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These notes present a course given during the Algebraic Geometry
Summer School in Bilkent University (August 1995). This elemen-
tary introduction does not pretend to originality but to give examples
and motivation for the study of toric varieties. These varieties play
a prominent part giving explicit relations between combinatorial ge-
ometry and algebraic geometry. They provide also an important
field of examples and models. The preface of [5] explains very well
the interest of these objects “Toric varieties provide a ... way to
see many examples and phenomena in algebraic geometry... For ex-
ample, they are rational, and, although they may be singular, the
singularities are rational. Nevertheless, toric varieties have provided
a remarkably fertile testing ground for general theories.”

Basic references for toric varieties are [4], [5] and [7]. These references
give proofs of the results and complete descriptions. They were used
(a lot !) for writing these notes and the reader can consult them for
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useful complementary references and details. In particular, many
points are omitted here, for lack of time during the course. For
example, the reader will look at references for the notions and points
of view such that character groups, one parameter subgroups, line
bundles, Betti numbers etc...

I want to thank particularly Professor Sinan Sert6z and University
of Bilkent for their hospitality during the Summer School.

1 From combinatorial geometry to toric
varieties.

The procedure of the construction of (affine) toric varieties associates
to a cone o in R™ successively : the dual cone &, a monoid S,, a
finitely generated C-algebra R, and finally the algebraic variety X, .
[n the following, we describe the steps of this procedure :

c +— F - S, - R, - X,
and recall some useful definitions and results of algebraic geometry.
Let A = {zy,...,z,} be a finite set of vectors in R", the set
{zeR" :z=Mz1+- -+ XNz, NER, X\ >0}

is called a polyhedral cone.

The dimension of o, denoted dim o, is the dimension of the smallest
linear space containing o.

If A={ then 0 = {0} is the zero cone.
In the following, N will denote a fixed lattice N = Z™ C R™.

Definition. A cone o is a lattice (or rational) cone if all the vectors
r; € A defining o belong to N.

Examples 1. In R? with canonical basis (e, e;), we have the fol-
lowing cones :
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.'131——-261-62

Definition. A cone is strongly conver if it does not contain any
straight line going through the origin (i.e. o N (—0) = {0}).

One important step of the procedure of the construction of toric
varieties is to define the dual cone associated to a cone. Let (R")*
be the dual space of R™ and (, ) the dual pairing. To each cone we
associate the dual cone &

F={ue(R") : (u,v) >0 Vv€o}

Examples 2. The canonical dual basis of (R*)* is denoted (e}, €3)

R

€2 6T+2 ;

Giving a lattice N in R™, we define the dual lattice M = Homg(N; Z)
= Z" in (R")* and we have the property :

Property. If o is a lattice cone, then & is also a lattice cone (rela-
tively to M).

Remark that if o is a strongly convex cone, then & is not necessarily
a strongly convex cone (see 7 in examples 2).

Definition. Let o be a coneand let A € §N M, then T = o N At =
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{veo : (N\v) =0} is called a face of o. We will write 7 < 0.
This definition coincides with the intuitive one. (Exercise).
A one dimensional face is called an edge.
Remark. If 7 < o then & C 7. (Easy exercise).

Definition. A fan A is a finite union of cones such that :

(i) every cone of A is a strongly convex, polyhedral, lattice coue.
(i1) every face of a cone of A is a cone of A,

(111) if o0 and o' are cones of A, then o N ¢’ 1s a common face of ¢

and o’
Examples 3.
L A A
> < v Y,
/261-62 ///N-ez ///‘/////

The aim of this course is to explain how we can associate an algebraic
variety to each fan and to explain how properties of this algebraic
variety can be read on the fan (in a combinatorial way). The first
step 1s to associate to every cone o a finitely generated monoid 5, .

Definition. A monoid is a non empty set S with an associative and
commutative law + : S x S — S, with a zero element and satisfying
the simplification law, i.e. :

s+t=5+t => s=sfors,s’andt e S
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Lemma. If ¢ is a cone, then o N N is a monoid.

Proof : If z,y € c N N, then £ +y € o N N and the rest is easily
verified.

Definition A monoid S is finitely generated if there exists a,,...,ax €
S such that

Vs €S, s=XAay+- -+ Agaxp with \; € Z and A\; > 0

Lemma. (Gordon’s Lemma). If o is a polyhedral lattice cone, then
o N N is a finitely generated monoid.

Proof : Let A = {z1,---,z,} be the set of vectors defining the cone o.
Each z; is an element of c N N. The set K = {} t;z;, 0<t; <1}
is compact and NV is discrete, therefore K N N is a finite set. We
show that it generates cN N. In fact, every z € o NN can be written
r = ) (n; + r;)z; where n; € Z5o and 0 < r; < 1. Each z; and the
sum y_ r;x; belong to K N N, so we obtain the result.

We will use this lemma for the polyhedral lattice cone & and will
denote by S, the monoid & N M.

Example 4. In R?, consider the cone reduced to the origin :

o = {0}

S, = 6 N M is generated by (e], —e3, €5, —e3).

Example 5. In R’ consider the following cone
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S, = & N M, marked e, is generated by (e}, e; + €3, €] + 2¢3).
Laurent polynomials

Denote by Clz,27'] = Clzy,...,2n, 27", ..., 27 '] the ring of Laurent
polynomials. One of the important result in the definition of toric

varieties, and key of the second step, is that the mapping
0 2" — Clz,27']

a=(a1,...,0) +— 2% =2z -2

is an 1somorphism between the additive group Z™ and the multi-
plicative group of monic Laurent monomials. Monic means that the
coefficient of the monomial is 1. This isomorphism is easy to prove
and let as an exercise.

~a

Definition. The support of a Laurent polynomial f = 3 ¢ .. Aaz
is defined by

supp(f) = {e € Z" : A, # 0}
Proposition. For a lattice cone o, the ring
R, = {f € Clz,27"] :supp(f) C &N M}
is a finitely generated monomial algebra (i.e. is a C-algebra gener-
ated by Laurent monomials).

This result 1s a direct consequence of the Gordon’s Lemma.

The following section recalls how we can associate to each finitely
generated C-algebra (in particular to R,) a coordinate ring, then an
affine variety.
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2 Some basic results of algebraic ge-
ometry.

Let C[¢] = Cl¢i,...,&k] be the ring of polynomials in k variables
over C.

Definition. If £ = (fi,... f;) C C[£], then
V(E)={z €C* : fi(z) =" = f(s) = 0)
is the affine algebraic set defined by E.

Let A denote the ideal generated by E, then V(A) = V(E).

Definition. Let X C C*, then
I(X)={feC[g : flx =0}
is called the vanishing ideal of X.

Example 6. For a fixed point z = (zi,...,zx) € CF, consider
E={&{L -z, -, ék—zk}. Then V(E) = {z} and I({z}) = C[¢](&—
1) + - + Cl€](€x — z&). It is a maximal ideal M, (recall that an
ideal M is maximal if for each ideal M’ such that M C M’ then
M = M)

Theorem. (Weak version of the Nullstellensatz) : Every maximal

ideal in C[£] can be written M, for a point z.

Corollary 1. There is a one-to-one correspondence between points
in C* and maximal ideals M of C[¢].

C*F «— {M C C[¢], M maximal ideal}

Lemma. Let A be an ideal of C[¢], then V(A) = {z e C* : AC
M.}

Definition. Denote the vanishing ideal of V(A) by Ay = 1(V(A)),
then Ry = C[¢{]/ Ay is the coordinate ring of the affine algebraic
set V(A). It is generated as a C-algebra by the classes £; of the
coordinate functions ¢;.
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We remark that if A4 = {0}, then V(A) = C* and Ry = C[¢]. The
corollary 1, written for A = {0}, is generalized for any ideal in the
following way :

Corollary 2. There is a one-to-one correspondence

V e— {M C Ry, M maximal ideal} =: Specm(Ry)

Defining the Zariski topology on each side (see, for example [4],
VI.1), we obtain an homeomorphism

V = Specm(Ry )

Remark. A finitely generated C-algebra R can be written
Cl&, ..., &]/ A, as a coordinate ring, for different k and ideals A. Tt
means that we associate by this way, different affine algebraic sets
V(A) € C*. In fact, the corollary 2 shows that these representations
V(A) are all homeomorphic to an “abstract afline toric variety” X, .
We will often write also X, for the representations of X, .

Remark. [t can be useful to consider the spectrum Spec( Ry ) whose
elements are prime ideals of Ry. In our application, Ry is a domain,
then Spec(Ry) is an irreducible variety and the prime ideals corre-
spond to irreducible subvarieties of V(.A). For such a point of view
and discussion, see [5], §1.3.

3 Affine toric varieties.
We are now able to define the affine toric variety associated to a cone
o

Definition. The affine toric variety corresponding to o is X, :=

Specm( R, ).

The previous section shows that we can represent the finitely gen-
erated C-algebra R, as a coordinate ring, according to a choice of
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generators of S,. Let us do this on an example, then give the general
situation.

In the case of example 5, let a; = e}, a; = €] + €5 and a3z = €] + 2¢;
be a system generators of S,. They correspond to monic Laurent
monomials uy = 21,u; = 2122 and uz = z122 by the isomorphism 6.
The C-algebra K, can be represented as

Ra = C[UI,UZ,UB] = C[€17€2,€3]/AU

where the relation a; + a3 = 2a, provides the relation v uz = u;
between coordinates. The ideal A, is then generated by the binomial
relation {,£3 = €2 and the affine toric variety corresponding to the
cone o is represented in C* as the quadratic cone

X, = {z = (21,25,23) € C° : z,23 = 2}

It has a singularity at the origin of C>. The following picture gives
the real part of X, in R®.

T
] %
‘
P
Y
In the general case, the situation is the same: Let a,,...,a; be a sys-
tem of generators of S,, where each qa; is written a; = (a},...,a?) €

&N M . By the isomorphism 6, we obtain monic Laurent monomials
u; = z% € Clz,z7 for ¢« = 1,...,k. Writing R, as Clu,, ..., ux],
this C-algebra can be represented by

Ra = C[é‘l,- .- )é‘k]/Aa

for some ideal A, that we must determinate.

Consider relations between generators of S, such that

k k
(*) Y via; =) pja; 1i vi € Zyo
i=1 i=1
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we obtain the monomial relations

(zal)Vl ce (zak)Vk — (zal)ul e (Zak)uk
al a’ . .
where z* = (z;',...,2n"), l.e. relations
ull/I ...ull:k :ulll'l ...uzk

between the coordinates and finally the binomial relations

() G =6
that generate A,.

Theorem. Let o be a lattice cone in R™ and A = (ay,...,ax) a
system of generators of S,, the corresponding toric variety X, is
represented by the affine toric variety V(A,) C C* where A, is an
ideal of C[£,, ..., &,] generated by finitely many binomials of the form
(**) corresponding to relations (*) between elements of A.

Property. If o is a lattice cone in R", then dimg X, = n.

The generators uy,...,u; of R, are the coordinate functions on X,
in C*. This means that a point z = (z1,...1x) € CF represents a
point of X, if and only if the relation z7* ---z* = z{* --- zf* holds
for all (v, n) appearing in the relation (*).

Example 7. Consider the cone o = {0}, the dual coneis & = (R™)".
We can take as system of generators of 5, for example :

or
A =(el,...,e,—(el+ - +en))

Let us take the first system of generators. The corresponding mono-
mial C-algebra is

Clz1,. .y zn, 27, ., 2 = Cléy, - .. Ean) [ As

where

[6](6 €n+1 - 1) [‘5](§n€2n - )
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hence X, = V((&1bng1 — 1), -+, (€nban — 1)).

For n = 1, the obtained variety is a complex hyperbola whose asymp-
totes are the axis {; = 0 and £; = 0. It can be projected bijectively
on the axis £, = 0 and the image is C* :

C

— AT (B

\4

In the general case (n > 1), and by the same way, X, is homeomor-
phic to

T={(z1,...,2,) €C" : 2,40, 1=1,...,n}=(C")"

using the projection C** — C" on the first coordinates.

Definition. The set T = (C*)" is called the complex algebraic
n-torus.

Remarks 1. T includes the real torus as : T = (5')* x (Ryo)™
2. T is a closed set in C*" but, as a subspace of C", it is not closed.

3. The second choice of generators A, for S, provides another real-
ization of X,, now in C**'. We let this as an exercise.

Example 8. Let 0 € R? be the fol]owing_ cone
€9 6;
€1 ]

S, is generated by (e}, e3), R, = C[&,&,], so A, = {0} and X, is
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(:2

Example 9. Let 7 € R? be the following cone

|

S, is generated by (e}, —e},e}), R = Cluy, uq, us] with uy = uy’.

We obtain R, = C[£,£,,83]/(&1é2 — 1) and X is Cf, x Cg,.

Example 10. This is the example of arbitrary 2-dimensional affine
toric variety.

Let us consider in R? the cone generated by e; and pe; — ge,, for
integers p,q € Zso such that 0 < ¢ < p and (p,q) = 1. In the
following picture, p = 3, ¢ = 2 and N’ is pictured by the points e.

A1 ﬂ
A
T
/]

#L

$

UL

o_.”

361-262

-t -

Then R, = CJ..., zi2}, ...] where the monoids zi z} appear for all i and
7 such that 7 < p/q 1. Let N’ the sublattice of NV generated by pe; —
qe; and eq, 1.e. by pe; and e,. Let us call o’ the cone o considered
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in N’ instead of N. Then ¢’ is generated by two generators of the
lattice N’, so X, is C* (cf. example 3).

In such a situation, it is a general result that the inclusion N/ C N
provides a map X,» — X,. Here the group I', of p-th roots of unity
acts on X, by (- (u,v) = (Cu, (%) and then X, = X,./T, = C*/T,.
The map X,» — X, 1s the quotient map.

If n =2 (and in general, if ¢ is simplicial), then singular affine toric
varieties are quotient singularities.

4 Toric varieties.

The toric varieties associated to fans will be constructed by gluing
affine ones associated to cones. Let us begin by recalling a very
simple example, the one of the projective space P?.

Let us denote by (¢o : ¢; : t2) the homogeneous coordinates of the
space 2. It is classically covered by three coordinate charts :

Uy corresponding to tg # 0 and with affine coordinates (¢, /to, t2/t0) =
(21, 22)

U, corresponding to t; # 0 and with affine coordinates (to/t1,%2/t1) =
(2;1,2;122)

Uy corresponding to to # 0 and with affine coordinates (£o/t2,¢1/t2) =
(251’21251)

Now consider in R? the following fan :
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*®
€ -el+e; e

o

1

0 \ B B
_ *y *_ *
\ €y €1-€,

-€1-€2

then :

1) Sao admits as generators (e, e3), hence R,, = C[z1, zo] and X, =

(C( 21,22))

11) in the same way, S,, admits as system of generators (—ej, —ej +

e3), hence R, = Clz;', 27 23] and X, = sz—l -1

UL z'-’-);
111) finally, SU2 admits as system of generators (—ej, e; — €3), hence
R,, = Clz;', 212;'] and X, = (C2

(z4 ,zlz 1)'

We see that the three affine toric varieties correspond to the three
coordinate charts of P2 In fact, the structure of the fan provides a
gluing between these charts allowing to reconstruct the toric variety
P? from the U,,. Let us explicit the gluing of X,, and X,, such that
T =09 0oy.

For seeing this let us first consider 7 as a face of oy :

7 74
A

€1 Y T ep=
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The vector A = e] satisfies :
/\ € 6’0 T =0p N )\'L

and we have

T = 09+ Rzo(—/\)

In the same way, let us now consider 7 as a face of oy :

€2
///
T
-8 >
A 0 A

0 -
ez €ite;
\ P
~. 0 p=-e; U H

~€1-€2

The vector p = —ej satisfies :
[ E & T=o00N /f‘

and we have
T=0 + Rzo(—ﬂ)

Finally consider the origin {0} as a face of oy :

€2

The vector v = e} + € satisfies :

v € &g {0} = oo vt
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and we have ]
{0} = (Rz)* = 5‘0 + RZO(_'V)-

The previous three examples are examples of a general result :

Proposition. Let 7 be a face of a cone o and let A be a vector such
that A € & and 7 = o N AL, then 7 = & + Ryo(—2).

The proof of this fact is a funny demonstration using properties of
duality and orthogonality.

Corollary. Let 7 be a face of a cone o and let A be a vector such
that A€ & and 7 = o N At then S, =S5, + Zso(—A).

The monoid 5, is thus obtained from S, by adding only one genera-
tor —A. As A is an element of a system of generators (a,, ..., ax) for
S,, we may suppose that A\ = ax. So for obtaining the relations be-
tween the generators of S;, we have to add only the supplementary
relation a; + axy1 = 0 to the previous ones between the generators

of 5,.

This relation corresponds to the multiplicative relation uzugs = 1
in R, and it is the only supplementary relation we need defining R,
from R,. As the generators u; are precisely the coordinate functions
on the toric varieties X, and X, this means that the projection
CH - CF .

(T1y- s ThyThpr) > (T1,. .., Tk)

identifies X, with the open subset of X, defined by zx # 0. This

can be written :

Proposition. There is a natural identification
X, = X, \ (up =0)

This allows us to glue together X, and X, such that cNo’ = 7.
Writing (vy,...,v) the coordinates on X,, there is an homeomor-
phism

XT EXUI\(UI:())

and we obtain a gluing map

Yoot Xo \ (ue = 0) — X, — X0\ (v = 0).
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Theorem. (Definition of Toric Varieties). Let A be a fan in R".
Consider the disjoint union U,ca X, where two points z € X, and
' € X, are identified if ¢, ,/(z) = 2. The resulting space Xa is
called a toric variety. It is a topological space endowed with an open
covering by the affine toric varieties X, for o € A. It is an algebraic
variety whose charts are defined by binomial relations.

Example 11. Let us return to the example of the projective space
P? we have, using the previous notations :

S: = Sey + Zyo(—e7) and X; = X5y \ (21 = 0) = C,, x C]. Recall
that Xgo - 6522:21).

In the same way, S. = Sy, + Zyo(e}) and X, = X, \ (2,7 =0) =
Czl—lzz X (C:_1 with Xgl = C(zz—lzz 2—1).
We can glue together X, and X,, along X, using the change of
coordinates (zy,21) — (27 '22,27"). We obtain P?\ {(0:0: 1)}.

Gluing this space by the same procedure with X,, = C? _1,, We
g 2 )

(z;1 12125

obtain the total space P?.

In fact, we have shown that, for cones 7 < o, we have inclusions :

PGS T

T — 0
RT « Ra
X, — X,

Before giving more examples, let us show a fundamental result :

Proposition. Every toric variety contains the torus T as a Zariski
open dense subset.

Proof : The torus T corresponds to the zero cone, which is a face
of every ¢ € A, i.e. T = X{. Let us explicit the embedding of
the torus into every affine toric variety X,. Let (ai,...,ax) be a
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system of generators for the monoid S, and let V(A) C C" be a
representation of X,. With the previous coordinates of R", each
a; is written a; = (a},...a?) with o € Z and ¢t € T is written

t = (ty,...,t,) with ¢t; € C*. The embedding T — X, is given by
b= (b1, tn) = (%, .., %) € V(A) N (CHF
where t* = tf'l' Lt e C

By the previous identifications, all the tori corresponding to affine
toric varieties X, in Xa glue together in an open dense subset in

Xa.

In the case of example 5, the embedding is given by
(t1,t2) = (1, tity, t1t2) € V(A) N (C*)°

Here are some of the classical examples of toric varieties :

Example 12 Consider the following fan :

¢ ey
% /}Q//Q 131//0{/ /}621

which gives the following monoids :

S,, gen. by (—ej,e;) < S, gen. by (e],€3)

I {

S., gen. by (—e},—e3) « S, gen. by (e}, —e3)
and the following C-algebra :
Rgl = (C[Zl_l , 22] — (C[Zl, 22] = Rcro

) )
Rs,, =Clz7Y,2;'] & Clz,2,'] = Ry,
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The gluing of X,, and X,, gives P! x C with coordinates ((o : t1), 22)
where (z; = to/t1),

The gluing of X,, and X,, gives P' x C with coordinates ((¢o :
tl)aZZ_I)a

The gluing of these two gives Xo = P' x P' with coordinates ((¢ :
tl), (80 . Sl)) where (22 = 80/31).

Example 13. Consider the following fan :

S

N

then S,, is generated by (e, e;, —e3). The monoid S,, is generated
by (e, —e},e3) and S{oy is generated by (e}, —ej, e}, —e3). The cor-
responding C-algebras are respectively R,, = Clz1,22,2;'], Ry, =
Cle1, 27", 23] and Ryoy = Clz1, 27", 22, 27"]. The corresponding affine
toric varieties are X,, = C,, xC} , X,, = C; x C;, and X{o) =

C;, x C,,. The gluing of the affine toric X,, and X,, along X0
giVeS XA = C2 — {0}

Example 14. Consider the following fan :
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{

Then the monoids S,, are generated :

Se, by ( ey, € ) A So, by (e;‘,e;)

I !
502 by (—6'{ - k6;7 —6;) - 503 by (6; + /‘7637 —63)
and the corresponding affine varieties are

‘Yal = (C2z—1 — Xao = (C2

( 1 122)

! !

2 2
)\/02 = (C(z—l —k _—1

Lz a7 ) - Aaa - (C( 5 —l)

z125,29

zl 22

The gluing of X,, and X,, gives P! x C with coordinates ((to : ¢;), 22)
where z; = to/t;, the gluing of X,, and X,, gives P' x C with
coordinates ((so : $1),2;") where z;25 = 50/s;.

These two gluing, glued together, provide a P!-bundle over P! (gluing
the second coordinates), which is a rational ruled surface denoted

F, and called Hirzebruch surface. It is the hypersurface in P' x P?
defined by

{(Ao A1), (ko 1t p2) ASto = ATpr)

Example 15. Consider the following fan :



Geometry of Toric Varieties 73

/

0

Then X,, is the affine quadratic cone (cf example 5), X,, and X,, are
affine planes (example 8). The affine quadratic cone is completed by
a “circle at infinity” that represents a complex projective line. The
real picture of X4 is a pinched torus.

Example 16. Generalizing the example of P?, we can consider the

fan A whose cones are generated by all proper subsets of (v, ...,v,) =
(e1,---,€en,—(€1 4 +e€,)), l.e. 0¢ is generated by (ey,...,e,) and,
for © = 1,...,n, the cone o, is generated by (eq,...,e;-1,€i41,. ..,
en,—(€1 4+ -+~ + €,). Fore =0,...,n, the affine toric varieties X,,

are copies of C" giving the classical charts of P".

Example 17. Let do, ..., d, be positive integers. Consider the same
fan than the previous one (example 16) but consider the lattice N’
generated by the vectors (1/d;) - v;, for « = 0,...,n. Then the
resulting toric variety is

P(do, ...,ds) = C**' — {0}/C*

where C* acts by ( - (z0,...,2,) = ((®z0,...,(%z,). It is called
twisted or weighted projective space.

Definition. A cone ¢ defined by the set of vectors zy,...z, is a
simplez if all the vectors z; are linearly independent. A fan A is
simplicial if all cones of A are simplices.

Definition. A vector x € Z" is primitive if its coordinates are co-
prime. A cone is regular if the vectors (z,,...,z,) spanning the cone
are primitive and there exists primitive vectors z,41, .. ., , such that
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det(zy,...,z,) = £1. In another words, the vectors (z,...,z,) can
be completed in a basis of the lattice N. A fan is regular if all its
cones are regular ones.

Definitions 1. A fan A is complete if its cones cover R", i.e. |A| =

R™.

2. A fan is polytopal if there exists a polytope P such that 0 ¢ P
and A 1s spanned by the faces of P (let us recall that a polytope is
the convex hull of a finite number of points).

Remarks 1. Every complete fan in R? is polytopal,

2. Not every complete fan is isomorphic to a polytopal one. For
example take the cube in R” with all coordinates £1. The faces of
the cube provide a polytopal fan. Now replace the point (1,1,1)
by (1,2,3) and consider the corresponding fan. It is clearly not
isomorphic to a polytopal one : there exists 4 points not lying in the
same affine plane.

Theorem. 1. The fan A is complete if and only if X4 1s compact.
2. The fan A is regular if and only if X4 is smooth.

3. The fan A is polytopal if and only if X4 is projective.

Let us give some precisions about these results :

An affine toric variety X, is smooth if and only if X, = C* x (C*)**

where £ = dimo.

If the fan A is simplicial, then X, is an orbifold (or V-manifold) :
1t has only quotient singularities.

Also we remark that if A is complete, then X5 1s a compactification

of T = (C*)™.
Resolution of singularities ([5], §2.6)

We give only examples. The general way of resolving singularities
follows these examples (see for example [5], §2.6)
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Example 18. Consider the following fan

The corresponding toric variety is a blow-up of a point in C?.

Example 19. Consider the following fan (cone) A and its subdivi-
sion A’ :

€2

2
2

3e1-2e,

The fan A’ 1s a regular fan, hence Xa: is a smooth toric variety. The
identity map of N provides a map Xa: — Xa which is birational
proper. It is an isomorphism on the open torus T contained in
each. This is the first example (and standard one) of resolution of
singularities.

The procedure is the following : beginning with the cone o generated
by the two vectors v = e; and v’ = 3e; —2e,, we add primitive vectors
(here v; = e; and v, = 2e; — e;) such that, with v = v and v3 = v/,

we have
/\{U,‘ = Vi1 + Vit1 1= 1,2
For i = 1,2, the vectors v; correspond to exceptional divisors E; = P!

in Xar and their self-intersection is (E;, ;) = —A;. In this particular
case, we obtain two exceptional divisors with self-intersection —2.
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5 The torus action and the orbits.

The torus T = (C")™ is a group operating on itself by multiplication.
The action of the torus on each affine toric variety X, is described
as follows :

Let (ay,...,ax) be a system of generators for the monoid S,. With
the previous coordinates of R", each a; is written a; = (@), ... a®)
with ol € Z and ¢t € T is written t = (ty,...,t,) with t; € C*. A
point r € X, is written z = (z1,...,zx) € C*. The action of T on

X, 1s given by :

TxX, — X,

(t,x) — t-ox=(t"x,... t"%zy)

a ()‘3 O‘? *
where t* = t;* - -t € C".

Now let A be a fan in R" and let 7 be a face of a cone 0 € A.
The identification X, = X, \ (ux = 0) is compatible with the torus
action, which implies that the gluing maps ¢, , respect also this
torus action. We obtain the :

Theorem. Let A be a fan in R™ the torus action on the afhine toric
varieties X, , for ¢ € A, provide a torus action on the toric variety

Xa.

[t is clear that the embedded tori in each X, correspond each other
by the gluing maps. We obtain an open embedding of the torus
T = (C*)™ in the toric variety Xx.

Let A = {0}, we seen that X5 = (C*)" is the torus. There is only
one orbit which is the entire space and is the orbit of the point whose
coordinates u; are (1,...,1) in C". In fact, for every toric variety,
the apex 0 = {0} of A provides an open dense orbit which is the
embedded torus T = (C*)". Let us describe the other orbits.

Theorem. (see [5], §2.1 and 3.1) Let A be a fan in R" to each
o € A, we can associate a distinguished point z, € X, C Xa and
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the orbit O, C X, of z, satisfying :

1) XU == I.IT(O’ OT,
2) if V; denotes the closure of the orbit O,, then V, =[], ., O,,

3) OT - ‘/*r'\UT<” V.

TH#O

Let 7 be a face of a cone o, then O, C O,. The image of V, = O,
in a representation of X, can be determined in the following way :

Consider a system of generators (ay,...a;) of the monoid S,, denote
I the set of indices 1 < ¢ < k such that a; ¢ 7+. In other words, if
(z1,...,zs) denote the vectors that span 7, we have

1€l <= V), 1<j53<s (ai,xj);é(]
In X, with coordinates u; = 2%, then V; is defined by u; = 0if: € I.
Let us give two examples :

Example 20. In the case of example 5, X, has coordinates (u;, uz, u3)
= (21,2122, z12%) and S, is generated by a; = e}, a; = e} + e} and
a3 = €] + 2e,. Let us consider the edge 7, generated by e,, then

ZEI — (Gi,@z)#o

hence I = {2,3}. In X, the set V,, is defined by u; = 0, u3 = 0. In
C’ = Cl, g0y 1t is Vi, = C¢, x {0} x {0}.

Consider the edge 7, generated by 2e; — e,, then
1€l = (ai,2e1—e) #0

he;nce I ={1,2}. In X,, the set V,, is defined by u; = 0, u; = 0. In
Cy ada) We have Vo, = {0} x {0} x Cq,.

The cone o is a face of itself. For this face, I = {1,2,3} and, in X,,
the set V, is defined by u; = 0, uy = 0, u3 = 0. Hence V, = O, is
the origin (0,0,0) € C°.
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We can conclude by the list of orbits in this example :
O, = {(07 0, 0)}
O., = Cg x {0} x {0}, orbit of the distinguished point z, = (1,0,0)
Or, = {0} x {0} x C;,, orbit of the distinguished point z,, = (0,0,1)
Otoy - (C*)?, orbit of the distinguished pointz() = (1,1,1)

Example 21. Orbits in P? (see the pictures in §4).

With the notations and the pictures of §4, let us consider the image
of V. = 0, in X,, and U,,. The monoid S,, is generated by a; = €]
and a; = e3. In X, with coordinates (uy,uz) = (21, 22), we have :

2 € 1 — <(11‘, 62) # 0
hence I = {2} and, in X, = C? V. is defined by u; = 0. Hence

(ul ,uz) )

Vi is C¢; x {0} and O, = C; x {0} is the orbit of {z,} = (1,0).
This point is a representation of the point (1 : 1 : 0) of P2

The monoid S,, is generated by a; = —e} and a; = —ej + ¢5. In
X,, with coordinates (uy,u;) = (27", 27 ' 22), we have :

1€ < (a;,e) #0
hence I = {2} and, in X,, = (Cful’uz), V, is defined by uy = 272, =
0. Hence V; is C(,-1) X {0}. The orbit O, = Clomry X {0} is the same
than before, i.e. the orbit of {z.}.

The projective space is the union of 7 orbits of the torus action :
i} 0{0} - (C*)z,

- 3 orbits homeomorphic to C* corresponding to the three edges
and whose images in each X,, are described in the same way than
O.. They are the orbits of the points (1 : 1 :0), (1 : 0 : 1) and
(0:1:1) of P2

- 3 fixed points {z,,},? = 1,2, 3 corresponding to the 2-dimensional
cones o;. They are fixed points of the torus action and are the points
(1:0:0),(0:1:0)and (0:0:1).
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These examples provide examples of general situations :

Properties. 1. If dimg o = n, then O, is a fixed point {z,}.
Consider a representation of X, in (Ck, then O, = {z,} corresponds
to the origin of C*.

2. If dimg o = k, then O, = (C*)"~*,

3. Let 7; be an edge (1-dimensional cone) in A, then O,, = (C*)"~!.
If dimg A = n, then V,, is a codimension one variety in Xa. We
will see that V;, is a Weil divisor.

4. The distinguished point {z,} corresponding to each cone o can
be defined in a direct way (cf [5]).

6 Divisors.

In this section, we will denote by X a complex algebraic variety.

A Weil divisor is an element of the free abelian group W (X) gener-
ated by the irreducible closed subvarieties of (complex) codimension
1 in X. Such a divisor can be written :

ZniA,' — ijBj with n;,m; > 0
where the A; and B, are subvarieties of codimension 1 in X.

For example, in the space C? with coordinates (2, z;), let us consider
the axis z; = 0 denoted by A, and the axis z, = 0 denoted by B. An
example of Weil divisor is given by 2A — B.

Let us denote by R(U) the set of rational functions in the open set
U in X. A Cartier divisor is given by a covering X = U, of X
and by nonzero rational functions f, € R(U,) such that for any o
and 8, we have f,/fs € O*(U, N Ug) (nowhere zero holomorphic
function). We denote by D = (U,, f,) such a divisor. The set of

Cartier divisors is a group denoted by C(X).
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Let us consider the example of X = C? covered by only one open set
U = C? and consider, in U, the rational function f(z1,2;) = 2?/z2,,
we obtain a Cartier divisor D = (U, f).

Recall that a an algebraic complex variety is normal if the local
ring at every point is an integrally closed ring. In particular, toric
varieties are normal, each ring K, is integrally closed.

Proposition. For a normal variety X, there is an inclusion

C(X) — W(X)

Let us explicit this inclusion in the previous example : If A = {f =
0} is the set of zeroes of f counted with multiplicities and B =
{1/f = 0} is the set of poles of f counted with multiplicities, then
the previous Weil divisor 2A — B corresponds to the previous Cartier

divisor D = (U, f).
In general this inclusion is defined by

D= Y ordy(D)-V
codim(V,X)=1

where ordy (D) is the vanishing order of an equation for D in the
local ring along the subvariety V. If X is normal, then local rings
are discrete valuation rings and the order 1s the naive one.

In fact, the previous example is an example of principal divisor: The
subgroup of principal divisors, denoted by P(X), is the subgroup of
Cartier divisors corresponding to the nonzero rational functions. Let
us consider the quotients :

C(X)=C(X)/P(X) and W(X)=W(X)/P(X)

There is an inclusion C(X) — W(X), which is not an equality as
shown by the example of the toric variety of example 10 (with q=1) :
let X be the quotient variety of C? by the subgroup G of p-th roots
of unity. Then, we have :

C(X)={0} >W(X)=12Z,.
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Let X = XA be a toric variety. The Weil and Cartier divisor
classes, invariant by the action of the torus T will be denoted re-
spectively CT(X) and WT(X). In the same way, the subgroup of
the 1nvar1ant pr1nc1pal divisors will be denoted PT X We define
cT(x)y=cT(x)/PT(X) et WT(X) = . There is

still an inclusion

cT(x) = wT(x)

Let A be a fan containing q edges and let X be the associated toric
variety. Let 7; be a edge of A and denote by D; = V., the closure
of the orbit O, associated to 7;, then D; is an invariant Weil divisor
and all such divisors are on the form

q
ZAI‘D" A EZL .

=1
We obtain :

Lemma. The group of invariant Weil divisors is homeomorphic to :
T q
X) = 2D
=1

If w € M, then there is a surjective homomorphism

div: M — CT( X)

where v, is the first lattice point on the edge 7;. This implies :

Lemma. Let u € M and v; the first lattice point of the edge 7,
then
ordy, (div(u)) = (u,v;)

Example 22. In the case of example 5, there are two invariant
Weil divisors corresponding to the two edges of the cone ¢ : D
corresponding to the edge 7, of e; and D, corresponding to the edge
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T, spanned by 2e; — e;. If u € M has coordinates (a,b) in (C*)2,
then div(u) = D, + (2a — b) D, and all invariant Cartier divisors are
on this form. For example, 2D, and 2D, are such Cartier divisors
but D; and D, are not.

The two divisors 2D; and 2D, are principal divisors, so we obtain :

cT(X)=0and WT(X) = Z,.

Example 23. Let o be the cone spanned by z, = 2e; — ¢, and
Ty = —e;+2e;. Each of these two vectors span a edge 7; and the two
corresponding Weil divisors are denoted D; and D,. Then A\ D; +
A2 D, is a Cartier divisor if and only if A\; = A, mod3 (Exercise).

7 Divisors, homology and cohomology.

In this section we will consider the general case of a complex algebraic
variety.

Let n denote the (complex) dimension of X. A Weil divisor is a
cycle in X. The application which associates, to each Weil divisor,
its homology class defines in an evident way an homomorphism «
W(X) — H,—2(X). The image of a principal divisor is zero, so
we obtain an homomorphism, still denoted

Kk :W(X) — Hyn_o(X) .

In other hand, for a normal variety, there is an isomorphism (cf. [6],

I1, Prop. 6.15)
a:C(X) = Pic(X)

between the group of classes of Cartier divisors and the Picard group
of X, denoted Pic(X). This one is the group of isomorphy classes of
line bundles (or isomorphy classes of invertible sheaves) on X. The
isomorphism « is given by the map which associates, to the divisor
D = (Uy, fu), the line bundle O( D) whose transition functions U, —
Ug are given by f,/fs. Reciprocally, given an invertible sheaf, we
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associate the class of the divisor of a global rational and non trivial
section.

By composition of o with the morphism Pic(X) — H?*(X) which
associates to each line bundle £ on X, its Chern class c'(£), we
obtain a morphism denoted

c':C(X) — H*X).

8 Poincaré homomorphism.

The toric varieties are examples of pseudovarieties of (real) even
dimension. By definition, a pseudovariety X of (real) dimension 2n
is a connected topological space such that there is a closed subspace

Y. such that :

(a) X — X is an oriented smooth variety, of dimension 2n, dense in

X,
(b) dim¥ < 2n — 2.

A 2n-pseudovariety admits a fundamental class in integer homology
[X] € H2,.(X). The Poincaré morphism

H'(X) — Hpn_i(X)

is the cap-product by the fundamental class. If X is smooth, it is an
isomorphism.

An example of pseudovariety for which the Poincaré homomorphism
is not an isomorphism is given by the toric variety of example 10

(with q=1). We have H*(X) =0 and Hy(X) = Z,,.

Theorem. Let X be a normal compact pseudovariety, there is a
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commutative diagram :
C(X) W(X)
| l &

2(X) Y Hplo(X)
where the horizontal down arrow is the Poincaré morphism of the
pseudovariety X.

If X is a compact toric variety, we can prove the following result :

Theorem. [2] Let X = XA be a compact toric variety, there is a
commutative diagram :

cTxy — wTx)
1= !

mx) Y g, . (x)

112

where the vertical isomorphisms correspond to the morphisms ¢; and
k of the previous theorem.

We obtain, in an evident way, an interpretation of the Poincaré mor-
phism in terms of divisors, for the compact toric varieties. In par-
ticular, the Poincaré morphism H?*(X) — Hj,_2(X) is injective.

This theorem can be generalized to any toric variety (see [2]) and the
Poincaré homomorphism can be described in terms of Cartier and
Weil divisors : Let X be a degenerated toric variety, i.e. containing
a subtorus T” of T in factor : X = Y x T” where Y is a toric
variety relatively to the torus T such that T = T’ x T”. We have
the following result :

Theorem. [2] Let X = X be a n-dimensional toric variety contain-
ing a toric factor T” of dimension n — d, then we have the following
1somorphisms :

1%
112

) HY(X) = HP,(X) = HY(T") = Hil, ,(T")
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1

the homomorphisms ¢' and « are injective and there are isomor-

phisms

i) HY(X) = CT(X)® HY(T") = CY(X) @ Z°;
iii) Hgd o (X) = WI(X) e H5id 5y o(T") = WI(X) o2’

with b := (";d), such that the following diagram commutes :

ct(X)o HAT") — WI(X)® Hpl,u ,(T")

cl@pr* JE ~@pr* ‘l‘i‘
a[X]

HY(X) H3,(X)

This diagram can be completed by the intersection homology of Xa
which admits also an interpretation in terms of divisors (see [3]). Let
us give the (simpler) compact case :

Let p be a perversity, we define V; as the open invariant subset of
Xa, union of orbits B such that codimgB < max{:; p(2:) < 1}.
Let

cr(X) = {[D] e W (X); DIy, € CT(V;))

be the group of invariant Weil divisors on X whose restriction to V5
is a Cartier divisor. This group is clearly isomorphic to CT(Vﬁ).

Theorem. Let X be a n-dimensional compact toric variety, then :

i) We have :
THIM(X) = 0.

ii) there is a natural isomorphism C;ir(X) = THDA(X) such that
the following diagram commutes :

cTx) —  Tx) — wry)

ol E e

H*(X) — IHDM(X) — HJ,(X)
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where the composition of the two lower horizontal arrows is
the Poincaré homomorphism.

9 C(Characteristic classes.

Let X be a smooth toric variety. The Poincaré homomorphism is
an isomorphism between H*(Xa) and Hy,_x(Xa) for every k. The
Chern characteristic classes of X are usually defined in cohomology
but their image in homology can be easily described in terms of the
orbits. In fact, the total homology Chern class of X4 is :

co(Xa) =1L (14 Dy
= ZUGA[‘/U]

where D; = V, are the divisors corresponding to the edges of A.
The intersection product is given by

V, if 0 and 7; span a cone v in A
D;-V, =
0 in the other case.

In [1] it is shown that this result is also true for singular toric vari-
eties. More precisely, it is well known that there is no cohomology
Chern classes for a singular algebraic variety. In homology we can
define the Schwartz-MacPherson classes which generalize homology
Chern classes and we obtain the following result :

Theorem. [1] Let Xa be any toric variety, the total Schwartz-
MacPherson class of XA is given by :

e(Xa) =D [Ve]

gcA

Brasselet
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