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Introduction

These notes begin with the problem of integrating algebraic functions

like

/ \/I_l_?da:.

By extending the domain of definition from the real to the com-
plex numbers, the problem becomes the integration of a multivalued
algebraic function defined on the Riemann sphere, which we then
transform to the integration of a rational differential 1-form on a
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compact Riemann surface C. The integration of such a differential
form is a multivalued function due to the presence of poles with non-
zero residues that incorporate a logarithmic term to the function and
the non-trivial topology of C, that is measured by the genus g > 0.
In order to concentrate on the serious part of the multivaluedness
of these functions, one restricts to integrate Abelian differentials,
which means that no poles are allowed. These differentials form a
vector space of dimension g, and by choosing a basis one wants to
understand the integrals of them together

f@hw%ycq@
P

Of course the above function is multivalued, but it has a ‘mild’ mul-
tivaluedness, since the difference between two branches form an ad-
ditive subgroup A of C9, called the periods of ', which is discrete
with a compact fundamental region. The quotient group C9/A is
called the Jacobian variety J(C) and the map

[w“w%ycaﬂm:@m

is called the universal Abelian integral. This is an algebraic
map. The Abelian differential forms on J(C) may be written as

J_y ajdz; where a; are constants and its integral correspond to
the multivalued functions on J(C') induced by the linear function

J_1a;z; on C. These ‘constant’ differential forms pull back via the
universal Abelian integral to the Abelian differentials on C'. Hence
the integrals of Abelian differentials on C may be decomposed as the

composition of an algebraic map and a ‘multivalued linear function’

on J(C). The fibres of the integral of an Abelian differential

g
/Zajdzj
1=1

on J(C') corresponds to parallel hyperplanes in C? projected to J(C),
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and may be understood as the interplay of the hyperplane with the
periods. We then want to intersect this codimension 1 foliation in
J(C) with the image of the universal Abelian integral, which as
we mentioned, is an algebraic map. This reduces the problem of
understanding the integrals of Abelian differentials to understanding
an algebraic map and linear foliations of codimension 1 in J(C) and
how they intersect.

We then explain the connection found by Abel between the inte-
gration of Abelian differentials and function theory of C. Since the
Jacobian variety J(C) is a group, we can construct by addition on
the image the n'*-Abelian map

/ . 0™ S J(C) = CY/A
np

defined on the symmetric product C™ := C"/Sym(n) of C. Abel’s
Theorem relates the fibers of these maps to rational functions on C.
Where the nt* Abelian map is injective, it means that there is no
rational function associated, but where it is not injective, then the
fibre may be identified with a projective space of a finite dimensional
family of rational functions on C of degree n. If we denote the image
variety by
W, := [ (C™)cJ(C)

np

then there is a relationship between the singularities of W, and the
fibers of [, which is the content of the Riemann-Kempf singularity
theorem. From the degree of the singularity of W, at v, we can read
off the dimension of the fibre [_'(v) and hence of the associated
family of rational functions. Furthermore, one can give a geometric
description of the tangent cone to W, at v in terms of the linear

geometry of the canonical embedding of C in P77,
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This theorem was first noted by Bernhard Riemann (1826-1866) who
analyzed Wy_;. In this case, W,_; i1s a hypersurface, and hence
defined by one equation in J(C). This equation may be written as
a holomorphic function on C’ and it is Riemann’s famous Theta
function.

The jump in the level of discussion, from the explicit integration of
algebraic functions to the analysis of the singularities of Riemann’s
Theta function, has always impressed me. The ability of Riemann
of expressing his result with the modest machinery at hand, is also
remarkable. The modern algebraic proof by George Kempf [4], using
Grothendieck’s variational machinery, is also a significant contribu-
tion to understanding the Riemann-Kempf theorem. I recommend
[4] for deeper reading,.

There are 3 sections. In section 1 we show how to pass from an
algebraic function to the Riemann surface that 1t defines. In section
2 we explain Abel’s theorem, and finally in section 3 we state the
Riemann-Kempf singularity theorem.

These notes were written for the Algebraic Geometry Summer School
in Bilkent University, Ankara, Turkey, from the 7 till the 18 of August
of 1995. I would like to thank my friend professor Sinan Sertoz for
the excellent environment during the school, as well as Professor
Thsan Dogramaci for being an extraordinary benefactor of the Arts
and Sciences.

1 Integration of Algebraic Functions

1.1 Integration of Elementary Algebraic Func-
tions

The integral of a rational function of 1 variable can always be carried
out:
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Example 1.1 If X(z) is a rational function of z € R then

/ Xdz = Rat(z)+ B Log(Rat(z)) + 8 ArcTan(Rat(z))

for some rational functions Rat(z) and real numbers 3.

Proof: Let the rational function X be

anT™ 4+ ...+ ao Ch1Z™ V4 . .+ o
(z) box™ 4 ...+ by olfz) + box™ + ...+ by
where we have used the Euclidean Algorithm of division. If

bz + ...+ by = Hjbn(:z—rj)”’Hk[(:z:—ak)(:z:—dk)]m", r; € R, ap € C—R

is the factorization of the denominator of X, then we can further
expand X into partial fractions as

: d; €k k €k k
X{z) = Pol(z - Dn 4 1
L ) E ( _T,j)ﬂ E [( —ak)kl (.’L‘ _&k)kl]

I 0<31<nJ k,0<k <mg

with d;;, € R and e, € C. So
dr — Hz / / €k,1 €k,1
/X(:v) T Ra +E d:v—i-z [x—ak (m_&k)]d:v

= Rat(z +Ed31Log(:v—rJ +ER€ ekl)Log(lx—akI )
+2) " Im( ek,I)Arg(ak — )
k

And finally

Im(ak)
Re(ay) — z

Arg(ax — z) = ArcTan(

More generally we have:

Example 1.2 If X(z) is a rational function of x and \/1 — z? then

/X(:v)dx = Rat(x,M) +25L09(Rat(x,\/i_—ﬁ))
+ 3" BArcTan(Rat(z, V1 — 2%))
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Figure 1: Rational parametrization of z2 +y2 —1 =0
y
L7 xy)

Proof: y = /1 — z?if and only if 22 + y2 = 1. Let C be the unit

circle. There is a rational parametrization of C' by rational functions:

—s24+1  2s Yy
C C =
32+1 ,82—*-1)6 (x?y)e — S .T+1

s €R— (z,y) =(

Doing a change of variables in the integral and applying Example
1.1 we obtain:

—s?’4+1 2s —4s
- — 2 _ —
//\ V1 —z?)dz = /X:z:yd:z: /X 82+1,82+1))((82+1)2)ds

= Rat(s) + Y_ BLog(Rat(s)) + > . BArcTan(Rat(s))

)+ % ﬁLog(Rat(m 7)) + X BArcTan(Rai(- _’i -))

= Rat(m

=
)

)+ BArcT an(Rat(

T+

O
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Example 1.3 If X(z) is a rational function of z and Vz% + bz + ¢
then

/X(:v)d:z: = Rat(z,Vz? + bz + c)+ Y _ BLog(Rat(z,Vz? + bz + c))

+ > BArcTan(Rat(z,Vz? + bz + c))

Proof: Parametrize y? = z? + bz 4+ ¢ with a rational function of
s € R and repeat the argument in Exercise 1.2. 0

Trying to integrate more complicated algebraic functions,
we almost never get such simple answers, because [ X(z)dz
is a much too complicated function to admit a represen-
tation in terms of elementary expressions. Classically the
elliptic integrals

[ =

were found not to be integrable in terms of elementary func-
tions. To see this, it was convenient to extend z to a complex
variable.

1.2 Basic Facts of Functions of a Complex Vari-
able and Their Integrals

R? and C are naturally and canonically isomorphic, via (z,y) —
x +1y.

The C-linear map C — C obtained by multiplying with the complex
number a+1b, corresponds to the R-linear map R?* — R? with matrix

: a —b
representation < ) .
b a
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The R-linear map R* — R? with matrix representation (z ccl)

corresponds to a C-linear map C — C if and only if ¢ = d and
c = —b.

A C'-function f = (f*, f*) : U — R?, U open in R? is holomorphic
if and only if its linear approximations at every point of U correspond
to C linear map, i.e. if and only if it satisfies the Cauchy-Riemann
differential equations

or o of __or
oz Oy oy Oz

Let U be an open set in R* and A, B : U — R be C'-functions on
U. A real 1-form is an expression of the form w = Adz + Bdy.
If v = (41,9?) : [a,b] — U is a piecewise smooth curve in U, the
integral of the 1-form w over the curve v is by definition:

d~?

[o=[laao 2w+ BomZwe

If A,B: U — C are C'-functions on U, then w = Adz 4+ Bdy is a
(complex valued) 1-form, and the integral of w over the curve v
is defined again by (1.1).

We can write complex valued differential forms in a different way
using a new basis:

Cdz @ Cdy = Cdz @ Cdz

where we have the linear relations between the basis:

dz = dz +1dy dz = dxr — 1dy
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_dz—i—di
2

_dz—d%

d
v 2%

By definition, we then have
/ Adz + Bdz = / A(dz + idy) + B(dz — idy)
y y

The differential dw of a C! 1-form w is the 2-form

0B 0A
dw = [5:1:—— E]dm/\dy

Recall that 2 forms may be integrated over open subsets of R?.

Stokes’ Theorem Ifw is a C'-form on the open set U in R*® and
if V is an open set with compact closure in U and having a boundary
0V formed by a finite number of smooth curves, then

Ju= JJy

Lemma 1.4 Let f = f' +if? be a complez valued C'-function on
U C R?, then d(fdz) = 0 if and only if f is holomorphic in U.

Proof:

d(fdz) = d((f* +1f*)(dz +idy)) = d((f* +if*)dz + (= f* +if")dy)

= [_aa (—f2+if") — —aa (f* +if))dz A dy =
T Y
aft  oft oft  af?

Hence the result follows from the Cauchy-Riemann equations. O
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A holomorphic 1-form fdz on U C C is a differential form with
f a holomorphic function on U. The Cauchy-Riemann differential
equations (embedded in Lemma 1.4) and Stokes’ Theorem blend to
give:

Cauchy’s Lemma Ifw is a holomorphic I-form on U and V is an
open set with compact closure in U and boundary a finite number of
Cl-curves we have

/ w=0
8V

Corollary 1.5 If fdz is a holomorphic I-form on a disc D C C
and v : [a,b] = D is a C' curve in D then [, fdz depends only on
the extreme points v(a),~(b) of 7.

We say that 2 curves vo,7; : [a,b] — U are homotopic if:

1) They have the same extreme points vo(a) = 71(a) and yo(b) =
1 (b);

2) There is a continuous deformation of 74 to ¥, keeping the extreme
points fixed: i.e. there exists a continuous map I' : [a, b] X [0,1] = U
with T'( ,0) = 70, I'( ,1) = 71 and for every s € [0,1] we have
['(a,s) = vo(a) and T'(b, s) = vo(b).

Corollary 1.6 If fdz is a holomorphic 1-form on an open set U C C
and Yo, 71 : |a,b] = D are C! curves in U which are homotopic then

LO f@:/ﬂ fdz

We may define the integral of a holomorphic 1-form f(z)dz as
the function

z — /pz f(w)dw
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where we carry out the integration over a path from p to a point zg
and then make small extensions of this path to nearby point z. We
have

If we choose another path of integration from p to zg the function
we obtain differs from the preceding one by adding a constant.

Cauchy’s integral formula : Let f : U — C be a holomorphic
function, {|z — z0| < r} C U, then for |z — 20| < r we have

@ =5

2m z—zg|l=r W — 2

Corollary 1.7 Under the above hypothesis we have

1)Power series expansion: For |z — zg| < r we have

e 1 1 d»
) = 3 anlz = o) = () = 0 ()
2) Meean Value Property:
I i0
fz0) = 5= [ f(z0 +re?)do

Maximum Modulus Principle If f : U — C is holomorphic
and W is a compact subset of V, then

maz{|f(z)] |z € W) = maz{|f(2)| |z € OW)
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Corollary 1.8 (Laurent series expansion) If f: D* — C is
a holomorphic function defined in the punctured disc D* = {0 <
|z — z0| < r} then for z € D* we have

Under the above assumptions, we say that z; 1s a removable sin-
gularity of f if a, = 0 for all n < 0. In this case by defining
f(20) = ao we have a holomorphic function on D = {|z — 2| < r}.
zpis a poleof fifa, =0forn < —N <0 and a_y # 0. We say in
this case that V = ord(f, z0) 1s the order of the pole of f at z,. If
an, # 0 for an infinite number of negative n, then we say that f has
an essential singularity at z; (i.e. an infinite number of non-zero
terms in the negative Laurent series expansion). A function that is
holomorphic except for a discrete set of poles is a meromorphic
function.

The term a_; is the residue of f at z;, and it is denoted by

RCS(f, Z()).

Example 1.9

The exponential function e : C — C* := C — {0} is defined by

€ =) —2" = el [Cos(Im(z)) + iSin(Im(z))]

Example 1.10

The Logarithmic ‘function’ is the multivalued function defined by
the formula

Log(z) = /12 —l-dw

w

Log : C* — C. It is easy to see that the logarithmic function is the
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Figure 2: The exponential and Logarithmic Functions
y

c
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| ki
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log

3]

N
< A > A >

inverse of the exponential function (i.e. &£ef°() = 1), and that the

difference between 2 branches is an integer multiple of 271,
We also have the related multivalued holomorphic function Log(z —

z9) : C — {20} — C satisfying

1

w— 20

Log(z — z0) = /lz dw

Its inverse is the function e® + z;.

Corollary 1.11 Let f: D* — C be a holomorphic function defined
in the punctured disc D* = {0 < |z— 2| < r} with Laurent ezpansion
f(z) = X%, an(z — 20)™ then [ f(2)dz is a multivalued holomorphic
function admitting a representation

1

n+1 a"(Z_ZO)nH +a_1Log(z—z0)+Constant

/f@ﬂz=%22

—{-1}

Two different branches of [ f(z)dz differ by 2wia_, (integer), where
a_y is the residue of f at zo. If this residue is 0, then [ f(z)dz is a
holomorphic function on D*.
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Figure 3: A multiple connected domain

Proof: One may permute the summation of the Laurent series
with the integral, due to uniform convergence of the series. Then
one integrates the monomials one by one, giving another monomial
except for n = —1 where one gets a logarithm. 0

Let U C C be a multiple connected domain in the complex plane,
that is, such that its boundary AU is the union of a finite number of
simple closed curves 'y, ..., [';, where 'y corresponds to the exterior
boundary. A closed loop is a continuous map from the circle S! to
U that usually takes a marked point * € S! to some marked point
zo € U. Two closed loops based at zy are homotopic if we may
deform one to the other by means of a continuous 1-parameter family
of closed loops based at zp. The fundamental group 7;(U, zp) of
U is the group of homotopy classes of closed loops in U based at z
and 1t is a free group generated by loops 71,...,7, which go once
around only one component I'y. The function [ f(z)dz is again a
multivalued function. The difference between any two branches is a
number 37} _,(integer) By where B = [ f(z)dz are the periods of
the integral around the holes.

So we see that [ f(z)dz is multivalued because of 2 different reasons:
either because f has a pole with a non-zero residue, or because of
the non-trivial topology of U.
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We will end this subsection with

Residue Theorem Let f:U—{z,...,2z.} — C be a holomorphic

function and W C U be an open set containing {z,...,z,}, with
compact closure in U and whose boundary consists of a finite number
of piecewise smooth curves, then

/aw f(z)dz = 27rik§;1 Res(f, z)

Proof: Apply Cauchy’s Lemma to W — Uj_,{|z — zx| < €} and
Corollary 1.11 to each punctured disc {0 < |z — zo| < €}. 0

1.3 Geometric Facts of Functions of a Complex
Variable

Non-zero C linear maps on C may be determined as those R-linear
maps that are orientation preserving and conformal, in the sense
that they preserve angles. Since holomorphic functions may be ap-
proximated by C-linear maps, holomorphic maps preserve angles at
those points where the derivative is non-vanishing.

Proposition 1.12 Let f : U — C be a holomorphic map and
<0 - U

1) If f'(z0) # 0, then there exists a neighborhood Uy of zo and U,
of f(z0) such that the restriction of f induces a homeomorphism
f:Uo — Uy with a holomorphic inverse (i.e. fis a local biholomor-
phism).

2) If f'(z0) = ... = f¥Y(2) = 0 and f¥(20) # 0, then there exist
netghborhoods Uy of zo, Uy of f(20) and a change of variable w in Uy
such that the restriction of f to these neighborhoods and variables
has the form f(w) = ao + w*.

a

Proof: 1) Since det (b

) = 45, we may apply the Implici
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Figure 4: Local behaviour of holomorphic maps

—o-(=
()6

Function Theorem in R? to obtain the result.

2) Expanding f in power series

f(z) = ao+ E an(z —20)" = ao+ (2 — z(,)k[z an(z — zo)”_k]

n>k n>k

Let h(z) — [Enzk an(z _ Zo)n—k]l/k — eLog[E"Zk an(z—zo)n—k]llk and set

the new variable w = (2 — z)h(z). Then we have f(w) = ag+ (z —
20)*h(2)* = ap + w*

Geometrically this means that locally holomorphic maps are very
simple:

A point z of type 2) will be called a branch point with ramifi-
cation index k := v(f, 2p).

Example 1.13

The Riemann sphere C = CU {0} is obtained by gluing a point to
the complex plane, as in stereographic projection:

Mathematically, it is simpler to consider 2 copies of the complex

plane (C, z) and (C, w) each with its own variable and glue (C*, z) —

(C*,w) with the maps z »w=1Yand w — 2= 1.
¥4 w



Riemann-Kempf Singularity Theorem 105

Figure 5: The Riemann Sphere

C, o
% ; % ) % )
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[O]

C, w

(Cz)

Let U be an open set in C and f : U — C. f is said to be a
holomorphic map to the Riemann sphere if:

1) f:U — f~'(00) — (C,2) is a holomorphic function;
2) % : U — f~1(0) — (C,w) is a holomorphic function.

Recall that a meromorphic function f on the open set U of the
complex plane 1s a holomorphic function f: U — A — C, where A 1s
a discrete set of points of U, such that f has a pole or a removable
singularity at each point of A.

Theorem 1.14 There is a one to one correspondence between
meromorphic functions on U C C and holomorphic maps U — C.

Proof: 1) Assume f is meromorphic on U and let A be the poles
of f. If zg € A then
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In the other coordinate of C, f is represented by

which 1s holomorphic since h(zp) = a_x # 0

2) Let f : U — C be a holomorphic map to the Riemann sphere,
and let A = f~1(oc0). By definition, f : U — A — C is holomorphic.

For z € A we have f—(lz—) 1s holomorphic:

:bk(z—zo)k—i-...——-(z—zo)k[bk—i-...]

Hence f(z) = (2 — zo) "*[holomorphic]. Hence f has a pole at z,. O

A Riemann surface i1s a Hausdorff topological space S together
with an open covering {U;} of S with homeomorphisms ¢ : Uy —
Vi C C onto open sets Vi of C such that the transition coordinates

Ok,; + 0;(U; N Uk) — ¢r(U; N Uy)

are bijective holomorphic maps.
An example of a Riemann surface is the Riemann sphere C.

Concepts which are invariant under biholomorphic maps can be in-
troduced on a Riemann surface by precomposing with the local co-
ordinate charts. For example a meromorphic function f on the
Riemann surface C 1s a function f : C—A — C, where A 1s a discrete
set of points on C such that f o ¢_'(z,) is a meromorphic function
for {(Ua, 24)} a covering of C' by coordinates charts. A holomor-
phic map between Riemann surfaces f : C — C' is a continuous
map such that in local coordinates of domain and codomain it 1s a
holomorphic function. Theorem 1.14 extends to Riemann surfaces,
gives a 1-1 correspondence between meromorphic functions on C
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Figure 6: Coordinate charts of a Riemann surface

-

and holomorphic maps from C to the Riemann sphere C. A mero-
morphic 1-form w on C is a collection of meromorphic 1-forms
wo = Aa(2a)dzy on a covering {(U,, 24)} such that

dz
Ao(za) = Ap(z5) 7>

Meromorphic objects defined on compact Riemann surfaces will be
called rational. Implicitly in this notation, we are using that there
is a 1 to 1 correspondence between compact Riemann surfaces and
complete smooth complex curves, and this correspondence extends
from meromorphic objects defined on the Riemann surface to ratio-
nal objects defined on the complex curve.

An oriented compact topological surface has a unique topological in-
variant, the genus g, that can be any non-negative integer 0,1,,.. ..
Every such surface is equivalent to a torus with g-handles. Its funda-
mental group is a free group with 2g generators and such that they
satisfy the unique relation

(@1, @g1] .. [ag,a0,) =id ;  [o,B] := afa™!p™!



108 Gomez-Mont

Recall that the first homology group H,(C, Z) of the compact surface
C of genus g is the abelianization of the fundamental group = (C, p),
and so 1t is a free abelian group with the same 2g generators as
71(C,p). These generators may be chosen as ay,...,ay, with the
property that a; intersects a,4; once positively, and do not intersect
any other ay, This basis will be called a canonical basis.

Proposition 1.15 Let f : C — C be a holomorphic function
defined on the compact and connected Riemann surface C, then f is
a constant function.

Proof: The real valued function |f]: C' — R attains its maximum
value at some point po. Take coordinates (U, z) around p,. By
the Maximum Modulus Principle, f 1s constant on U, but then by
analytic continuation, it will be constant on C. 0

Recall a classical Theorem of Euler that says that if one triangu-
lates a compact orientable surface of genus g, and eg, €1, €2 denotes
respectively the number of 0,1 and 2 cells then eg —e; + €2 = 2 —2g.

Riemann-Hurwitz Formula Let f: C — C' be a non-constant
holomorphic map between 2 compact and connected Riemann sur-
faces of genuses g and ¢', and let B be the ramification points of f.
Then f: C — f~Y(f(B)) — C' — f(B) is a finite covering map, say

with n sheets, and we have

2-2g=n(2-2¢") = (v(f.q9) - 1)

gq€B

where v(f,q) is the branching order of f at q.

Proof: Outside the critical values f(B) it follows from Proposition
1.12 that f 1s a covering map, since 1t is locally covering at each
point and there are only a finite number of points in the inverse
image by the compactness hypothesis. The connectedness hypothesis
implies that the number of inverse images remains constant, so that
f outside of f~!(B) is a covering map with n sheets.

Triangulate C' so that the singular values of f are 0-cells in the
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Figure 7: 22 +y - 1=0, y=+1—z?
y

< —

yz(x)

yz(x)
y 1(X) X

(

yl(x)

triangulation, and pull back the triangulation to C’. It is immediate
that e, = nes, €] = ne; and ey = ne; — > cp(v(q, f) — 1). By
taking the alternating sum and using Euler’s Theorem we obtain
the formula. 0.

1.4 Algebraic Functions

Let f(z,y) = ¥j-; a;(z)y’ be an irreducible polynomial in 2 vari-
ables z and y with complex coeflicients and with positive degree n
in y. The height y of a point (z,y) on the Riemann surface C’ is by
definition an algebraic function of the horizontal position.

Algebraic functions are multivalued holomorphic functions, but ac-
quiring only a finite number of distinct values (that is, they have
only ‘mild’ multivaluedness).

Theorem 1.16  Guwen an irreducible polynomial f(z,y) =
Y iai(z)y’, n >0, and C' C C* the complez algebraic curve de-
fined by f = 0, then there is a unique way to construct a connected
compact Riemann surface C' with 2 rational functions x and y such
that (z,y) : C — C' C C* is a birational isomorphism; that is,
such that any rational function on C' may be ezpressed as a rational
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Figure 8: z* +y? - 1=0, y=+v1—1z*
y

)'2(X) )'2(X)

T
-

y 1(X)

function of z and y.

Proof: 1) There are a finite number of points B C C’ that sat-
isfy f = 2L = 0. Outside of z(B), C’ looks locally like the graph
of n holomorphic functions by the Implicit Function Theorem (of
functions from R* = C* to R? = C).

2) If (zy,y1) € B is such that %(ml,yl) # 0, we may use y as a local
variable of C’ in a neighborhood of (zy,y;). C’ is locally the graph
of a function z(y). The map y — (z(y),y) — z(y) has a branch
point of index k := v(y;,z(y)) > 1, so that C’ is around (z1,y;) the
graph of a multivalued function of type Tk,

3) If (z1,y1) satisfies f = %ﬁ = %5 = 0, then (z1,y1) is a singular
point of C’. If we intersect C' with a small sphere around (z,,y1)
we will obtain a finite number of closed loops in S® which may be
knotted. This implies that locally C' — {(z,,y;)} has the analytic
type of several punctured disc, embedded in a non-trivial way in CZ.
We may complete ‘abstractly’ each punctured disc with a disc to
obtain a desingularization of C' at these points.

4) Connectedness follows directly from the irreducibility of f.

5) Carry out the above procedure for the other 3 canonical charts of
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C x C by taking coordinates z, = 2 and/or y; = % Since C x C is
compact and the condition defined by f = 0 is closed, we obtain a
compact Riemann surface C. 0

Given an irreducible polynomial f(z,y) and a rational function X(z,y),
let y(z) be the algebraic function defined by f(z,y) = 0. The ex-
pression X (z,y(z)) is a rational function of z and y(z) and it cor-
responds to a rational function defined on the compact Riemann
surface C associated to f in Theorem 1.16. The integral of a ra-
tional function of z and the algebraic function defined by

f(z,y)=0

[ X(z,y(2))dz f(a,y(a)) = 0

is the (multivalued) function obtained by integrating a rational 1-
form on the Riemann surface C associated to f.

The procedure of computing the integral [ X(z,y(z))dz of
an algebraic function (hence finite multivalued) on C can
then be replaced by the integral of a rational 1-form on a
compact Riemann surface. In this way we have removed
the obstruction of integrating a multivalued function and
we can now concentrate our attention on the serious part

of the multivaluedness of [ X(z,y(z))dz.

2 Abel’s Theorem

2.1 The Universal Abelian Integral

Let C be a compact and connected Riemann surface of genus g and
w a meromorphic 1-form on C. The ‘function’ [fw : € — C s in
general multivalued, and as we have seen in the previous section,
this can happen for 2 different types of reasons:

1) w has a pole with a non-zero residue (Corollary 1.11).
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2) Due to the non-trivial topology of C: i.e. The value of the integral
J, w depends on the homotopy class of the path from p to ¢ that we
use to carry out the integration, and for any closed curve o ¢ C
with base point in p, the integral [ w is the difference between 2
branches of [’ w, differing one from the other by precomposing the
path of integration with c.

In order to concentrate our attention on the second kind of multi-
valuedness, we will only integrate special kinds of 1-forms on C:

Definition An Abelian Differential w on the compact and con-
nected Riemann surface C is a holomorphic I-form on C. Namely,
w may be written locally as wjdz;, with w; a holomorphic function,

and we have the compatibility relationship w; = ;‘ﬁ—‘:fwk.

Theorem 2.1 The space H°(C,Q¢c) of Abelian Differentials on
a Riemann surface of genus g has dimension g. The De’Rham I-
cohomology HY (C) := desed 1-forms

eract —forms

18 tsomorphic to

HO(C) QC) S¥ EO(C) QC)

and there is a perfect pairing induced by integration

/ . Hy(C,C) x H. (C) = C

We will accept this Theorem without proof (see [3]). We will just
point out its content. The dimension of the space of Abelian differ-
entials is a computation. The description of the De’Rham cohomol-
ogy group as holomorphic plus antiholomorphic forms is choosing a
canonical representative on each cohomology class. This is a con-
sequence of Hodge Theory. The perfect pairing is a consequence of
the duality between (singular) homology and cohomology (Poincaré
duality). The last assertion uses the above and the isomorphism be-
tween singular cohomology and De’Rham cohomology (Differential
Topology).
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Example 2.2

We want to analyze the integral

¢ dy ;
/p V13— z4 i
Let C' ¢ C? be the curve defined by f(z,y) = 2*+y?—1 = 0. The set
of points defined by f = 3£ = 0are B := {(1,0), (5,0), (—1,0),(—¢,0)}.
Outside of these points C" may be defined as the graph of a function
y(z). On B we have 2L # 0, so that C’ is a smooth curve. Changing
coordinates z, = % and y, = :7 we obtain an ordinary double point

on C' ¢ C x C. This means that the Riemann surface C constructed
in Theorem 1.10 is C" union 2 points (over z = 00).

The projection to the z coordinate gives a holomorphicmap z : C —
C which is 2 to 1, being branched on B. We claim that C has genus
1. To see this, we apply the Riemann-Hurwitz formula to the above
map z: It is 2 to 1, and has 4 branch points of index 2. Since the
genus of Cis 0 we have 2 —2¢g =2(2) —4=10,s0 g = 1.

We claim that w = %’“ is a holomorphic differential on C' (and hence it
is a basis for all holomorphic differentials on C'). To see this, observe
that dz is a meromorphic differential on C that has at co a pole of
order 2 (since d(1) = —2). Hence z*(dz) on C is a meromorphic
differential on C' that has 2 poles of order 2 (at the points over
T = oo) and vanishes at the 4 points B of order 1 (the branch points
of ). Now y is a meromorphic function on C that vanishes on B
and has also poles of order 2 at the 2 points over z = co. Hence w
1s a non-vanishing holomorphic differential on C.

We can write out generators of the fundamental group of C as fol-
lows. Consider the arc of the unit circle in the z-plane parametrized
by e?™ | t € [0,1], and its 2 liftings to C": 71 := (™, +V/1 — ™)
and 7, := (e?™, —v/1 — e*™!). Let oy be the loop on C obtained
by going first with 7; and then returning with 7, '. Define a3 in a
similar manner, but with respect to the parameter ¢ € [, 2]. One

checks that this is a basis of H;(C,Z).

The map M : C* — C* defined by M(z,y) = (iz,y) induces an
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automorphism of C of order 4, that sends the loop «a; to a; and
M'w = iw. If A; := [, w then by the above we have A\ = iA;.
One can see that A\; # 0, since otherwise [w would define a holo-
morphic function on C' (uni-valued, since it would be independent
of the homotopy class of the curve on which we integrate), but such
functions are constant by Proposition 1.15 and so 0 = d(f w) = w, a
contradiction.

Denote by I' = ZA @ ZA,; C C the additive subgroup generated by A,
and Az := 2\, which is a discrete subgroup (in the sense of having
no accumulation points). The quotient group C/I' is a compact
topological group, which also has the structure of a Riemann surface,
with the group structure being holomorphic. Since the integral [~ w
is well defined modulo the addition of an element of I, we obtain a
well defined holomorphic map

/pC:C—MC/F

One can show that this map 1s a biholomorphism. O

A key idea in generalizing the above example to g > 1 is
to compute the Abelian integrals [w simultaneously for all
Abelian differentials.

Let w),...,w, be a basis for the Abelian differentials on the con-
nected and compact Riemann surface of genus g. Consider the multi-
valued map

/c(wl,...,wg):C—»Cg
P

Let ay,...,az, be a canonical basis of generators of 7(C,p) and T’
be the additive subgroup of C? defined by

J

29
={)_m;A; [ m; €Z} , A :::/ (Wrye - ywy)
J=1 o
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The elements of [ are the periods of the Abelian Integrals on

C.

Theorem 2.3 The additive subgroup I' C C° is a discrete subgroup,
the quotient C° /T is a compact complex manifold of dimension g with
an Abelian holomorphic group structure and the map

/pc(wl,...,wg) . C — CT (2.1)

is a holomorphic map (univalued).

Proof: It will suffice to show that the 2g periods A; of the Abelian
integrals are R-linearly independent in C°. So assume that they
satisfy a linear relation:

29
ET‘J'AJ' =0
J=1
By conjugating we have that for k =1,...,¢:

29

ZU/

29

wy =0, ET‘J'/ wr =0

j=1 7% j=1 %

Since by Theorem 2.1 the holomorphic and antiholomorphic 1-forms
are a basis of the de’Rham 1-cohomology group and the 1-homology
and the de’Rham 1-cohomology form a perfect pairing, we have that
the above equalities imply that Y22, r;{a;] = 0 € H;(C,C), which
implies that r; = 0 since «; are basis for H,(C,Z). O

Definition The Jacobian of the compact and connected

Riemann surface C is the compact complez manifold J(C) :=
C°/T" and the map (2.1) is called the universal Abelian Integral

/:C—)J(C)
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As we mentioned in the introduction, the Abelian differential 1-
forms on J(C) may be written as }~7_, a;dz; where a; are constants
(since the only holomorphic functions on J(C) are constants, and
the cotangent bundle of J(C) is a direct sum of trivial bundles). Its
integral correspond to the multivalued functions on J(C) induced
by the linear function }>7_; a;z; on C%. These ‘constant’ differential
forms pull back via the universal Abelian integral to the Abelian
differentials on C'. Hence the integrals of Abelian differentials on C
may be decomposed as the composition of an algebraic map and a
‘multivalued linear function’ on J(C). The fibres of the integral of
an Abelian differential

g
/Eajdzj
J=1

on J(C') corresponds to parallel hyperplanes in C° projected to J(C'),
and may be understood as the interplay of the hyperplane with the
periods. We then want to intersect this codimension 1 foliation in
J(C) with the image of the universal Abelian integral, which as
we mentioned, 1s an algebraic map. This reduces the problem of
understanding the integrals of Abelian differentials to understanding
an algebraic map and a linear foliation of codimension 1 in J(C') and
how they intersect.

Another image that one has is to consider the ‘lift’ of the universal
Abelian integral to the universal covers

~ %

/ (wr,... w,) C =

14

The image curve i1s an analytic curve in C?, defined by the vanishing
of a finite number of entire functions. This map is not injective, since
1t factors through the ‘maximal Abelian cover’ of C, which is the
covering of C' corresponding to the subgroup of commutators of the
fundamental group of C'. The image curve is actually biholomorphic
to the maximal Abelian cover of C.



Riemann-Kempf Singularity Theorem 117
2.2 Abel’s Theorem

Abel discovered in 1826 a remarkable property of Abelian integrals.

Let C be the compact Riemann surface associated to the polynomial
f(z,y) as in Theorem 1.10, and let w = X(z,y)dz be a rational 1-
form defined on C. Let yy(z),...,yn(z) be different branches of the
algebraic function defined by f = 0 on a small open set in U C C,
and consider the meromorphic 1-form on U:

[(X(z,51(z)) + ... + X(z,yn(2))]dz (2.2)

If by analytic continuation of {y;(z)} in C we return back to U
we will obtain that the {y;(z)} are reshuffled, but in any case the
meromorphic 1-form in (2.2) on U remains the same, since addition
in C is commutative (C after all is an ‘Abelian’ group). This is
also true at the ramification points of y;(z). Hence the expression
(2.2) gives rise to a meromorphic (i.e. rational) 1-form in C, but
by example 1.1 we know all about the integrals of such differential
forms:

(z,n1 (a:)) , (z,yn(x)) .
/ A(x,y)dm—i—...—i—/ X(z,y)dz = FEasy Function(z)

p p

The most dramatic case is when X (z,y)dz is an Abelian differential,
since there are no Abelian differentials in C (it’s genus i1s 0), we
obtain:

Abel’s Theorem If X(z,y)dz is an Abelian differential on the
compact Riemann surface C associated to the irreducible polynomial
f(z,y) of degree n iny, and y,(z),...,yn(z) are the branches of the
algebraic function defined by f, then

(zy1 () (z,yn(z))
/ X(z,y)dz + ... +/ X(z,y)dez = Constant

p p



118 Gomez-Mont

Figure 9: Sums of local 1-forms

1
)

Qx |

We change slightly our point of view. Let C' be a compact and con-
nected Riemann surface and let f : C' — C be a rational function (or
a holomorphic map to C). For every z € C let {¢;(z),...,cn(z)} =
f7(z) be the inverse images of z under f, counting multiplicities.
Since we do not have a preferred order for these n-points of C, we
use the additive notation ¢;(z)+...+c,(z), where with this notation
we are just meaning n-points of C' with no preferred order.

Abel’s Theorem: Let w be an Abelian differential on the com-
pact and connected Riemann surface and f a non-constant rational

function on C, with f~1(z) = ¢1(z) + ...+ ca(z), then

c1(z) cn(x)
/ w+...+/ w = Constant
p p

Let’s introduce a better language to express Abel’s Theorem. For
n > 1 we can define a function

/ (Wiyey0y): C % oo x C = J(C)
np
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Figure 10: An illustration of Abelian sums

Actually,if ¢ : X — G is a function from a set X to an abelian group
G, we can define a function " : X x...x X — G by *(zy,...,2,) =
1(z1) + ...+ t(z,) by using the group structure in the image. If we
denote by Sym, the group of permutations on n letters, the map "
is invariant under the action of Sym,,, and hence gives rise to a map

defined on the orbit space :(®) : S—X—n— — (. The set SXn 1s called
Ymn YMmn

the symmetric product of X and is denoted by X"

For our case of interest, let C(™ be the nt*-symmetric product of
the Riemann surface C.

Lemma 2.4 Let C be a compact and connected Riemann surface
and f a non-constant rational function on C then:

1) C™ is a compact complez manifold of dimension n,

2) There is an integer n (called the degree of the rational function f)
and a holomorphic map f~' : C — C™ defined by z € C — f~(z).

Proof: : 1) We will begin by observing that C™ is biholomorphic
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to the projective space P*. This is true, since given a polynomial
in ¢t with complex coefficients of degree less than or equal to n we
can assoclate to it its roots (with multiplicities), that will be an ‘un-
ordered’ set of complex numbers. If the degree is less than n, we just
cotuplete putting co with multiplicity so that the total number is n.
Such polynomials have n+1 complex coefficients and they determine
the same roots if and only if they differ by a non-zero constant. In
all, we see that ct may be identified with the projective space of
polynomials of degree less than or equal to n. Taking coordinate
charts of the Riemann surface C, we can use the above computation
locally to conclude that C™ is a complex manifold of dimension n.

2) It follows from Theorem 1.14 that rational functions are holomor-
phic maps to the Riemann sphere C. In the proof of the Riemann-
Hurwitz formula we saw that a holomorphic map may be mterpreted
as a branched covering, with a finite number of sheets n. Out-
side of the critical values f(B), one obtains n holomorphic functions
¢i(z),...,cu(2) describing the different branches. So we have a holo-
morphic map ¢;(z)+...+¢,(z). From the description in Proposition
1.12 of the behaviour of f at the branch points (1.e. coordinates were
it takes the form w*) we see that it extends to a holomorphic function
at the critical values of f. O

The n'* Abelian map is the holomorphic map:

/ . 0™ = Jae(C)
np

defined by

(&] Cn
/(cl—}-...—i-cn):/ (wl,...,wg)—i-...—i-/ (Wiy . ywy)
np P

P
where as before wy,...,w, 1s a basis of the Abelian differentials.

Abel’s Theorem Let C be a compact and connected Riemann
surface of genus g, f a non-constant rational function of C then the
map
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/ of 1:C— C™ = Jac(C) (2.3)
np

ts a constant map.

Proof: The 1-forms }"7_; a;dz; on C° descend to holomorphic 1-
forms on Jac(C) for any value of the constants a;. Pull back these
holomorphic 1-forms to C via the map (2.3). In local coordinates
we may parametrize C by (hy(w),. .., hy(w)), to obtain holomorphic
1-forms 3°7_, aj%hjdw on C. But there are no non-zero holomorphic
1-forms on C. Since this is true for any values of a;, we obtain that
8k,

52 =0, and hence h is constant. O

It follows also from the above proof of Abel’s Theorem that if we
have a holomorphic map from a projective space P* — C( then it
is also transformed by the n** Abelian map Jop to a constant: P is
full of lines, since through any pair of points there is a line and lines
are sent to a point. So P" is contracted to a point by the Abelian
map [,.. In the next section we will organize in a more efficient way
the rational functions on C', we will find some projective spaces in
C™ and we will be able to describe the fibers fn_pl of the n‘* Abelian

map.

2.3 Meromorphic Functions on Compact Rie-
mann Surfaces

Let C be a compact and connected Riemann surface. We will call the
points of the symmetric product C(®) positive divisors of degree
n, and we will write them as D = nypy+. ..+ n,p,, with n; € Z, and
p; € C, with n; + ...+ n, = n to reflect the multiplicity of the point
p; in the divisor D (i.e. the number of times that the point appears
repeated in the divisor D). More generally, the group of divisor
Div(C) on C is the free abelian group generated by the points
of C' and its elements, called divisors, are expressions of the form
D =mp+...+n.p,, withn; € Z and p; € C, where ny + ...+ n,
is called the degree of the divisor.



122 Gomez-Mont

Let f be arational function on C of degree n (recall from Lemma 2.4
that n i1s the number of sheets of the associated holomorphic map
C — C). The divisor of zeroes ! f), of f is the positive divisor
f71(0), the divisor of poles (f)s of f is the positive divisor f~!(oc0)
and the divisor of f is (f) = (f)o — (f)e- Divisors of rational

functions on C are called principal divisors.

We say that the positive divisors Dy = myp; + ... + m,p, and
D, =niqy + ...+ nq, are linearly equivalent if and only if there
is a rational function f on C and a positive divisor D such that

(flo+ D =mp1+...+m.p, (floo+ D =n1q1 + ...+ nyq,

That 1s, two positive divisors are equivalent if after cancelling the
common factors there is a rational function on C that has poles in
one and zeroes on the other. Or better, if D, — D, = (f) is a principal
divisor (i.e. we let the cancelling be automatic in D (C)).

Example 2.5

All divisors of degree n on the Riemann sphere are linearly equiva-
lent, since given D; = mipi + ...+ m.p; and Dy = nyg1 + ...+ n,qs
two positive divisors of C of degree n we can construct the rational
function

my,

Mg, #00(t — g;)™

on C that vanishes on D; and has poles on Dy;. We had already
observed in the proof of Lemma 2.4 that C™ = P" and that there
are no Abelian differentials on C, so that the n'* Abelian map de-
generates to a constant map. So its fiber is all of C™. That 1s, the
fibers of the n'* Abelian map are the equivalence classes of divisors
(one class in this case) and this fiber is a projective space P™.
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Example 2.6

Let C' be now a Riemann surface of genus ¢ > 1, and we want to
analyze when two divisors of degree 1 are linearly equivalent. Let
p,q € C, p# q be two distinct points in C and assume that they
are linearly equivalent. Hence there 1s a rational function on C that
has zeroes only at p with multiplicity 1 and poles only at ¢ with
multiplicity 1. Interpreting f as a holomorphic map f : C — C to
the Riemann sphere, then it has degree 1. Applying Lemma 2.4 we
see that f is injective, and also surjective; hence a biholomorphism,
which contradicts the hypothesis that the genus ¢ > 0. Hence, on
Riemann surfaces of ¢ > 0 divisors of degree one are not linearly
equivalent (except to itself).

Example 2.7

Let now C be a curve of genus g > 0 and assume that D; = p; + p,
is linearly equivalent to Dy = ¢ + g,. By Example 2.6, we have that
p; # qk, and let f be the rational function on C that vanishes on D,
and has poles on D;. Viewing f : C — C as a holomorphic map to
the Riemann sphere of degree 2, we can apply the Riemann-Hurwitz
formula to obtain

2—-29=22-0)-> (v(g,f)—1)=4~d

where f has d = 2g + 2 branch points of order 2. Let {c;} be the
critical values of f (i.e the images of the branch points) and assume
for simplicity that they are all finite (otherwise, postcompose with a
holomorphic automorphism of C moving oo to a finite value). One
checks that C is biholomorphic to the Riemann surface associated
to the polynomial

F(z,y) =y = N2 (2 — o)

So, there are Riemann surfaces of arbitrary genus ¢ > 0 such that
the 2"¢ Abelian map Jop C® — Jac(C) defined on the complex 2-

dimensional manifold C(?) contracts a line. These Riemann surfaces
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are called hyperelliptic, and it is more difficult to see that only
a ‘few’ Riemann surfaces of ¢ > 3 are hyperelliptic. Hence, the
nature of the Abelian maps can depend on the complex structure of
the Riemann Surface C'. For non-hyperelliptic Riemann surfaces the
2" Abelian map is injective and C?) does not have any copy of C
(even though the topological structure of C(? is independent of the
complex structure on ().

Given a positive divisor D = myp; + ...+ m,p, on the compact and
connected Riemann surface C' define Rat(D) as the set of rational
functions on ¢ that have poles at most on the points py,...,p, with
order at p; at most m;: v(f,p;) < m;.

Proposition 2.8 /) Linear Equivalence of positive divisors of degree
n is an equivalence relation on C™,

2) For a positive divisor D of degree n, Rat(D) is a vector space of
dimension at most n + 1.

3) For a positive divisor D of degree n, there is a holomorphic map
from the projective space of lines in Rat(D) to C™

Proj(Rat(D)) — ¢ f=(flo—(flo+ D

whose tmage 1s the set |D| of positive divisors linearly equivalent to

D.

Proof: 1) D is linearly equivalent to itself through a constant
function, and if f reflects the linear equivalence between D and FE,
then the rational function I reflects the equivalence between E and

!
D.

Assume that D, is linearly equivalent to D, and that D, is linearly
equivalent to D3. Let this be expressed by

Dl—Dz'—”(f) Dz—l);}:(g)
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for suitable rational functions f and g on C. Let [} be the positive
divisor representing the zeroes of (f) which are also poles of (g), and
F, the positive divisor representing the zeroes of (¢g) which are also

poles of (f), then

(fg)o = (flo+t
(f9)o = (floo+
(fg) = (f)+(9)

Hence

Dy = D3 = (D1 = D2) + (D2 — Ds) = (f) + (9) = (f9)

2) Let D = 7%, m;p; and V(D) be the vector space of dimension
n formed by the partial Laurent expansions:

V(D) = &l =55

— p;)k

where z; are local variables around p;. Consider the map which as-
sociates to a rational function in D the negative terms of its Laurent
series expansion at its poles:

p: Rat(D) — V(D)

An element in the kernel of p is a rational function with poles at most
on D, but such that its Laurent series expansion at these points is
actually a power series expansion. That is, a holomorphic function
on C. But by Proposition 1.15 it is a constant function. Hence, by
linear Algebra, the dimension of Rat(D) is at most n + 1.

3) Let fi,..., fs be a basis for Rat(D) and consider the holomorphic

function
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F:[C—{0}] x[C—=Ui_{p;}] = C, F(th,...,t Zt f(z

and let Z be the algebraic subvariety of [C°—{0}] x [C Uj = 1 {p;}]
defined by F' = 0. The projection to the first factor [C°* — {0}] is
a finite map, so it will have a behaviour of a ‘branched covering’.
Using local coordinates and properties of the behaviour of the roots
of polynomials with respect to parameters (see [3]) one obtains local
holomorphic maps to C™). To understand the behaviour of Z near
the points of D, one considers coordinates around p,. The family of
maps F' has a ‘general’ order of a pole at a point p; and this drops
precisely when there is a point of Z approaching. Analyzing this
situation carefully gives the result. (Actually it is easier to prove
this part using holomorphic sections of a line bundle by cancelling
the poles by multiplying by a holomorphic section of the line bundle.
The result will then follow since the similar variety Z will be proper
and finite over C° — {0}). Since the holomorphic map to C{"

independent of multiplying by a non-zero constant, we obtain that
it actually is defined on Proj(Rat(D)). 0.

Our previous observations then gives the final form of:

Abel’s Theorem Let D be a positive divisor of degree n, and let | D)
be the projective space of divisors linearly equivalent to D in ')
then the n'* Abelian map [, sends |D| to a point.

A proof of the converse of Abel’s Theorem may be found in [3] p.235.
It asserts that the fibers of the n'* Abelian map [, are the different
complete linear series.
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3 The Riemann-Kempf Singularity The-
orem

3.1 The Canonical Curve

Let C be a compact and connected Riemann surface of genus g > 2
and let wy,...,w, be a basis of the Abelian differentials on C. The
rational functions obtained by dividing the Abelian differentials with
w; defines a holomorphic map

(ﬂ,...,ﬁ):C—{wlzﬂ}—»Cg_l

W w1

This map extends to a holomorphic map from C to projective space

P9~!. In local coordinates (Uy, z4) the differentials may be written

as w; = A¥(z4)dz, and in the intersection of coordinates we obtain

the relations A? = A;’jz—“ Hence, if we define maps to projective
2

space

U, — P91 zo = (AY(2a) 1 ... AY(24))

then they coincide in the intersection. The map obtained by gluing
these local maps

ic:C — P91

is called the canonical map of C' and the image curve is called
the canonical curve.

The geometry of the canonical curve :¢(C) contains many secrets of
the (rational) function theory of the Riemann surface C. We begin
to describe the linear geometry of the canonical curve. The
canonical map is injective if C is not hyperelliptic, and we identify C
with 1ts image i1c(C). The canonical curve C is not contained in any
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hyperplane in P~ since wy, . . .,w, is a basis of the space of Abelian
differentials on C. Let H be a hyperplane in P97, The intersection
of H with the canonical curve i1s a divisor on C of degree 2¢g — 2.
The divisors that one obtains by intersecting with all hyperplanes
is the complete linear series called the canonical linear series ||
and it correspond to the divisors of degree 2g — 2 that are zero-sets
of Abelian differentials on C.

Let D = p;+...+p, be a positive divisor in C with n distinct points.
The span < D > of D is the smallest linear subspace of PY"! that
contains the points py,...,p,. If the points are independent, then
the dimension of the span is n — 1, otherwise it is n — 1 — r for some
positive integer r. r measures the number of independent linear
relations of the points {p;}.

Geometric Riemann-Roch Theorem [fC is a non-hyperelliptic
curve and D = py + ...+ p, ts a positive divisor whose span < D >
has dimension n — 1 — r, then the complete linear system |D| has
dimension 1.

For a proof see [3], p.248.

Corollary 3.1 IfC is a non-hyperelliptic curve and D = py+.. .+p,
1s a positive divisor then:

1) If the span < D > of D s P! then the dimension of the com-
plete linear series |D| isn —g.

2) If the span < D > of D has dimension less than g — 1, let I be
a positive divisor with D + E € |&|, then

dim(|D|) = codim(< E >,P?71) — 1

3) If D' € |D| then dim < D >=dim < D' >.

Proof: 1) If D spans all P?"! (necessarily n > ¢), the Riemann-
Roch Theorem says exactly that the complete linear system |D| has
dimension n — g.
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2) If on the other hand the span of D is not all P! let H be a
hyperplane containing D. The intersection of H with the curve C is
CNH =D+ F, where F is a positive divisor of degree 29 — 2 — n.
We have to prove that the span of E has codimension r + 1, where
r = dim|D|. To see this, let H' be a hyperplane containing < F >,
then. H'NC = D'+ E. By construction, D’ € |D|. Conversely, given
an element D' € |D| then E + D’ € || and so there is a hyperplane
containing £ that intersects C on D' + E. So there is a one to one
correspondence between hyperplanes containing £ and elements in

| D.
3) Apply 2). 0

As 3) shows, if the span of D has dimension n — 1 — r, then for any
other divisor D' € |D| we will also have that the span < D’ > has
dimension n — 1 — r. In this manner, we obtain an r-dimensional
family of n —1 —r-linear subspaces of PY~!. The union of these linear
subspaces

Cone(|D|) = Uprgpy < D' >

gives rise to a variety of PY~! that can be shown to have dimension
n — 1 and that we will call the cone of |D|.

3.2 The Infinitesimal Geometry of the Abelian
maps

Now we turn to show that the canonical curve is related to the
infinitesimal geometry of the universal Abelian integral.

Lemma 3.2 The derivative of the universal Abelian Integral [, :
C — Jac(C) is the canonical map ic.

Proof: Recall first of all that we have chosen (and fixed) a ba-
sis wi,...,w, of the Abelian differentials and that Jac(C) = C?/A

1s a compact Abelian group. This implies that the tangent space
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of Jac(C) at any point p can be identified with the tangent space
ToJac(C) at 0 via the derivative of the translation in Jac(C) that
sends p to 0. That is, the natural identification that one has of
the tangent vector in C? descends to give canonical isomorphisms of
tangent spaces in Jac(C).

Using local coordinates, then

é‘?z_/p"(m(z),...,Ag(z))dzp:m = (Ai(20),. .., Ag(20))

The tangent to the curve [(C) at the point [ can be identified
(after translating it to the origin in Jac(C') and taking the point in
Proj(ToJac(C)) which it represents) with i¢(c). O

We can generalize this computation from the universal Abelian in-
tegral to any Abelian map [, : C™ — Jac(C)

Lemma 3.3 The derivative of the Abelian map [, C™ = Jac(O)
at the point D = py+...4p, is a linear map TpC™ — Tf pJac(C)

whose 1mage may be tdentified to the linear span < D > of D in
P! = Proij pJac(C).

Proof: Assuming for simplicity that the points are distinct, then
the derivative we want to calculate coincides with the derivative of
the map [, : C™ — Jac(C') defined on the product of C, instead of
the symmetric product, at D. Here, we can take partial derivatives
with respect to each factor of C. By Lemma 3.2 each of this partial
derivatives corresponds to a point ¢¢:(p:), and hence the image of the
linear map correspond to the span of D, O

3.3 The Riemann-Kempf Singularity Theorem

Define
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as the image variety of the n'* Abelian map. It is a compact algebraic
variety, possibly with singularities. W, has in the structure of its
singularities information about the function theory of the curve C:

Riemann-Kempf Singularity Theorem Let C be a compact
Riemann surface of genus g > 2. For |D| a linear system of degree n
and dimension r, the tangent cone to W, at [, (D) is the previously

defined cone:

Tf (0yWn = Cone(|D]) = Uprepy < D' >.

np

g—n+r
r

It has degree ( >, and is swept out once by the planes |D'|.

There are 2 kinds of proofs:

1) Analytic ([1,5]): Lemma 3.3 gives a description of the the deriva-
tive of the nt* Abelian map, and one continues with this idea.

2) Algebraic: Uses Grothendieck’s variational machinery. It is de-
scribed in full in [4] and we will finish these notes by giving a brief
description of its method of proof.

The role of the Jacobian J(C') is taken by the Picard varieties Pic,(C)
which parametrize classes of invertible sheaves on C of degree n (see
[2] or [3] for assumed background in what follows). There is a map

/ . C™ S Pic, (C) (3.1)

which associates to each divisor D the invertible sheaf O¢(D) of
meromorphic functions with poles bounded by D. The image va-
rieties again are denoted by W,. The fibres of the map (3.1) over
Oc¢(D) may be identified with the projective space of lines in the
space of global sections H%(C, O¢(D)) of Oc(D). Hence, the under-
standing of how the space of global sections H°(C, £) of the invertible
sheaf £ vary with £ € Pic,(C) is related to the problem of the struc-
ture of the varieties W,,.
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The main reduction is to convert the problem to a problem of ‘ma-
trices with parameters’. That is, to show that given ¢ € Pic,(C)
there is an affine neighborhood U of ¢ in Pic,(C) and an s x ¢
matrix A = (A;;) with coefficients in the ring of regular functions
H®(U, Oy) such that for every ¢ € U we have

dimH°(C,€) = dimKer A(¢)

dimH'(C,€) = dimCoker A()

This in particular shows that the varieties W, are determinental va-
rieties, since the condition defining a point in W, is that the rank of
A(¢) is one less than maximal, which may be written as the vanishing
of all the maximal minors of A(¢).

The case n = g — 1 is the simplest, in the sense that W,_, has
codimension 1, and so is defined by the vanishing of a single function.
The above reduction says in this case that A is an s X s matrix and
det(A) is the equation defining W,_;. One can actually find an A
such that s = dimH°(C, &) and A(&) = 0. Expanding A in terms
of regular parameters at £y we have that the entries of the matrix
A begin at least with linear terms, and hence the determinant will
begin with terms of degree at least s.

If s =1 then one has to show that A, which is now just 1 function,
has a non-trivial linear term in its expansion around ¢,. The linear
terms of A at &

A'(&) : Tang,(Pic,.1C) = H'(C,0c) — Homg(H°(C, fo),Hl((C, f)()))
3.2

can be interpreted as the first order variation of the connected pair
of functors (H?, H') ([4] p.81). (3.2) is seen to be the cup product.

Now one uses:

*) For any non-zero section ¢ € H°(C,¢), the cup product
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oU : H'(C,0¢) — H'(C,¢§)

1s surjective.

This-is enough to show that the ‘first order variation’ of A is non-
zero, and hence W,_; 1s smooth at £&. And conversely, at any smooth
point we must have that s = dimH%(C,£) = 1, since we just saw
that the degree is at least s. This proves that the non-singular points
of W,_ correspond exactly to invertible sheaves with global sections
of dimension 1.

For s > 1 one has to show that for the corresponding map (3.2) the
subset

{v € Tang,Pic,.,C | A'(0)v: HO(C, o) — HI(C, €o)

has nontrivial kernel}

is not the entire tangent space. This again is carried out using *)
above. This shows that W,_, is defined at {, by a function whose first
non-zero term has degree exactly s = dimH°(C,&;). This sketches
a proof of Riemann’s Theorem.

Homological Algebra provide methods to compute ‘intrinsic deriva-
tives’ using higher order operations, as is shown in (3.2). Note that
by using Serre-duality, (3.2) is equivalent to the multiplication map:

HO(C,&)) ® HO(C, kQ® &) — HO(C, K)

One of the main advantages of this method, is that 1t is valid inde-
pendently if the points of a divisor D are distinct or not.

We finish by writing Riemann’s Theta function. Let éy,...,8;, be
normalized generators of the fundamental group and choose a basis
wi, .- ,w, of the Abelian differentials such that [ w; = 6;; for 1 <
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1,) < g. If Z denotes [; w; =6;;forg+1<j<2gand1<j <y,
then Z 1s a symmetric matrix with positive definite imaginary part
([3], 232). The Theta function is the function on C? defined by the

convergent power series

@(UJ) — E evri<n,Zn>627ri<n,w> (33)

neZ’
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