient of X; by G.

Proof. Since G is linearly reductive, and because of Theorem 1.(b),
we need only to show that the orbits of geometric points of X; are
closed. So take a geometric point € : Spec (K) — X;, where K
1s an algebraically closed extension of k. Let u : R; — K be the
corresponding k-homomorphism. We have to prove the image of the
morphism

(oi0(1 x €),p) : G xi Spec (K) — X; X Spec (K)

is closed (p is the second projection G x Spec (K) — Spec (K)).
But this corresponds to the k-homomorpishm

h:K[To, - To,T7 = Ri @y K — k[T, T @ K = K[T,T7],
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defined by A(T;) = u(Ts)T? (0 < s < n). This h is integral, indeed:
T% = u(T7 ) (w(Te) TT) = w(T7 (T = h(u(T7) T))

and

T=% = h(u(T) T .

1

Therefore (0; 0 (1 x €),p) is closed, and so the orbit of € is closed as
required.

Similarly to the geometric quotients m; : X; — Y;, there are geo-
metric quotients m;; @ Xi; — Y;; (0 < ¢,5 < n) in such a why that
there exist open immersions Y;; C Y; and isomorphisms Y;; ~ Y},
(use (QG), and Proposition in 1.(a)). This gives the following com-
mutative diagrams

X,'—-J‘Xij ~ Xj,'; Xj
7r1-l Ty lﬂji l’/Tj
i =Y 2Yi =Y

Gluing the 7;’s along the isomorphisms 7;; ~ 7;;, we obtain a mor-

phism of schemes 7 : X — Y. So (Y, 7) is a geometric quotient
of X by G (since this property is local on Y’; see Definition 1.(a)

above).

DEFINITION. The geometric quotient (Y, m) we just constructed is
called weighted (or twisted) projective space of type (qo, - -, ¢.) and
s denoted

o-n

P, = Pi(q0,--,qn)
(k is any field, qo," - -, q, are any positive integers).

(c) The k-algebra RS
By construction, the scheme P is covered by open subsets
Y: = Yi(qo, -, qn) = Spec (RY) (0<i<n).

Let us determine the algebra of invariants R¥. The action o; :
G xi X; — X; is defined by the k-algebra homomorphism

f,' : Rl‘zk‘[To,‘ . ,Tn, Ti_ll — k[T, T_1] Rk Ri = k[T7 T_17 TO,' o 7T71, Ti_l])
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filTy) =T*T, (0<s<n).
An element of R; of the form
aq = T5° -T2~ where a; e N(s #1), o; €Z,

is invariant under G if, and only if,
Tﬁag = fi(ag) = ay, with f= Zasqs ,
0

which is equivalent to saying # = 0. Thus the k-algebra of invariants
RS is generated by the elements a, above which verify 3 asq, = 0.

(d) REMARKS i

i) Our construction of P = Py(qo,---,q.) works for all integers
go, - ,qn € Z\{0}. However we keep the hypothesis ¢; > 0 (0 <1 <
ii) Consider the N-graduation on the k-algebra R = k[T, -, T;)
given by

deg (T5) = ¢, (0<s<n),deg(A)=0(A€k).

We shall write R = R(qo, ' -, ¢.) to specify this graduation. This in-
duces a Z-graduation on R; = Rr,, the 0-degree component of which
is R;o = RY (after (c) above). Since the scheme Proj(R(qo, -, ¢.))
([GD] II, §2) is constructed by gluing the affine schemes Spec(R;, 0)

(0 <z < n), we obtain a canonical isomorphism

IP,;(71((]0’ T 7qﬂ) = PI‘Oj (R(qoa T 7qn)) .

In particular, it follows that Py (1,---,1) = P} is the usual projective
space over k.

iii) Let ¢, --,q.. be integers > 0.

(a)Assume m > n and ¢! divides ¢; (0 < 1 < n). Let V = UL, Y/,
where Y/ = Yi(qq, -+, q.) is the affine open subset of P(q,- -+, q.,)

deﬁned~a7t1bove (see (b) and (c)). It is clear that there is a morphism
V—P =P(q, ,q.), Induced by the k-algebra homomorphism

R(q07"7qﬂ) _)R(q(l),7q;)7 TSHT:{s (0 S SSTL),
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where a; = ¢5/q. (glue the corresponding morphisms Y/ — Y;, 0 <
1 < n).

(8) Assume now m < n and ¢! divides ¢; (0 < 7 < n). Then the
k-algebra homomorphism

[TO, n] - k[TOa T aTm]
T, — T (0<s<m), a,=q,/q
T, — 0(m+1<s<n)

induces a morphism P(qg,- -+, q..) — P(qo, - - -, g»), which is a closed
immersion if ¢/ = ¢; (0 <1 < m).

iv) For any integer d > 0, there is a natural isomorphism P(dqq,- - -,dg,,)
= P(qo0,- -, ¢n). Indeed, consider the endomorphism u of G defined
by T + T¢. Then ¢’ = 0 o (u x idx ), where o and ¢’ are the actions
of GG defining the quotients P = P(q;) and P’ = P(dg;) (see 2.(a)).
This induces a morphism PP — P, which is an isomorphism since
locally o and o' have the same invariants (by 2.(c)).

3 Some Properties of the Scheme P,

(a) The scheme P° = Pi(qo,..,¢n) is integral and algebraic
over k

It is integral since it is the quotient of X = AF*'\{0} (by G = G.,,)
(after 2. and Proposmon in 1.A.), and X is integral. Now it is
algebraic since P = U,Y:, where Y; = Yi(qo,- -, qn) C P" are open
immersions, and the Y’s are algebraic (cf. 2.(c)).

(b) Proposition The k-scheme P" is projective. More precisely
there is a closed immersion P° C P™ where the integer m is defined
as follows. Let s be the smallest integer which is a multiple of | =

lem{qo, -+, qs} and greater or equal to the sum Y (I —g;). Let f be
the complez function i

flz) = [ (1= 2% (1 =27
Then m = res o( f) — 1 (res = residue).
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Proof. Consider the graded algebra R = R(qo,- " ,¢») defined in
2.(d).ii. For any integer r > 1, R(") denotes the subalgebra gener-
ated by homogeneous elements of degree multiple of r. There is a
graduation on R") in such a way that (R(T))a = R,o. The integer s
is defined in the statement above, the algebra R(®) is generated by its
elements of degree 1 ([GD] I1.2.1.6, ii) and v); in the proof of ii) the

integer n; is equal to Y (I — ¢;) in our situation). The monomials
0

Tgo .- T~ of degree s = aoqy + -+ + angn in R = k[To, -, Ty]

(i.e. of degree 1 in R()) form a set the cardinality of which is

reso(f) = m + 1. Let ao,- -, a, be homogeneous elements of de-

gree 1, generating the k-algebra R(). So there is a graded k-algebra

epimorphism
S = klto, -, tm] — R 1 t; > a; (0< i < m),

where S is the usual graded polynomial algebra. This induces a
closed immersion ([GD] 11.2.9.2.i).)

Proj (R"®)) — Proj (S) = P .

But Proj(R®)) = Proj(R) (loc. cit. 2.4.7i).) and Proj(R) = P,
(2.(d).ii).

(c) Local structure of P

Let ¢ be an integer > 1, and let U, = U (k) be the subgroup of the
g-th roots of unity, in the multiplicative group k* = £\{0}. Denote
by d the order of U, (if k is algebraically closed and char (k) if 0 or
is prime with ¢, then d = ¢q). The constant algebraic group (over k),
defined by the abstract group U,, is the group of the d-th roots of
unity:
pa = Spec (k[T]/(T¢—1)) (since T¢—1= [ (T —1)).
NeU,

In particular, an action of U, (by automorhisms) on a scheme S is
equivalent to an action of ug on S.

We have P° = UZY;, where Y; = Yi(qo, - - - ,q») 1s an open subset (see
2.(c)), complementary to the closed immersion

Pn_l(qo,...,q“i,...,qn) C ﬁbn:Pn(qo,...,qn)
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defined by the projection

A

k[TO,"',Tn] — k[TO,"',Tﬁ"',Tn]:TJ'H (1 _5iJ')TJ.'

If the order of U, is g;, then Y; is a geometric quotient of the affine
space A" = Spec (k[To, -+, T;, -, Ty]) by U,,. In this case we shall

write

K:An/U.‘ :(An/U.')(qu",qi)"',qn)'

Proof. To simplify the notation, we assume z = 0, and put ¢ = go.
The action of U, on A™ = Spec (k[T3,- -, T,]) is defined by the group
homomorphism

U, — Autp(k[T1, -, To]) 0 A = uy, ul(T) = APT, .

Let B be the associated subalgebra of invariants. Since Yy = Spec(R{)
(2.(c)), it is enough to verify that the two algebras B and RS are
isomorphic. But B is generated by the monomials Ty - - - T%" with

Y a,q, = 0 mod |U,|. Using 2.(c), we have the following homomor-
s=1

phism

B — RS} : Tlcn . ..Tsn — an . ..Tsn with ag = —(E? as(]s)/Q() :
RS — B : Tg®---T* +— Ty .. -T2 (where Y§ asq, =0),

which are inverse each to the other.
(d) Morphisms between P" and P"

There are two morphisms

o= plao10) © BT B = Bgo, )
('b:(,b(qo,...,qn) - P ———)Pn:‘IP’(l,...,l),

defined as follows. The first one is induced by the graded k-algebra
homomorphism (2.(d) ii.)

R(q()’"',qn)-—')R(l)"',l):ﬂHT'qi (OSZSTL)

1
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To define the second one, let | = lem{qo, -, .} and put s; = l/g;.
Then the graded k-algebra homomorphism

R(l7"'7l)_’R(q07"°,qn):TiHTis‘ (OSZSn)

induces a morphism P — P*(l,---,1) which, composed with the

natural isomorphism P"(l,-- -, [)—>P" (2.(d) iv.), gives 3.

Proposition Let ¢ = (qo, - ,q,) and U, = U,y X --- x U,,. Then
the group U, acts (by automorphisms) on P" in such a way that a
geometric quotient (P"/U,, p) ezxist with a commutative diagram

P /U, 2. P
|
Pn

If|U,,| = ¢ for every i, then @ is an isomorphism.

Proof. i) Action of U, on P" : for A = (Ao, -+, An) € U, let h(})
be the automorphism of P" defined by T; — \;T; in the usual
graded algebra R(1) = k[To,---,T,] (2.(d) ii). We obtain a group
homomorphism A : U, — Autx(P"), that is an action of U, on
P". The standard affine open subsets Y;(1) (0 < i < n) are stable
under U,. Therefore there exists a geometric quotient (P"/U,, p) (cf.
Theorem in 1.B).

ii) Let us recall some notation: R = k[Ty,---,T,], R; = Rr,; R(q)
R(qo, - ,qn) means that R is graded by deg (Ti) = ¢; Yi(q)
Spec (RZ(q)) where G is the multiplicative group (see 2.(c) and 2.(d)
i1). Now we construct the morphism o.

T T, L
Let B; C R (1) = k[%, e -77] denote the subalgebra of invariants
under U,. So we have 1(Theore1m in 1.B)

p(Yi(1)) = Yi(1)/U, = Spec (B;) .

On the other hand, there are commutative diagrams of k-algebras
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RZ(q) ——~ RZ(1)

v’ /nclusion
B;
W(Tgo - Tgm) = Tgo ... Teomn,
such.that (Tgo - Ton) = ToOP... Tonan .

recall that Ty --- T~ € R¥(q) if and only if ¢ a,q, = 0 and that
such “monomials” generate R¥(q). Note also that u is induced by the
homomorphism R(q) — R(1) defining ¢. Now, if |U, | = ¢ (0 <
t < n), then v is an isomorphism. Indeed, in that case, an element

of RE(1) of the form
ag =15°--- T, where a; € N(s # 1), o; € Z, and Zas =0,
0

is invariant under U, if, and only if,
Ag% - Anmag = a, for all A = (Ao, -+, An) € Uy,

that is if, and only if, ¢, divides «, for all s.

The diagrams above define commutative diagrams

Yi(1) —— Yi(q)

~ ]

Y.(1)/U,
which, when glued together, give the required diagram.
(e) Canonical sheaves over P

The canonical sheaves Ox(s) over X = P" are defined by the graded
R(q)-modules R(q)[s]. By definition of the morphism % : X =
P" — Y =P, wesee that ¥*Oy(r) = Ox(Ir), where | = lem{qo, - - -,
¢n}. In particular the sheaf Ox(l) is invertible, and is considered as
the canonical invertible sheaf over P'. Modulo a normalization of
the degrees qo, -, qn, it is shown in {A2] that Ox(s) is invertible
if, and only if, [ divides s; moreover Pic (I?’ ) = Z with generator

Ox ().
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4 Degree of the Morphism ¢

In this section, we assume the ground field & is algebraically closed
and the integers qo, .., ¢, are prime to the characteristic exponent of
k (equal to 1 if char (k) = 0 and equal to char (k) if not). Let a be an
integer > 1, prime to the characteristic exponent of k, and put F =
Z/aZ. We want to compute the étale cohomology homomorphism
o* : H(P", Fp) — H*(P, Fp), induced by p : P =P} — P =
PZ((IO, T 7qn)'

(a) First let us see that P has the form P/H, where H is a finite
abstract group acting faithfully on P.

1) A finite abstract group H, acting on a scheme S (by automorhisms),
acts faithfully on S if the homomorphism H — Aut (.5), defining
the action of H on S, is injective. Consider an action of H on S
and put Hy = Ker (H — Aut (S)). Then H = H/H, acts on
S faithfully and, for every (geometric) quotient (S/H, p) there is
a (geometric) quotient (S/H, /) with a commutative diagram (see
Theorem in 1.B)

S
p/ \ﬁ

S/H — S/H .

i1) In the situation of Proposition (3.(d)), it is immediate that Hy =
Us with d = ged{qo, --,¢.} (S =P, H = U,). Since |U,,| = ¢; (by

hypotheses above), we have
P" =P"/H with H = U,/U, ,

and |H| = go - g»/d. Therefore the homomorphism ¢* : H2"(P", Fp)
— H?**(P, Fjp) we want to determine has the form

p*: H*(P", Fp) — H**(P, Fp) where p: P — P/H .

The following theorem shows that this is nothing else but multipli-
cation by the integer |H| = qo---g,/d in the group F.
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(b) Theorem Let S be an integral, smooth scheme, of finite type
over k and of dimension n. Let H be a finite group acting faithfully
on S such that a geometric quotient (S/H,p) of S by H exist. Then

we have

(i) H**(S/H,Fsy) = F,
|H|

(i) (H2(S/H, Fsyu) 2= HX™S, F,)) = (F 25 F),

where H stands for cohomology groups with compact supports, [DV].

Proof. We may assume H # {1}. Solet ¢ € H, g # 1, and
denote by SY the closed subscheme of invariants of S by the sub-
group generated by g (By hypothesis a geometric quotient of S by
H exist, hence (Theorem 1.B) S is covered by affine open subsets
V., = Spec (A,) which are stable under H. Let a? be the ideal of
A, generated by gz — z, z € A,; then S9NV, = Spec (Aa/a%).)
The action of H on S is faithful, so S9 # S (S is reduced). Hence
dim (S9) < n—1,and so dim (T) < n—1 with T = U, 5% On
the other hand, the open subset V = S\T is non-empty, stable un-
der H, and the action of H on it has no inertia. Thus we have a
principal H-covering ply : V — V/H. Now the closed subscheme
T of S is invariant by H and covered by stable affine open subsets
(T = UsSpec (By), Ba = Ao/ Ngz1 a%). Therefore a geometric quo-
tient (T'/H,~) exists so that T/H is a closed subscheme of S/H,
complementary to V/H. This shows that we have an exact sequence
morphism (coefficients are in F' = Z/aZ)

0=H>YT) - H™V) — H™S) — H™T)=0
e Tpl‘; o e
0=H"YT/H) - H*(V/H) - H*™(S/H) - H>*(T/H) =0

*

(p*, v - are well-defined since p, v, - - - are proper!). It follows that:
1) H2”(S/H) H?>"(V/H) = F (V/H is irreducible since V is),
2)

to see (i1), it is sufficient to establish

(HM(V/H) 25 (V) = (F 2 Fy.

Set 7 = p|y and V = V/h. There is a commutative triangle
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H™(V) —=~ H™(V) (Tr = trace homomorphism).

TI\ /Tr

Hence it is enough to see that
*7.(z) = |H|z, for all z € H**(V) .

But this is the case if 7*7,(1) = |H|1 in H)(V) because of the projec-
tion formula 7*7.(z) = z7*7.(1). Since 7 : V — V/H is a principal
H-covering, there is a commutative diagram

HxV=VxyV-LELvy (HxV=1lyxV)
\Pz ‘T

Therefore pi.p3(1) = |H| -1 in H’(V). The proper change of basis
theorem ([AR1] 5.1) says that 7*7,(1) = p;.p3(1), and this ends the
proof.

5 Cohomology of a Cone

(a) Let ¢ be an integer > 1 and assume that |U,| = ¢ (3.(c)). Then

the quotient scheme A™*'/U, = (A™*'/U,)(q0," -, qn), defined in

3.(c), is the affine projecting cone of a projective variety (over k) the
vertex of which is the image of (0,---,0) € A™1L

Indeed the proof in 3.(c) shows that A™*!'/U, = Spec(B), where B
is the subalgebra of R = k[Ty,-- -, T,] generated by the monomials

= T5° -T2 such that ¢ divides Zasqs .
0

Setting, for these elements, deg (a,) := (2§ @s9s)/q, we define an
N-graduation on B, that is an action of the line Dy = Spec(k[T))
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on A"t /U,. Hence A™*'/U, is an affine cone with vertex the point
(0,---,0). On the other hand, there is an integer m > 1 such that
a closed immersion Proj (B) C P} exist. This is because the k-
algebra B of invariants is finitely generated (Theorem in 1.B), and,
for each integer r > 1, the number of monomials 75 - -+ T%" with
S0 @sqs = rq is finite. Continuation of the proof is then similar to

the one in 3.(b).

The following proposition shows that, if k is algebraically closed,
then H(A™*Y/U,,F) = F , JH(A" /U, F) =0 (« # 0), and
H (AU, F) — H{(A"*'/U,, F) is an isomorphism for all :.

(b) Cohomology of a cone ([DE] 2.1.2, 2.1.3)?
We assume the ground field & algebraically closed.

Proposition Let C be the affine projecting cone of a projective vari-
cty V C P, and let 0 be the vertex of C. Let I be a torsion abelian
group, prime to the characteristic exponent of k. Then we have:

(i) HY(C,F)=F, H(C,F)=0 (i # 0),

(ii) H{(C, F)-—=H'(C,F) (: > 0).

Before the proof, we make a definition and establish a lemma.

Let S, T be two schemes (over k), A a torsion ring prime to the
characteristic exponent of k, K an object in D*(S,A) and L an
object in D+(T, A) (derived category of Ar-Module complexes which
are bounded below). A morphism ¢ : (S, K) -—— (T, L) consists (by
definition) of two morphisms (S —— T , ¥*L — K). It induces

v s HY(T, L) — H*(S, K).

DEFINITION. Two morphisms @o,py : (S, K) — (T, L) are said to
be homotopic if there exist a connected scheme ', of finite type over
k, two points 0 and 1 in T' and a morphism ® : (S x I',pjK) —
(T, L), where py is the projection S x I' — S, with the following
property. On the fibers over 0 and 1 of the projection p; : S X I' —
I',® induces oo and ¢;.

3This paragraph is entirely borrowed from [DE] for our convenience.
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Lemma If o, : (S, K) — (T, L) are homotopic, then o = 3.

Proof of Lemma. Keeping the same notation as in the definition
above, there exist a sequence of points 0 = ¢y, 2y, - ,z,, =1 in T,
connected smooth curves I'; and morphisms +; : I'; — T such that
z; and z;4, belong to he image of +; (T'; is obtained by normalization
of one-dimensional connected subscheme of I' containing 0 and 1).
Thus we may assume that I' is a smooth curve. Now apply the
smooth change of basis theorem ([AR2] 1.2) to the commutative
square

Sxr—tL g

8 s
I 5 Spec(k)

Whence ¢* R’ f. K — R'p,.(p} K), which gives the following commu-
tative diagrams (with z = 0,1)

. ('o* . :
H(T,L) Y=~ H(S,K) _ .
@"1 fiber over.’L‘I \‘} HO(F,g*Hi(S, ]()) .

-~

H'(S x T, piK) — H°(T, R'p.(p K))

But this means that ¢% is independent of z.

Proof of Proposition. (i) The projective variety V C P, is defined
by equations f; = --- = f; = 0, where the f;’s are homogeneous
polynomials in r + 1 variables zq, - --,z,. The affine projecting cone
C C A}*' of V is given by the same equations. The morphism
C x Ay — C, defined by ((zo, -, z,),t) — (tzo,-- -, tz,), induces
the identity of C at ¢t = 1 and the constant morphism at ¢t = 0 with
value 0 (vertex of C). So the Lemma implies H*(C, F) = H*({0}, F).
(ii) The projective projecting cone C' C Pi*! of V is defined by the
same equations f; = --- = f, = 0 as in (i) except that the homoge-
nous polynomials f; are considered with r + 2 variables zqg, - -, z,41.
The morphism (C\{0}) x AL — C\{0}, given by (((zo,- - -, Zr41,1)
— (29, ,Z,,tZ,41), shows that V C C\{0} is a deformation re-
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tract of C'\{0}. Whence H*(C\{0})—=H*(V) by Lemma above (co-
efficients are in F'). The 5 lemma and the following commutative
diagram give the required result.

C— H7HC\{0}) — Hy(C) — HY(C) —— H(C\{0}) — -+

|~ | | ,1
‘(

oo — HYY(V) — H(C)— HY(C) — H

V) —
(H(C) = Hy(C)).

6 Etale Cohomology of P"

In all this section, the ground field k is algebraically closed, and
the integers qo, - -, ¢n are prime to its characteristic exponent. The
weighted projective space Px(qo,- - -, ¢n) 1s denoted by P .

Let a be an integer > 1 and [ a prime number, both prime to the
characteristic exponent of k. Let F' = Z/aZ or F' = Z; (ring of l-adic
integers) and S be a scheme. We write H*(S, F) = H*(S, Fs) for the
i-th étale (F' = Z/aZ) or l-adic (F = Z;) cohomology group of the
scheme S, with coefficients in the constant sheaf Fs defined by F'.
By definition one has

H'(S,Zy) = lim H'(S,Z/1°Z) .

a>1

A good reference to learn about étale cohomology (and other coho-
mologies of algebraic varieties) is DANILOV [DA].

(a) The groups H(P", F)

Theorem Let P = Pr(q0, -+, qn) be the weighted projective space
over k, of type (qo, - ,qn). Then

i) H(P",Z/aZ) = Z/aZ if i = 2r (0 < 7 < n), =0 if not;

i) H(P",Z) = Zy ifi = 2r (0 < r < n), =0 if not.

Proof. Obviously (i) implies (ii). The proof of (i) is quite similar to
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the proof of Lemma 1 in [.4.(a) (in the Proposition in [.4.(a) take a
proper scheme over k instead of a compact space).

(b) The homomorphism p*

Theorem Let o : P — P be the morphism defined in 3.(d), and
l; = li(qo, - *,qn) the integers considered in I.5. For 0 <1 < n, we

have:

(H*(P",2/aZ) 2> H¥(P",Z/aZ)) = (Z/aZ - Z)aZ) .

Proof. Because of 4.(a).ii, the proof is the same as that of the The-
orem in L.5.

(c) Corollary Let g be an integer > 1, prime to the charac-
teristic exponent of k. Consider the quotient scheme A™*'/u, =
(AU )(qo, 5 q9n) (cf 3.(c)). Its cohomology with compact sup-
ports is as follows.
HE(A™ [y, 2JaZ) = ZfaZ ifi =2n+1),
= Z[(a,m)Z ifi=2r or2r+1,0<r <n,
= 0 if not,

where (a,mr) = QCd{a,mr}, m, = lr(qo,"',Qn,Q)/lr(qu",Qn)

(L5).

Proof. By 3.(c) and setting P = P(qo, -, Gn,q), A"/ p, is the
complementary open subset of the closed immersion P C P

Thus we have the exact sequences (with coefficients in Z/aZ)

0 — HE(A™ [pg) — HEB™) = HY(E") - HIV (A1) = 0.

C

But the preceding theorem shows that the homomorphism H2j(f”n+1) —
H%(P") is equal to multiplication by m; in Z/aZ (0 <1 < n).

(d) The ring H*(P",Z))

In the same manner and with the same notation as 1.6, we have a
ring isomorphism

H*(P", %) ~ Z[Ty,- -, T,]/a .
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ITI. Cohomology of Weighted
Projective Bundles

1 Definition of a Weighted Projective
Bundle

The ground field in this chapter is the complex numbers C. Let
qo,* "+ ,qn be integers > 1 and let £ = @Ei be a direct sum of
0

vector bundles E; with constant rank > 1, over a compact space X.
The projection F — X 1s denoted by 7. The multiplicative group
C* acts on E as follows:

o:C'xE— E, o(A (uo, - ,un)) = (A uo, -+, A" u,)

where u; € E;. A motivation of considering such an action is given
in Introduction.

Let B* = E\X where X C E is the null section of £. The topolog-
ical quotient E*/C™ of E* modulo the operation o will be denoted
by

I’F)(E):P(@El 3‘]0,"',%) '
0

There is a projection p : HE’(E) — X, induced by 7 : £ — X,
the fibers of which are weighted projective spaces. More precisely, if
rk(E;)) =r;, r=(ro+---+r.) — 1, then any fiber of p is equal to
the complex weighted projective space (cf. 1.)

—~

P = Pc(go, -, qn) with ¢; = (qi, -+, q:) € N™ .

The bundle p : ED(E) — X is called weighted projective bundle. 1f
n=0o0rq =---=g¢q, =1, then P(E) = P(F) is the usual projective
bundle associated to the vector bundle K.
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2 Canonical Line Bundle over P(F)

Let ¢,41 = lem{qo, -+, ¢} and En41 = X X C (trivial line vector

bundle over X). Consider then the weighted projective bundle P(F)
n+1

associated to (F' = @ FE; ;q90, - ,qns+1)- There is a closed immer-
0

sion:

n+1
X = P(En+1;Qn+l) C P(@ Ei;q07' ©e ,qn+1) = P(F) ’
0

n+1
defined by the canonical inclusion F,;; C @Ei. Denote U =
0

I?’(F)\X its complementary open subset. Thus we have a projection
U — P(E) (given by (uo, - ,Ung1) > (Yo, ,un), u; € Ej), and
this is a rank 1 vector bundle over P(F) (the reason is that gn4; is
divisible by each ¢;, 0 <1 < n; compare with I.1.(c)). We write Lg
for this bundle and call it the canonical line bundle over P(F).

More generally if, instead of g,41, we take any common multiple s
of the integers ¢;, we obtain a line bundle over P(£) isomorphic to

(D)5

The restriction of (L)g to the fiber P of P(E) is the canonical line
bundle defined in I.1.(b).

with £ = s/qn41-

When Y is a topological space, then H*(Y') will stand for the integral
cohomology H*(Y,Z). The class of Ly in the cohomology group
H?*(P(E)) is denoted by £g.

~

There is a structure of H*(X')-module on H*(P(E)) = ®.»o H(P(E))
via the homomorphism p* : H*(X) — H*(P(E)), induced by the
projection p : P(F) — X.



46 Amrant

3 Cohomology of P(F)

(a) Let us suppose that ¢o = -+ = ¢, = 1. So IF(E) = P(F),
and €g = g is the class of the canonical line bundle over P(E).
It is well-known that the H*(X)-module H*(P(E)) is free of rank
r+ 1 with {1,{g, -, €} as a basis ([BO],[J]). Moreover, the multi-
plicative structure of H*(IP(E)) is determined by the unique relation
(G1],[BO,13)

Fltals+ - +aletcep =0 (¢)

where ¢; = ¢;(F) is the i-th Chern class of F.

(b) Now in the general case (¢; > 1), the elements 1,5};,---,5;3
do not generate the H*(X)-module H*(ﬁ:i’gE)) Indeed if X is one
point, then lP’(E) is reduced to its fiber P, and we know from L.7.
that 1&g, - - -, € do not generate H* (IP’ ).

4 The H*(X)-module H*(P(E))

(a) The result is that H*(P(E))is a H*(X) -free module of rank r+1.
This is done by constructing elements Wo, -, Wr, Wi € H2"(IA15’(F)),
the restriction of which to the fiber P' gives the basis of H*(P')
defined in Theorem I.5. This will prove that {wo,---,w,} is a basis
for the module H*(IP(F)) by LERAY-HIRSCH theorem.

(b) We explain now how to construct the elements w; in a particular
case which is, in fact, fundamental for the general case.

So let us assume that the vector bundles Eq, - - -, F,, are line bundles
and that the integers qqo, - - -, g, are such that ¢; is divisible by ¢;_4
forall 2 = 1,---,n. We make a change of notation, putting L; = E..

So E = (P Li, and rk(E) = n + 1. The fiber of p : P(E) — X is
0

I’FDTL — Pc(qo, e ,qn)_

(1) Since we are going to proceed by induction on n, let us first
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remark that there are closed immersions:
X =P(Fo) CP(Fy) C --- CP(F,) = P(E),

where F; = Lo ® --- ® L; and P(F;) = P(F};qo,- -, ¢:). These inclu-
stons are induced by the canonical F; C F;;,. For simpliﬁcation of
notation, set M; = I’:p‘, the canonical line bundle over P; = P(F}).
An important fact is

M| Py = ME%/9% (1 <i<n).

(ii) Consider the open subset V = P(E)\P(L,). This is a line bundle
over P,_; (because ¢; divides g,, 0 <7 <n — 1), and

V = ME%G/ 1 p*(Lm), where p: P,_; — X is the projection.

In particular H*(V) is a free H*(P,_; )-module of rank 1, generated
by the Thom class 7 € H*(V) of V ([BO)).

On the other hand, there is a cohomology exact sequence

N &

C

(V) = HY(B(E)) - H'(B(L,)) —» H*'(V) - -

The image of 7 in H2(B(E)) is €5 + c1(Lm) (B(Lm) = X).

~

(ii1) Construction of the elements wy, - -, w, € H*(P(F)): by induc-

~

tion on n. Take wy = 1 € H°(P(FE)). Assume that elements wf =
1,wi, -, w,_, are defined in H*(P,_;) : w! € H*(Pn_,), Pooy =

y n—-1

P(F,-1). Consider then w; - 7 in the H*(P,_;)-module H*(V) and

~

denote by w;4; its image in H*(P(F)) = H*(P,).

~

Hence the elements wy,---,w, € H*(P(E£)) are well-defined. Their
restriction to the fiber P* of P(E) gives the basis & = 1,&;,- -, &n

~Mn

of H*(P ') constructed in I.5. Thus, by LERAY-HIRSCH theorem, the

~

H*(X)-module H*(P(E)) is free with {wo,---,w,} as a basis. Note
that w; = €g + c1(L,).
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5 About the Multiplicative Structure

—

of H*(B(E))

The hypothesis made in 4.(b) is still valid in this paragraph. Recall
that P; = P(F}), Fi = Lo®---® L;. Let {w,---,w!_,} be the basis
of the H*(X)-module H*(F;) constructed above (4.(b) iii).

(a) Consider the homomorphism h, : HX(V) — H*(P,),P, =
P(E) (see 4.(b) i1). Since h,(7) = w}, and H(V) is a H*(P,-1)-

module, we shall write
a-wy = hy(at) for a € H*(P,—1) .

Thus, by construction of the wf’s, we obtain

b]
n n—1 n no___ n— n
Wy = W, wy , y Wy = Wy - Wy
n—-1 __ n—-1 __ ¢
wy = Lw™T =¢&F,, +a(laa),
-1 __ n—2 n—1 n—1 __ n—2 n—1
W, =w = -w o, y Wpp = Wy_o Wy
So, by induction, it holds that
_ n—i+1 n—+2 n
w = wy w] - wl (1 <1< n)

(similarly to h,, there are homomorphisms &, : HZ(V;) — H"(P;),
with V; = P(F;)\P(L;) allowing to define w{™' - w}.) Whence

wi = (Er, + e1(Ls) - (Erups + 1(Lor)) - (Ery + 1(Lan))
where s =n —1+1,1 <1< n.

Because EFD + c1(Lo) =0 in HZ(IF(FO)) (Fo = Lo,llni’(Fo) = X), there

1s the following relation:

(€ + c1(Lo)) - (€ + ar(Ln)) -+ (€p, + ca(Ln)) =0 (¢')

If go = -+ = g, = 1, then this relation coincides with the relation
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(c) mentioned in 3.(a), which defines the Chern classes of £ = Lo &
-+ @ L,, that is:

(e + c1(Lo))(ée + ar(ln)) - (bg + a(ln)) =0,

the first member of which is the usual product in H*(P(E)). In fact,
when go = --- = ¢, =1, one has

w} = (€g + a(Ls))(€e + e1(Los1)) - (€5 + c1(Ln))

((s = n — 1t + 1), the second member being the usual product
in H*(P(E))), and -of course- these wg,w}, -, w form a basis

of the H*(X)-module H*(P(F)), but this is not the usual basis
5%,515',,5%'

(b) So the relation (c') gives a generalization of (c). We want to
write it in terms of the class (g of L% (dual of the canonical line

bundle over P(E)), using the usual product in H*(P(E)). This leads
to the following relation in H*(P(F))

(€5 + a(L§°)(EE + a(L8) - (e + ar(LE) =0 (¢")
with ¢, = ¢./q;.
More generally we have
(e + ar(L2) (g + al(LE5) -+ (Eg + e (L8™)) = tatayy -+ taw]

where s=n—1+4+1,1 <1 <n,

6 The Classes ¢;(F)

We continue to suppose that the vector bundles F; = I; are of rank
1, but no hypothesis is made about the integers qo, --,q.. Let
! = lem{qo, --,¢n}. Then the relation (¢”) is a particular case of
the following

(€5 + a1 (L8"))(ék + ar(L§")) -+ (€5 + ea (L8*)) = 0 ()



50 Amrani

where ¢; = [/q;. It is this relation we consider as a relevant gener-
alization of (c) in the case of P(E). This will be justified in [Al].
Let ¢;(E) be the coefficient of (57**! in the left member of (¢), and
¢(E) =¢é(E)+ -+ ¢, (F). Then

&(E) = (¥ c(Lo)) - (%" c(Ln))

where 1% is the k-th Adams operation and c(F) is the total Chern
class of F.

Now, for general vector bundles E; (£ = Fo® --- & E,), we put
E) = ($"c(Eo)) - - (¥ c(En))
which defines classes ¢&;(E) € H*(X) (0 < ¢ < r = rk(FE)) such that

n

E)=>_&(E).

0

These classes verify the same operations as the ¢;( F) except the addi-

1

tivity one. If (E' = EB El g5, ,q;:) and (£" = @3” EYqd, -, quu)
0

are two examples of our datum (£ = @ Fi; g0, - -, ¢»), then it holds
that

HE @ BY) = (1) (I E(E))
where I' = lem{q(, -, ¢}, " = lem{q{,---,q.n},m = lem{l', 1"},
and O FE'"=E[®---®E, ®E[®--- & E!, is weighted by the

. / roon "
1ntegers 9oy " " yY9n>90) " "> qpn-
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