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Preface

These notes are a faithful record of five lectures given at the Sum-
mer School on Algebraic Geometry, held at the Bilkent International
Center for Advanced Studies of Bilkent University, in August of 1995.
The intention of the lectures was to give a quick overview of the clas-
sification of algebraic surfaces. In the first lecture a brief digest of
the general theory is given, concentrating on the major invariants
for algebraic surfaces and on the standard theorems relating them.
In the next three lectures the standard constructions of algebraic
surfaces of special type are presented; rational and ruled surfaces in
the second lecture, abelian, K3, Enriques, and hyperelliptic surfaces
in the third lecture, and elliptic surfaces in the fourth lecture. In the
last lecture the geography of surfaces of general type is discussed,
along with some examples of particular constructions which are the
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most well-known to illustrate the situation. In general the approach
is not at all systematic, with hardly any proofs given; my intention
is only to display some of the highlights of the classification of al-
gebraic surfaces, hoping to whet the reader’'s appetite for a more
detailed study.

[t gives me great pleasure to thank TUBITAK, the British Council
in Ankara, and Bilkent University for their generous contributions
to the summer school, as well as the local organizing committee
from Bilkent and METU for giving me this wonderful opportunity
to present this material. I especially want to thank Dr. lThsan Dog-
ramaci, Prof. Mefharet Kocatepe, and Prof. Sinan Sertoz and his
family for their warm hospitality during the school.
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1 Algebraic Surfaces: Basic Invariants

In this first section we present a quick digest of the general theory of
algebraic surfaces, simply to fix notation and to set the stage. The
basic references for algebraic surfaces would include [Z], [E], [S2],

[Be], and [BPV]. There are also sections of [S1], [GH], and [Ha]

which deal specifically with surfaces.

1.1 The Definition of an Algebraic Curve

We will work over the field of complex numbers C. With this point
of view an algebraic curve is, first of all, a Riemann surface, that
1s, a complex manifold of dimension one. Being a complex manifold
means that at every point there i1s a local complex coordinate z, and
the change-of-coordinate functions are holomorphic. Hence if both 2
and w are local complex coordinates in the neighborhood of a point
p, then z = T'(w) and w = S(z) near p, where T and S are (inverse)
holomorphic functions.

For a compact Riemann surface X to be an algebraic curve, its field
of global meromorphic functions M(X) must be sufficiently rich. To
be precise:

Definition 1.1 A compact Riemann surface X is an algebraic curve

if and only if
(a) for every two points p, ¢ on X there i1s a global meromorphic
function f on X having different values at p and ¢, and

(b) for every point p on X there is a global meromorphic function
f on X such that f is a local coordinate at p.

The first condition is usually referred to as “separating points”; the
second as “separating tangents”.
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It 1s a basic theorem that every compact Riemann surface is an
algebraic curve. The field of functions M(X) is an extension field
of C of transcendence degree one.

1.2 The Definition of an Algebraic Surface

We take our definition of an algebraic surface directly from that of an
algebraic curve. Let X be a compact connected complex manifold
of dimension two; this means that at each point of X there are
two local complex coordinates (z,w) and change-of-coordinate maps
are holomorphic. Let M(X) be the field of global meromorphic
functions on X.

Definition 1.2 X s an algebraic surface if and only if the field
M(X) separates points and tangents, i.e.,

(a) for every two points p, ¢ on X there is a global meromorphic
unction f on aving different values at p and ¢, an
tion f on X having di t val t p and d

(b) for every point p on X there are global meromorphic functions
f and g on X such that (f,g) are local coordinates at p.

This implies rather readily that the field of functions M(X) has
transcendence degree two; the converse is true, but only for surfaces:
there are counterexamples in dimension three and higher.

The compactness of X implies that in fact there are finitely many

meromorphic functions fy,..., f, which separate points and tan-
gents. We may use these functions to map X to projective space
P", via the mapping ¢ — [1 : fi(z) : --- : fa(z)]; then X becomes

embedded in P*. By Chow’s theorem X is an algebraic subset of
P™, i.e., defined by the vanishing of a set of homogeneous polyno-
mials. Therefore an algebraic surface in the above sense is indeed a
projective algebraic surface.
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It is trivial that every smooth projective algebraic surface is algebraic
in the above sense: the ratios of the homogeneous coordinates on P™
restrict to meromorphic functions on X which separate points and
tangents.

One of the basic examples of projective algebraic surfaces are the
hypersurfaces in P3, defined by the vanishing of a single homogenous
polynomial in the four projective coordinates. More generally, one
has complete intersections in P™, by taking the common zeroes of a
set of n — 2 homogeneous polynomials, whose zero locus is a surface.
If the polynomials have degrees (d;,...,dn_2), then such a surface
1s sald to be a complete intersection of type (di,...,dn_2).

1.3 Functions and Forms

The concept of a differentiable function or a meromorphic function
on an algebraic surface is straightforward. That of a form may be
less familiar; let us briefly review it.

Suppose that (z,w) are local coordinates on X. If we write z = z+1y
and w = u + v then (z,y,u,v) become real coordinates on X. A
differentiable 1-form on X is, locally, an expression of the form

fl (x,y,u,v)d:v + fz(x,y,u,v)dy + fg(x,y,u,v)du + ﬂ;(m,y,u,v)dv

where the f; are differentiable functions. Upon changes of coordi-
nates such an expression transforms to another such, and a global
I-form can be thought of as a collection of such expressions, one
for every choice of local coordinates, all of which transform to one
another. It is sufficient to give a set of such expressions, at least one
of which are valid at each point of X.

It 1s more useful to substitute the variables z, Z, w, and W for the
4 real variables; the obvious relationships between these four and
z,y,u,v make the concepts completely equivalent. In this notation
then a 1-form is a collection of compatible expressions of the form

91(2,Z,w,W)dz + g2dZ + gsdw + g4dw
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with the g;’s differentiable.

Note that under holomorphic changes of coordinates, say to new
complex coordinates (s,t), the dz and dw terms transport to the
ds and the dt terms, while the dZ and dw terms transport to the
ds and the dt terms. Therefore the 1-form written above naturally
decomposes globally into the dz,dw part (called the (1,0) part) and
the dz, dw part (called the (0,1) part).

Higher forms are defined as sets of compatible expressions which are
linear combinations of terms like

f(z,Z,w,w)da A ...db

where f is differentiable and the expressions da, . .., db stand for any
one of the differentials dz, dz, dw, and dw. The basic exterior algebra
laws that da A da = 0 and da A db = —db A da hold. A term like
this has a type (p, q), where there are p dz and dw’s, and ¢ dz and
dw’s. The possible types are restricted by 0 < p, ¢, < 2 of course; the
form above is then called a (p + ¢)-form, and for the same reasons
as above any n-form decomposes naturally into its (p, q) parts, for
all p, ¢ with p + ¢ = n.

For example, a 2-form is locally an expression of the form

f(dz A dw)
+g1(dz A dZ) + g2(dz A dW) + g3(dw A dZ) + ga(dw A dw)
+h(dz A dw)

and the first line is the (2,0) part, the second line is the (1,1) part,
and the third line is the (0,2) part.

Let £ denote the sheaf of differentiable n-forms on X (0 < n < 4);
denote by £P? the sheaf of (p + ¢q)-forms of type (p,¢). The global
sections H® of these sheaves are the global forms.

In addition to these differentiable forms, there are the holomorphic
and meromorphic forms. These forms, always of type (p,0), have
holomorphic (respectively meromorphic) functions as coeflicients.
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The sheaf of holomorphic p-forms is denoted by Q7; Q° is more com-
monly denoted by O, the sheaf of holomorphic functions. The sheaf
of meromorphic two-forms is denoted M2,

To be more explicit, a section of @ = Q° is a holomorphic function;
a section of Q! is a 1-form of the form f(z,w)dz + g(z,w)dw with
f and g holomorphic; and a section of 2 is a 2-form of the form
f(z,w)dz A dw with f holomorphic. A section of cIM? is a 2-form
of the form f(z,w)dz A dw with f meromorphic.

1.4 Divisors

A divisor on X 1is locally defined by a single nonzero meromorphic
function f; one thinks of the divisor as the locus f = 0, but when f
has multiple roots this is taken into account also. Two such mero-
morphic functions locally define the same divisor when their ratio
has no zero or poles.

This then is how divisors are globalized: one takes a meromorphic
function f(z,w) for every choice of local coordinates (z,w), and re-
quires that in an open set where two choices of local coordinates
exist, the ratio of the given functions has no zeros or poles.

Of course it is sufficient to give a meromorphic function on each
open set of an open covering of the surface, which satisfy the ratio
condition.

With this definition, two collections of local meromorphic functions
form the same divisor if and only if their union is a valid divisor,
that 1s, each function of one set agrees (up to multiplication by a
nowhere zero holomorphic function) with each function of the other
set, where they are both defined.

Divisors form an abelian group Div(X), by multiplying the corre-
sponding functions; the group operation on divisors 1s usually de-
noted by addition however.

Divisors are used to organize meromorphic functions and forms, by
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serving as bounds on the possible poles. If D is a divisor on X, locally
defined by f, then a term g(z,w) or g(z,w)dz or g(z,w)dz A dw of
a p-form is said to have poles bounded by D if the product fg is
holomorphic.

We may then introduce the sheaves Q7[D] of meromorphic p-forms
with all terms having poles bounded by D; as above, it is more

common to write O[D] for Q°[D].

The zeroes and poles of a meromorphic function always have codi-
mension one; therefore on a surface they form curves. A divisor
D then gives rise to a finite formal sum ), n;C; where the C; are
curves on X and the n; are integers, representing the order of the
local function along the curve C;. This representation is called a
Weil divisor; on a smooth surface, there is a 1-1 correspondence be-
tween Weil divisors and divisors. When there 1s any possibility of
confusion, ordinary divisors are called Cartier divisors.

If fis a global meromorphic function, then in every local coordinate
one can take the function f; this gives divisor of f, denoted by
div(f). We note that div(fg) = div(f) + div(g) and div(l/f) =
—div(f). Such divisors are called principal divisors, and form a
subgroup of the group Div(X) of all divisors.

Two divisors are said to be linearly equivalent if their difference is
principal; this equivalence relation is simply congruence modulo the
subgroup of principal divisors.

Cohomology does not “see” linear equivalence, in the sense that if
D, = D, + div(f), then multiplication by f induces natural isomor-
phisms between H'(QP[D,;]) and H*(Q[Dy)).

The Picard group Pic(X) is the group of divisors modulo linear equiv-
alence. It may be identified with the first cohomology group H'(O*)
of the sheaf of nowhere zero holomorphic functions; given a divi-
sor, the ratios of the local functions give a 1-cocycle for this sheaf.
Changing local coordinates on an open set changes the cocycle by a
coboundary.
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If X is a projective surface, lying in P, then if one takes a hy-
perplane H defined by a linear polynomial, this polynomial may be
taken as the numerator of a local defining equation for a divisor on
X, where any nonzero denominator is chosen. If one changes the hy-
perplane one obtains a linearly equivalent divisor, so that the linear
equivalence class is unique; this class is called the hyperplane class.

Divisors are rather well-behaved for maps 7 : X — Y of algebraic
surfaces; if D is a divisor on Y, then one defines 7*(D) as a divisor
on X by taking as the local function at a point p € X to be the
composition f o 7w, where f is the local function for D at the image

7(p). The divisor 7*(D) is called the pullback of D.

1.5 The Canonical Class and the Plurigenera

Let w be a meromorphic 2-form, which is therefore locally of the
form f(z,w)dz Adw. Suppose that one changes coordinates, to (s,1),
where z = z(s,t) and w = w(s,t). Then

dz = (0z/0s)ds + (0z/0t)dt

and
dw = (0w/0s)ds + (Ow/0t)dt
so that 9.5 925
z Ow z 0w

and this coefficient, being the Jacobian J of the change of coordinates
map, 1s nowhere zero and holomorphic. Therefore the coefficient
function f(z,w) is transformed to fJ, and these two meromorphic
functions define the same divisor locally. Hence we may define the
divisor K of w by taking this coefficient function in any local ex-
pression for w, and since this is well-defined up to multiplying by a
nowhere zero holomorphic function, the divisor is well-defined; 1t 1s

denoted by div(w). We have

div( fw) = div(f) + div(w)
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for a meromorphic function f and a meromorphic 2-form w. Such a
divisor is called a canonical divisor on X.

Note that if w; and w; are nonzero meromorphic 2-forms on X, then
there is always a global meromorphic function f on X such that
w; = fwy. Therefore

div(w;) = div(fws) = div(f) + div(w,)

so that the two canonical divisors div(w;) and div(w;) are linearly
equivalent. Therefore the linear equivalence class of canonical divi-
sors is well-defined; this is called the canonical class of divisors, and
is usually denoted by K (as is any particular canonical divisor).

The geometric genus of the surface X is the dimension of the space
H°(Q?) of global holomorphic 2-forms on X. If K = div(w) is a
canonical divisor, and f is any global meromorphic function with
poles bounded by K, then fw is holomorphic. This gives an iso-
morphism between H°(O[K]) and H°(Q?). The geometric genus is
commonly denoted by p,.

Generalizing this, we may define the plurigenera of X, to be the
dimensions of the spaces H°(O[nK]) as n varies; precisely,

P, = dim H°(O[nK))

for n > 0. Then Py =1, P, = p,, etc.

1.6 Kodaira Dimension

The growth rate « of the plurigenera is an important invariant of
X, called the Kodaira dimension. Precisely, if the plurigenera are
all 0, then we set kK = —oco (some authors set k = —1 for this case).
Otherwise k is the integer such that the plurigenera sequence P,
grows like n”, in the sense that « is minimal such that P,/n" is
bounded. For algebraic surfaces, using the Riemann-Roch Theorem
or otherwise, we have that & < 2, so that the four possible values of
Kk are —oo, 0, 1, or 2,
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The situation 1s illustrated by briefly studying the corresponding in-
variant for curves. There the canonical class has degree 2g —2, where
g 1s the genus of the curve. Therefore if ¢ = 0, the canonical divisor
1s negative, and all plurigenera are 0: we have Kodaira dimension
equal to —oo. If ¢ = 1, then 0 is a canonical divisor, so all plurigen-
era equal 1 and k = 0. Finally if ¢ > 2 then the plurigenera grow:
by Riemann-Roch one has P, = n(2g — 2) + 1 — g for n > 2, which
1s linear in n, so kK = 1.

The Kodaira dimension is obviously a rather coarse invariant, but
it serves well as a starting tool to classify surfaces. As the case of
curves indicates, the “general” situation is that « is maximal, equal
to 2. The surfaces with k = 2 are therefore said to be of general
type, while those with k < 1 are of special type. The classification
of algebraic surfaces begins by first classifying those of special type;
then attacking those of general type.

1.7 Numerical Invariants: ¢, h?9, b;, e, x

There are several other important numerical invariants which 1t is
well to be aware of. Most involve some form of cohomology.

We begin with the Bett: numbers b;, which are the ranks of the
simplicial (or singular) homology groups:

b, = rankH*(X,Z) = dimg #'(X,R) = dimc H'(X, C).
The Betti numbers b; are defined for 0 <1 < 4.

The Euler number e 1s the alternating sum of the Betti numbers:
4 .
€ = Z (—l)tb,‘.

1=0

It 1s also the alternating sum of the numbers of :-simplices in any
triangulation of X.

Next we have the irregularity q, defined as the dimension of the space
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of global holomorphic 1-forms:
g = dim H°(Q1).

More generally we have the Hodge numbers, which we may define as
the dimensions of the cohomology groups of the sheaves of p-forms:

h?? = dim H(QP).
Note that the irregularity ¢ = h'° and the geometric genus p, = h?°.

Another definition avoiding cohomology is to consider the d operator
on (p.q)-forms, which (locally) sends a term f(z,w)da A ...db to

(0f0Z)da A ...dbAdzZ + (Of/0W)da A ...dbA dw.

This maps (p, q)-forms to (p, q + 1)-forms, and do 9 = 0. Then one
defines

H™ = ker(d: H°(EP?) — H°(EP*Y)) /image(d : H°(EPI™1) — HC(EP9))
and A?? = dim H??. These numbers are defined for 0 < p, ¢ < 2.

These invariants have various relationships, which form the heart of
Hodge theory for algebraic surfaces; these are summed up as follows:

(a) hpvq — hQ)p — h2—p12—q — ]12—61,2"'29

(b) bi = Ep+q=i P
(C) b() = b4 =1

The second property comes from the Hodge decomposition

H"(X,C)= @ H"

ptg=n

where H™(X,C) has its DeRham interpretation. The symmetry
properties (a) are induced by conjugation and the * operator.
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One often arranges the Hodge numbers in a “Hodge diamond”

h0,0
hl,O hO,l
}2:0 Rl },0:2
B2 p1.2
2.2

with 5 rows; because of the above identifications we see that the
Hodge diamond looks like

1
q q
Pg At Pg
q q
1

whose rows sum to the Betti numbers. Therefore we have that
b1 = b3 = 2(1 and b2 = 2[)9 + hl’l
while the alternating sum of the rows gives the Euler number

e:2+2pg+h1’1——4q.

Finally we have the holomorphic Euler-Poincare characteristic y =
x(0O), the alternating sum of the dimensions of the cohomology
groups of the sheaf O of holomorphic functions:

x = dim H°(0) — dim H'(O) + dim H*(0) = 1 — ¢ + p,.

1.8 The Neron-Severi Group and the Lefschetz
(1,1) Theorem

On any algebraic surface we have the exponential short exact se-
quence of sheaves

0-2Z2Z—-0->0"—-0
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where the map on the right is exp(27:—). This is also exact on global
sections, so we have an exact sequence starting at the H! level which
begins

0 — H'(Z) —» H'(0) — H'(O") — H(Z) — H*(O).
Using the standard names for the invariants we see that this is
0 — Z** — C? — Pic(X) — H¥Z) — H*(0).

We see therefore that the Picard group Pic(X) of divisors modulo
linear equivalence has a continuous part C?/image(Z?2?) (which is a
complex torus of dimension ¢) and its image in H*(Z) is its discrete
part. This map to H*(Z) is called the Chern class map on divisors.
The image, modulo torsion, is called the Neron-Severi group of X,
denoted by NS(X). It is a finitely generated free abelian group; its
rank p is called the Picard number of X, and tells us how many
discrete parameters divisors on X depend on.

Note that any class in H*(Z) which comes from a divisor must then
go to zero in H*(©). This map factors as

HX(Z) c HY(C) — H*(O)

which shows that such a class, when considered in H?(C), is in the
kernel of the map to H*(O) = H%2. A conjugation argument shows
that it is also zero in H*°, and so must lie in AV

The converse of this is the Lefschetz (1, 1) Theorem: a class in H*(Z)
is the class of a divisor if and only if, when considered in H?*(C), it

lies in the H'! part.

Thus the divisors on X are controlled by how the complex subspace
H'! of H?*(C) intersects the discrete subgroup H?(Z). For surfaces
with p, = 0, for which therefore H*(C) = H"!| this is no condition,
but for surfaces of positive geometric genus this can be a subtle
arithmetic problem.
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1.9 Intersection Theory, Riemann-Roch, Index
Theorems

On the middle-dimensional cohomology groups H?*(R) and H?*(C)
the cup-product induces a nondegenerate bilinear form, called the
intersection form on X. The group of divisors, through the Chern
class map, inherits this bilinear form, as does the Picard group and
the Neron-Severi group NS(X).

The intersection of divisors can be defined algebraically. It suffices
to define (Cy - C3) for two curves on X, by linearity. If the curves
are different, then they intersect at only finitely many points {p;}.
At each p = p;, let C; be defined by the local function f; in the local
ring O,. Then the local intersection number

(Cy - C2)p := length(O,/(f1, f2))

is well-defined and finite, and

(Cy - Ca) = 3 (C1- Ca)y,.
The case of (C - C') can be handled in two ways: either replace one
of the C’s by a linearly equivalent divisor not containing C' as a
component, or in an ad hoc way set (C' - C') to be the degree of the

normal bundle of C' on X. In particular note that (C - C) may be
negative.

An important invariant is K* = (K - K) where K is a canonical
divisor.

We are finally in a position to state some of the most important
results in surface theory.

Theorem 1.3 Let X be an algebraic surface.

(a) (Thom-Hirzebruch Index (or Signature) Theorem:) The signa-
ture 7 of the intersection form on H*(R) satisfies

T = (K*—2¢)/3.
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(b) (Hodge Index Theorem:) The intersection form on HV' N
H?*(R) and hence on the Neron-Severi group NS(X) has one

positive eigenvalue and hV'! — 1 negative eigenvalues.
(c) (Noether’s Formula:)

12y = K? +e.

(d) (Riemann-Roch Theorem:)

x(0[D]) =

(e) (The Genus Formula:) If C is an irreducible curve on X, then

its arithmetic genus p,(C) is

pa(C) = Ch (02+ B) 41

Here x(F) = h°(F)—h'(F)+ h*(F) is the Euler-Poincare character-
istic of the sheaf in question; without specifying the sheaf one takes
x = x(0). (Here we write h* for the dimension of a cohomology
group H*.)

1.10 Projective Invariants: Degree, Class

Suppose that X C P™ is a projective surface. Then as noted above
we have the hyperplane divisor class H on X. A typical hyperplane
divisor should be thought of, as a Weil divisor, as the intersection
of X with a hyperplane. If we intersect X with two hyperplanes we
obtain the degree of X. On the other hand intersecting first with
X and then intersecting again, we see that this degree is equal to
the self-intersection number H* = (H - H). This is a fundamental
invariant of a projective surface, but note that it depends very much
on how X is embedded in projective space; the same surface can be
re-embedded in different ways having different degrees.
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A hypersurface in P3 defined by taking the zeroes of a homogeneous
polynomial of degree d has degree d. More generally, if X is a smooth
complete intersection surface of type (dj,...,d,) in P*"? then X

has degree dyd; - - d,,.

Other projective invariants abound; one of the most common is the
class, defined to be the degree of the dual variety of tangent hyper-
planes.

1.11 Birational Maps, Blowups and Minimal Mod-
els

A holomorphic map f between algebraic surfaces i1s a map which, lo-
cally, is defined by two holomorphic functions. In the case of surfaces
(and any varieties of higher dimension) there are always interesting
maps which are not defined everywhere however. The prototype is
the map from C? to P! sending a point (z,w) to the line [z : w]
through 0 and (z,w). This is not well-defined at the origin, and is
not definable there as a continuous function.

So the concept of a rational map exists, given locally by meromor-
phic functions, but which may not be defined at all points. Rational
maps X --+ Y are in correspondence with function field inclusions
M(Y) - M(X). A birational map is a rational map with a rational
inverse. A birational map is therefore determined by an isomorphism
between function fields; birational equivalence is essentially this iso-
morphism property.

The fundamental construction in the birational theory of surfaces is
the blowup at a point p. Suppose that one chooses local coordinates
(z,w) on X at p, so that pis z = w = 0. Choose an open set
around p, giving an open set U C C2?. Replace that open set by
two open sets V; and V;,, where V) has coordinates (z,u) and V; has
coordinates (w,v). Glue these into the surface X by the change of
coordinates
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Note that in particular these two open sets are glued together, and
map to the open set U; the inverse image of p (which is z = w = 0)
is the line z = 0 (with coordinate u) in V} and the line w = 0 (having
coordinate ») in V,. Since u = 1/v, these lines are glued to form a
P! which we will denote by E. The inverse image of any other point
is simply one point. Therefore we have constructed another complex
manifold B, which maps to X. If we call the map 7, we have the
diagram

E C B
! I
p € X

It 1s easy to see that B is an algebraic surface if X 1s, and has an
isomorphic field of meromorphic functions: B is birational to X.

The following basic facts are easy consequences of local computa-
tions:

Lemma 1.4 Consider 7 : B — X as above, with exceptional curve

E.
(a) (E-F)=-1.
(b) (E-7*(D)) =0 for any divisor D on X.
(c) 7™ is an isomorphism between B — FE and X — p.

(d) IfC is a curve on X having multiplicity m at p, then the proper
transform C' of C' on B (which is defined to be the closure of
71 (C" — p) in B) satisfies

(C'-E)=m and (C")’ =C?*—-m?.

(e) Kgp = 7*(Kx)+ E, hence K = K% — 1.
(f) 4, py, X, and the plurigenera P, are the same for B as for X.

(9) e(B) = e(X) + 1, hV(B) = AV (X) + 1, by(B) = bo(X) + 1,
p(B) = p(X) + 1.
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(h) Pic(B) = n*(Pic(X))® Z - E.

Reversing this construction is Castelnuovo’s Contraction Criterion:
if on an algebraic surface B one finds a curve £ with £ = P! and
E? = —1, then B is the blowup of an algebraic surface X and F is
the exceptional curve. This contraction of £ to a point p is unique.
Such a curve E on a surface is called a (—1)-curve.

A surface is therefore said to be minimal if it has no (—1)-curves;
it does not arise as the blowup of any other surface. Most of the
detailed work in algebraic surfaces concentrates on minimal ones.

Blowups are so important because any birational map between alge-
braic surfaces factors through blowups in the following sense:

Proposition 1.5 Let f : X --» Y be a birational map between
algebraic surfaces. Then there is an algebraic surface Z and maps
mx : Z — X and vy : Z — Y, which are compositions of blowup
maps, such that the diagram

commautes.

As a corollary, we obtain that ¢, p,, x, and the plurigenera P, are
birational invariants, since they are invariant under blowups.

1.12 Homeomorphism and Diffeomorphism

To close this first lecture I want to briefly mention the great strides
that have been made in the last decade on understanding the topol-
ogy and differential topology of algebraic surfaces. Firstly, when
are two algebraic surfaces homeomorphic? At least in the simply
connected case, we have an answer, given by Freedman (see [F]):



An Overview of Algebraic Surfaces 177

Theorem 1.6 Two simply connected surfaces are homeomorphic if
and only if their cohomology groups H*(Z) are isomorphic, as groups
with bilinear form.

This group, .modulo torsion, is free abelian of rank b,, and the form
is unimodular with 2p, + 1 positive eigenvalues. There are at most
two such forms, depending on whether the form is even or odd, and
this depends on whether the canonical class is even or not. Thus a
complete answer is at hand.

The diffeomorphism question is more subtle, and there are exam-
ples of simply connected surfaces which are homeomorphic but not
diffeomorphic.

There has been a flurry of activity in just this past year on the
diffeomorphism question; it i1s now known that, for minimal surfaces
of general type, the canonical class is a diffeomorphism invariant up
to sign, and that the plurigenera are diffeomorphism invariants, for
example. The reader may consult the recent article [FM] for more
complete information.

1.13 The Mori Point of View

Mori theory is now seen as the best way to understand algebraic
threefolds, and its point of view also lends some insight into the
classification of algebraic surfaces. The Kodaira Dimension « recedes
somewhat in importance, and the canonical class K itself comes into
the foreground. Specifically, Mori’s approach says to consider the
intersection properties of the canonical class K, and in particular we
say that K is nef (meaning numerically eventually free), if (K -C) >
0 for all curves C' on X. Mori’s first main theorem is that if K is
not nef, then either there is a (—1)-curve on X to blow down (which
is the curve meeting K negatively) or K is either rational or ruled.
The latter case 1s the kK = —oo situation. In the former case one
then blows down until K does become nef. Then there are three
possibilities: either K is numerically trivial (which corresponds to
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the k = 0 case) or K is not numerically trivial but K = 0 (which
corresponds to the k = l.case) or K2 > 0 (which corresponds to the
k = 2 case). This all then leads to the same basic finer classification,
but with a slight alteration of attitude. The reader would do well to
consult [CKM] for a gentle introduction to Mori’s ideas.

2 Surfaces with Negative Kodaira Di-
mension

2.1 The Projective Plane

Let P2 be the projective plane, with homogeneous coordinates [z :
y : z]. We have that P? = C2UCU{p}, which is a cell decomposition
with one cell of dimension 0, 2, and 4. Therefore in the cell chain
complex all boundary maps must be zero and

Hence

b1:b3:0, bzzl, e = 3.
Therefore also we must have
q=py, =0, X:hm:l'

The intersection form on H?*(Z) must be simply (1). If we denote by
H the class of a line, then H is a divisor which generates the Picard
group of P2. The intersection formula H? = 1 means that two lines
intersect in one point!

If u=z/z and v = y/z, then (u,v) are local coordinates on the C?
chart of P? where z # 0. The 2-form du A dv is holomorphic on this



An Overview of Algebraic Surfaces 179

chart, but has a triple pole at infinity (that is, on the line z = 0). To
check this explicitly, use coordinates s = z/z and ¢t = y/z at infinity
(s = 0 defines the line at infinity in this chart). Then u = 1/s and
v = t/s, so that du = (—1/s*)ds and dv = (—t/s*)ds + (1/s)dt.
Therefore

du A dv = [(=1/s%)ds] A [(—t/s?)ds + (1/s)dt] = (—1/s°)ds A dt

exhibiting a triple pole at the line H at infinity. Therefore X = —3H
is the canonical class, and K? = 9.

Since K is a negative divisor, so is nK for every n > 1, and hence
all plurigenera P, for the plane are zero. Therefore kK = —oo for P2,

The Riemann-Roch Theorem for P? says that
h(O[dH]) = (dH - (d +3)H)/2 + x =d(d +3)/2 + 1

which represents the number of coeflicients of a form of degree d
in 3 homogeneous variables; the x¥ equals the h° since the higher
cohomology is all zero. The Genus Formula for a curve C of degree
d (and hence linearly equivalent to dH) is

pe(C) = (dH - (d — 3)H)/2 + 1 = (d— 1)(d — 2)/2
which is the classical Plicker formula.

An algebraic surface is said to be rational if it is birational to the
plane.

2.2 Quadric Surfaces

Just as for P?, the canonical class of any projective space is a multiple
of the hyperplane class; indeed, for P* we have K = —(n+1)H. The
adjunction formula then states that if X is a complete intersection
surface in P™ of type (dy,...,d,_2), then Kx = (3;di —n — 1)H.
The first case to apply this is for a smooth quadric surface X of
degree 2 in P3. Then K = —2H, and since this is clearly negative,



180 Miranda

so are all multiples, and we have that P, = 0 for all n. Therefore
again X has kK = —oo0.

Since H? = 2 (the surface has degree 2), we see that K* = 8.

Any two smooth quadrics are isomorphic (there is only one nonde-
generate quadratic form up to isomorphism over C) and we may take
ry = zw (in the homogeneous coordinates [z : y : z : w| of 3-space)
as a defining equation for X. We see easily that X = P! x P! by the
map sending ([a : b],[c:d])to [z =ac:y=>bd:z=ad: w = b
Therefore the Kinneth formulas give that
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Hence
b1:b3:0 b2:2, e =4.
Again ¢ = p, = 0 and x = 1; this time A = 2. In the P! x
P! representatlon, we have the obvious horizontal curve G and the
vertical curve F': these generate H?*(Z) and the Picard group, with
= G? = 0 and (F - G) = 1. The hyperplane class (as a quadric
surface) is H = F + G, hence K = —2F — 2G.

Riemann-Roch now gives that
X(rF+sG) = ((rF+sG) (r+2)F+(s+2)G)2+x = (r+1)(s+1)

which represents the number of monomials of a bihomogenous poly-
nomial of bidegree (r,s). The Genus Formula for a curve C linearly
equivalent to rF' + sG is

pa(rF 4+ sG) =(r—1)(s — 1).

Projection of the quadric X from a point p on X gives a birational
map from X to PZ%; this map blows down the two lines through p
and blows up p. In particular, X is a rational surface.
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2.3 Ruled Surfaces

A ruled surface is a surface birational to X = C x P! for some curve
C of genus g. This decomposition implies that we can construct
a meromorphic 2-form on X by taking a 1-form on C' and wedging
with a 1-form on P!. Therefore a canonical divisor on X is gotten by
taking a canonical divisor on C' (which therefore has degree 29 — 2)
and pulling back via the first projection, plus taking a canonical
divisor on P! (which is —2 points) and pulling back via the second
projection. If we denote by F' the P! fiber and by C the C fiber, then
numerically (that is, in H*(Z)) we have that K = (2g—2)F—2C. No
multiple of this divisor can be linearly equivalent to a positive divisor;
1ts intersection with the curve F'is strictly negative. Therefore again
k = —oo for this surface, and hence for any ruled surface.

The Kunneth decomposition gives that

H(Z)=1Z
HY(Z) = 2g
H*(Z) = 2°
H3(Z) = 2g

HY(Z)=Z.

Hence
by = b3 =2¢g, by =2, e=4—4g.

Now ¢ =g,p, =0, x =1 —g, and h"! = 2; the Neron-Severi group
is generated by F and C, with F? = C? =0 and (F-C) =1. Also
K? = 8 — 8g. Note that now if ¢ > 0 there is a continuous part to
the Picard group, coming from the Jacobian of C. The 1-forms on
X are all pulled back from the g linearly independent 1-forms on C,
which 1s why ¢ = g¢.

2.4 Elementary Transformations

Suppose that X is ruled surface, birational to C x P!, with ¢(C) > 0.
Then as noted in the previous lecture X may be obtained by blowing
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up C x P! a finite number of times, then blowing down some (—1)-
curves. Now every (—1)-curve is a rational curve, and therefore
cannot dominate C if g > 0. Therefore these (—1)-curves must all
map to points under the first projection to C’; in other words, they
must lie in fibers of this first projection 7 : C x P! — (C. We
conclude that this map 7 to C is also defined on X, and so X comes
also with a projection to C, which 1s hence natural.

The prototype for this phenomenon is to choose any point of X,
contained in a smooth fiber F'; and blow that point up, obtaining
the exceptional curve £. Then the proper transform of F' on the
blowup also is a (—1)-curve, and can therefore be blown down. This
produces a new surface, and this operation is called an elementary
transformation of the ruled surface. We note that elementary trans-
formations preserve essentially all discrete invariants.

Again assuming g > 0, any (—1)-curve on X must live in a fiber of
the map 7 to C. Therefore if every fiber is a smooth curve (the so-
called geometrically ruled case) then since fibers have self-intersection
0 (not —1) there can be no (—1)-curves on X, and X is a minimal
surface. The converse 1s also true: if X is minimal, then every fiber
of 7 1s smooth.

The basic theorem relating minimal ruled surfaces with ¢ > 0 is the
following.

Theorem 2.7 Let X be a minimal ruled surface over a curve C of
genus ¢ > 0. Then X is obtained from the product surface C x P!
by a finite number of elementary transformations.

Since elementary transformations preserve all discrete invariants, we
therefore know these invariants for all minimal ruled surfaces over
positive genus curves.

We remark that there is not a unique minimal surface birational to
any ruled surface, but infinitely many: just perform an elementary
transformation on one to get another.



An Overview of Algebraic Surfaces 183

2.5 Hirzebruch Surfaces

If X is a ruled surface with ¢ = 0, then X is a rational surface. In
this case the ruling on X may not be unique, especially if X is not
minimal. However the concept of the elementary transformation still
exists; let us apply it iteratively to P! x P! and see what we get.

Define Fy = P! x P'. Choose a horizontal section Gg (here G2 = 0)
and perform an elementary transformation, blowing up a point on
Go and blowing down the proper transform of the fiber through p.
The formulas give that the proper transform of Gy is a curve G; with
self-intersection —1; the ruling as noted above is still preserved. Call
this surface Fy. The section G, and the fiber F of the ruling generate
the Picard group of F).

Recursively, we will have a surface F,,, ruled over P!, with a section
G, of self-intersection —n which, together with the fiber F', generates
the Picard group. Perform an elementary transformation, blowing
up a point on G, and blowing down the fiber; the result is a ruled
surface F,,,. The proper transform of G, is a curve G,4, of self-
intersection —n — 1, which is a section of the ruling; it and the fiber
generate the Picard group.

The classification of minimal ruled surfaces with ¢ = 0 is now at
hand:

Theorem 2.8 Let X be a minimal ruled surface with ¢ = 0. Then
X is either P? or F,, for some n >0, n # 1. The surface F, is the
blowup of P? at one point.

These surfaces F,, are commonly called the Hirzebruch ruled surfaces.

2.6 The Classification Theorem

The fundamental classification theorem can now be stated.
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Theorem 2.9 FEvery algebraic surface with x = —oo is ruled.

Every rational surface (birational to P?) is automatically ruled, since
P2 is birational itself to P! x P!, Sometimes this is explicitly stated:
every surface with kK = —oo is rational or ruled.

There 1s a wonderful refinement of this in the case of rational sur-
faces, namely the Castelnuovo criterion:

Theorem 2.10 An algebraic surface is rational if and only if ¢ =
Pz = 0

The Castelnuovo criterion says that if there are no holomorphic 1-
forms on X (¢ = 0) and no holomorphic 2-fold 2-forms (forms locally
expressible as f(z,w)(dz A dw)®?) then the surface is rational. Of
course if P, = 0 then certainly the geometric genus P, = p, = 0
(which indicates that there are no holomorphic 2-forms). It was
an open question in the latter part of the last century whether the
criterion could be weakened to ¢ = p, = 0; this was shown to be
false by Enriques, and we will see an example in the next lecture.

One also has the following criterion of Enriques:

Theorem 2.11 An algebraic surface has k = —oo if and only if
P4 - P(; - 0

2.7 Scrolls and Rational Normal Scrolls

A ruled surface embedded in projective space such that the fibers
of the ruling are straight lines is called a scroll. No doubt the most
important family of scrolls are the rational normal scrolls, which we
now describe.

Recall the construction of a rational normal curve, which is P! em-

bedded into P¢ by all monomials of degree d: [z : y] — [z?¢: 2%y :
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- zy®! ¢ y4]. Call this map vg; it is simply the Veronese map of

degree d for P!. Its image is the rational normal curve, of degree d in
P¢. Note that this is the minimal degree for a nondegenerate curve
in P%; if one cuts a curve of degree e with a general hyperplane, one
will obtain e points spanning P¢~!, so that e > d.

To build a rational normal scroll in P***+! choose two complemen-
tary linear spaces of dimension a and b, and in each put a rational
normal curve, the image of the line under v, and v, respectively.
Form a surface S,; by taking the union of all of the lines joining
va(p) to vy(p) as p varies in PL.

Proposition 2.12 Assume that 1 < a < b. The surface S, is
nondegenerate, and is isomorphic to ¥,, where n = b — a. The
rational normal curve of degree a is the curve Gy_,. The hyperplane

divisor on S, is G, + bF'; the degree of Sqp is a + b.

The case of S} is that of a smooth quadric in P>.

The limiting case where we take a = 0 i1s simply a cone over a rational
normal curve of degree b.

2.8 Surfaces of Minimal Degree

Suppose that C' C P™ is a nondegenerate curve. As we noted above,
cutting C' with a general hyperplane H we will find d points in H
which span H. Therefore d > n: any nondegenerate curve in P
has degree at least n. The curves of minimal degree are exactly the
rational normal curves.

We can iterate this argument for surfaces, and we find that the
minimal degree for a nondegenerate surface in P 1s n — 1: the
hyperplane section will be a nondegenerate curve in P*~!, and will
therefore have degree at least n — 1. This is the case for the rational
normal scrolls S, introduced above: they have degree a + b and lie
in pPetét!
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Another example of a surface of minimal degree is the double Veronese
defined to be the image of P? in P® under the map sending [z : y : 2]
to [z?:y%: 2% : zy: zz : yz]. This has degree 4 (two conics intersect

in four points).

9

These turn out to be all the examples!

Proposition 2.13 Let X be a surface of degree n — 1 in P™. Then
X 1is either a rational normal scroll S, or the Veronese surface in

PS

2.9 The Cubic Surface

Let X be a smooth cubic surface in P>. By using the exact sequence
0 — Opa[-3H] —» Ops - Ox — 0

we see that ¢ = p, = 0. By adjunction we have that Kx = —H,
which is negative, so all plurigenera are zero and X is a rational
surface. K2 = H? = 3, so X is either a 6-fold blowup of the plane
or a 5-fold blowup of an F,,. In fact the former is true:

Proposition 2.14 Let X be a smooth cubic surface in P3. Then X
is a 6-fold blowup of P?, and the embedding of X into P> is obtained
by the linear system of cubic curves through the 6 blown-up points.
There are 27 lines on X, coming from the 6 exceptional curves, the
15 planar lines through 2 of the blown-up points, and the 6 planar
conics through 5 of the blown-up points.

There are whole books written about the 27 lines on the cubic sur-
face: each meets 10 others in a beautiful configuration.
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2.10 Del Pezzo Surfaces

The cubic surface does not have minimal degree, but has degree one
more than minimal. This is true of all the surfaces obtained by
choosing 6 or fewer points in the plane, and embedding the plane
into P™ by the linear systems of cubic curves through the points. If
there are r points, the resulting surface is a surface of degree 9 — r
in P27, called a Del Pezzo surface.

Classifying surfaces of low degree has been fun for centuries.

Theorem 2.15 Let X be a smooth surface of degree k in P*. Then
X is either a Del Pezzo surface or is the projection into P* of the
Veronese surface.

If we blow up » = 0 points, then the Del Pezzo surface of degree 9 in
P? is simply the triple Veronese image of the plane. The r = 1 case
is the Hirzebruch surface F'; embedded in P® via the linear system
2G, + 3F. The r = 6 case 1s, as we noted above, the cubic surface
in P23, The r = 5 case is a complete intersection in P* of type (2,2),
that is, the intersection of two quadrics. The cases r < 4 are not
complete intersection surfaces.

2.11 Curves on Rational Surfaces

Suppose we choose points py,...,p, on P2 and consider the linear
system of all curves of degree d having a point of multiplicity at least
m; at p; for each 7. The dimension of the linear system of curves
of degree d is d(d + 3)/2; imposing a point of multiplicity m gives
m(m 4 1)/2 conditions. Therefore the expected dimension of the
linear system 1is

when this quantity is at least —1.
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Of course when the points are in special position the conditions
imposed by the multiplicities may not be independent; the first ex-
ample is when all the points lie on a line, forcing the line to be a
component of every curve in the system if the multiplicities are high
enough. However one can hope that the expected dimension is the
correct dimension if one chooses the points generically; but this is
an open problem.

Finally let me mention a related question; when does such a linear
system embed the blowup of the plane at the n points into P*? As an
exercise, check the case of quartics double at one point, and passing
through 7 others; or quartics through 10 points. Can you find all
such linear systems which work for generic points?

Smooth surfaces in P* are difficult to construct in general, and have
only been classified for very low degrees (up to about 10). It is
known that the degree of a smooth rational surface in P* is bounded
(Ellingsrud, Peskine), but the current bound (about 250, proved by
Braun and Floystad) is much higher than the highest degrees known
to exist (15, after work by Alexander, Aure, Okonek, Ranestad, Ser-
rano, Decker, Ein, Schreyer, Popescu, ...).

3 Surfaces with Kodaira Dimension Zero

3.1 Abelian Surfaces

Let X be a complex torus, obtained by choosing a rank four Z-lattice
L inside C? and forming the quotient surface X = C%/L. If z and w
are coordinates on CZ?, they descend to give local coordinates on X,
which are well-defined up to the translations in L. Therefore the 1-
forms dz and dw are well-defined, as is the 2-form dz A dw, globally.
These generate the spaces of holomorphic 1- and 2-forms, and we
see that therefore ¢ = 2 and p, = 1; x = 0. The Euler number
e = 0, since topologically X is a product of four circles; indeed, the
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by the Kiunneth formula, and so the Hodge diamond is

1
2 2
1 4 1
2 2
1

We see here our first example of a delicate Neron-Severi group anal-
ysis; the lattice H*(Z) may intersect the subspace H''!' ¢ H?*(C) in
any rank, from 0 to 4. If the rank is zero, then there are no ample
divisors on X, and X is not an algebraic surface. Here’s a challenge
for your understanding: construct lattices L for which the Picard
number p(X) is a given integer between 0 and 4 (I believe all are
possible).

In any case, the 2-form dz A dw has no zeroes or poles, so that the
canonical divisor K is trivial. Therefore P, = 1 for every n, and
k = 0. A complex torus X which is algebraic is called an abelian
surface.

3.2 K3 Surfaces

Let X be a quartic surface in P3. By adjunction we have K = 0,
and by analyzing the ideal sheaf sequence one easily sees that ¢ = 0
and p, = 1, so that y = 2. Since K = 0, surely K? = 0, so that
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e = 24 and the Hodge diamond is

1
0 0
1 20 1
0 0
1

Again there is a subtle interplay between H'!' and H?*(Z), and the
Neron-Severi group can have any rank between 1 and 20. The quartic
is simply connected.

If X is a complete intersection of type (2,3) in P4, or of type (2,2, 2)
in P®, similar analyses lead to the same invariants as above.

Definition 3.16 A K3 surface is a (minimal) compact complez sur-
face X with ¢ =0 and K = 0.

With these assumptions, p, = 1, and X is simply connected, with
the above Hodge numbers. A K3 surface is an algebraic surface
only if its Picard number is at least one; there are non-algebraic K3
surfaces (with Picard number 0). There are even non-algebraic K3
surfaces with Picard number 1, but all of whose divisor classes have
D? = 0. If a K3 surface has a divisor D with D? > 0, then it is

algebraic.

3.3 Kummer Surfaces

Another easy family of examples of K3 surfaces are obtained as
quotients. If A is a complex torus of dimension two, then consider
the quotient X = A/{£I}, called a Kummer surface. (There are
sixteen ordinary double points on X, coming from the 16 points
fixed under {£1}, but these singularities resolve in a nice way.) Note
that no 1-form on A is invariant under {£/}, but the 2-form is, so
certainly ¢ = 0 and p, = 1 for X; moreover the 2-form (which has
no zeroes or poles on A) descends to one with no zeroes or poles on

X,s0 K =0 too. Thus X is a K3 surface.
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One finds Kummer surfaces in all of the families of K3 surfaces of
genus ¢g. For example, in the ¢ = 2 case of double covers of the plane
branched along a sextic curve, one obtains a Kummer surface if one
takes the sextic curve to be six lines all tangent to a given conic. The
complex torus which this surface is a quotient of is the Jacobian of
the hyperelliptic curve of genus two obtained by taking the double
cover of the conic branched at the six points of tangency.

3.4 K3 Surfaces in Projective Space

Counting parameters, one sees that quartics depend on 19 moduli
(there are 35 coefficients, with the 16-dimensional group of 4 x 4
matrices acting). Similarly the complete intersections (of type (2,3)
and of type (2,2,2)) mentioned above all depend on 19 moduli. How-
ever the space of first-order deformations H'(©) is 20-dimensional
for any K3 surface; one sees the non-algebraic K3 surfaces lurking
around every corner. In fact, the moduli space of all K3 surfaces is
20-dimensional, with a countable number of 19-dimensional families
representing algebraic K3 surfaces.

What are these 19-dimensional families? If a K3 surface X contains
a curve C of genus g > 3, then C tends to be very ample on X, and
by Riemann-Roch the linear system |C| will embed X into projective
space as a smooth surface of degree 2g —2 in P9. The condition that
X contain such a curve is simply a condition on how the lattice
H?*(Z) intersects H'!  and so in the 20-dimensional moduli space
there are these 19-dimensional families, one for each g, of projective
algebraic surfaces of degree 29— 2 in P9, Such a K3 surface is called
a “K3 surface of genus ¢”.

There is even a degenerate case of genus 2: a K3 surface of degree 2
in P? is a double cover of the plane, branched along a smooth sextic
curve. Note that sextics depend on 28 coefficients, and subtracting
the 9 dimensions for the group of 3 x 3 matrices acting on the plane,
we see the 19 moduli again for these surfaces.
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3.5 Curves on K3 Surfaces

Given a K3 surface of genus ¢, hence of degree 29 — 2 in P9, its
general hyperplane section C' 1s a smooth curve of degree 2g — 2 in
P971: indeed, by adjunction H|¢ is the canonical class on C, so C is
a canonical curve (embedded by its canonical system).

The number of moduli of such curves is clearly 19 + ¢; 19 for the
K3 surface and g for the choice of hyperplane. This is less than the
number 3g — 3 of moduli for canonical curves in general, so when
g > 12 there 1s no chance that every canonical curve could be the
hyperplane section of a K3 surface.

In fact there is an obstruction, whose analysis is due to J. Wahl
(see [W]). His idea is to assume that C lies on a K3 surface, and
to then degenerate the K3 surface X to the cone Y over C. This
would be a non-trivial deformation of the cone; however the relevant
deformation space of the cone is the cokernel of the Gaussian map

2
6: \ H°(C,Kc) — H°(C,3Kc)

defined by ¢(fdz A gdz) = (f'g— fg')(dz)*. If the Gaussian map for
C is surjective, then the cokernel is trivial, the deformation space is
trivial, and the deformation of the cone Y to X cannot exist; so
could not lie on any such X.

It is known that ¢ is surjective for the general curve of genus ¢ =
11 and g > 13, using a degeneration argument; see [CHM]. It is
conjectured that C lies on a K3 surface if and only if the Gaussian
map ¢ for C is not surjective.

3.6 Enriques Surfaces

In the latter part of the last century it had been conjectured that
a surface with ¢ = p, = 0 must be rational; no counterexamples
were known. Castelnuovo’s rationality criterion (that ¢ = P, = 0)
is stronger, since P, = 0 implies P, = p, = 0. It was Enriques who
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finally settled this question and constructed non-rational surfaces
with ¢ = p, = 0, which are named after him.

One of the simplest constructions is given in [GH]. Let S be the
quartic K3 surface in P3 defined by z*+ y* = 2* + w*. Let o be the
automorphism sending [z : y : z : w] to [z : 1y : —z : —iw], which
has order four, and acts on S. The quotient of S by the cyclic group
generated by o is an algebraic surface X with invariants p, = ¢ =0
and 2K =0, but K # 0; K is torsion in H*(Z). The Hodge diamond
for X is

1
0 0
0 10 0
0 0
1

and so h''! = b, = 10, and the Neron-Severi group has rank p = 10.

Definition 3.17 An algebraic surface with ¢ = p, =0 and 2K =0
is an Enriques surface.

In fact the torsion in the cohomology is reflected by torsion in the
fundamental group: m;(X) = Z/2. The universal (double) cover of
X is a K3 surface; in our example above, the universal cover is the
quotient of the original quartic S by the involution 2, which is a K3
surface again; the further quotient by o gives the Enriques surface.

Since 2K = 0 but K # 0, we have that the plurigenera P, are either
0 or 1, depending on the parity of n. Hence k = 0 for an Enriques
surface.

Projective models of Enriques surfaces form a fascinating subject;
the reader may wish to consult [CD] for lots of information. Probably
the most famous is the realization of an Enriques surface as a sextic
surface in P® which has 6 double lines, arranged as in the edges of a
tetrahedron!

The generic Enriques surface can be constructed as follows. Take
six quadratic forms @, @2, @3, R1 ,R2, R3 each in three variables.
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Form the complete intersection surface Y of type (2,2,2) in P® as
the zeroes of the three polynomials

Qi(z,y,2) + Ri(u,v,w) (1=1,2,3)

where [z : y : z : u : v : w] are the homogeneous coordinates in P®.
For general choices of the forms, Y will be a K3 surface, and the
involution o which changes the sign of u, v, and w (leaving z. y,
and z alone) acts on Y without fixed points. The quotient Y/o is
an Enriques surface.

Every Enriques surface contains elliptic fibrations, which we will
discuss in the next lecture; this is an alternative avenue to pursue in
constructing them.

3.7 Hyperelliptic/Bielliptic Surfaces

Enriques surfaces come naturally as fixed-point-free quotients of K3
surfaces, and are the only such surfaces. One might ask whether
similar quotients can be taken of abelian surfaces, to obtain other
surfaces with a torsion canonical class. This is the case; let us briefly
go over the construction.

It turns out that the abelian surface, in order to support the right
kind of automorphism, must be a product of elliptic curves. So take
S = FE x F, with E and F elliptic. £ may always be taken to be
arbitrary, £ = C/(Z + Zm). Write F = C/(Z + Z1;). We have the

following seven group actions:
1. 75 arbitrary, ¢(e, f) = (e +1/2,—f); G =< ¢ >= Z/2.
2. 79 = w wherew® =1, é(e, f) = (e+1/3,wf); G =< ¢ >=Z/3.

3. 73 =1, wherei® = —1, é(e, f) = (e+1/4,:f); G =< ¢ >=Z /4.

4. 79 = w, where w® =1, ¢(e, f) = (e +1/6,—w?f); G =< ¢ >=
Z/6.
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5. 3 arbitrary, ¢(e, f) = (e + 1/2,—f), b(e, f) = (e + /2, f +
1/2); G =< ¢, > Z/2 x Z/2.

6. 2 =w, ¢le, f) =(e+1/3,wf), v(e,f)=(e+7n/3, f+(1—
w?)/2); G =< ¢, >=Z/3 x Z/3.

7. o =1, ¢(e, f) = (e+1/4,1f), ¥(e, f) = (e+m/2, f+(141)/2);
G=< ¢, >=Z/4x L2

This classification goes back to Bagnera and DeFranchis from 1907.

In each of these cases the quotient X = (F x F')/G is an algebraic
surface with p, = 0 and ¢ = 1. In every case the canonical class is
torsion, of order 2, 3, 4, 6, 2, 3, and 4 respectively. Therefore the
plurigenera are all either 0 or 1, and are 1 for all multiples of 12
in every case, so kK = 0. Since they are covered by abelian surfaces
without branching, the Euler numbers are all 0. Therefore the Hodge
diamond must be

1
1 1
0 2 0
1 1
1

and so b, = k! = 2. -The Neron-Severi group has rank two, with
elements easily described by descending the elliptic curves.

As is the case with the Enriques surfaces, all hyperelliptic surfaces
have a pencil of elliptic curves (with the above description this pencil
is inherited from E).

These surfaces are beginning to be called “bielliptic” as in Beauville’s

book [Be].

3.8 The Classification Theorem

Theorem 3.18 Suppose that X is an algebraic surface with k = 0.
Then X is either abelian, K3, Enriques, or hyperelliptic.
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So we have seen them all!

4 Surfaces with Kodaira Dimension One

4.1 Elliptic Surfaces

Suppose that the Kodaira dimension « of a surface X is one, and con-
sider an n-canonical map for X; this map cannot be onto a surface,
else the growth rate of the plurigenera would be two, by applying
Riemann-Roch to the multiples of the hyperplane class of the image
(which pull back to multiples of nk'). Indeed, the map for large n
will be onto a curve only, and the fibers of the map will be curves on
X which do not meet the canonical class. If £ is such a fiber, then
F? = 0 (since it is the fiber of a map) and (F - K) = 0 (since it is
the fiber of the canonical map). Hence by the Genus Formula we see
that F' has genus one. We are thereby led to consider the following
situation.

Definition 4.19 Let X be an algebraic surface. An elliptic fibration
on X is a holomorphic map f : X — C where C s a curve, such
that the general fiber of f is a smooth curve of genus one. An elliptic
surface is a surface with a given elliptic fibration.

The main classification result for surfaces with k = 1 is:

Theorem 4.20 Every algebraic surface with k =1 s elliptic.

The converse is not true; there are elliptic surfaces which are rational,
ruled, abelian, and K 3; and every Enriques and hyperelliptic surface
is elliptic. However every elliptic surface has « < 1.
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4.2 Jacobian Surfaces and Weierstrass Equations

If F'is a curve of genus one, then F' is isomorphic to its Jacobian,
once a point (which serves as the origin of the group law on F') has
been chosen. A curve of genus one together with a chosen point is
called an elliptic curve, or a Jacobian elliptic curve.

Every elliptic curve can be written in the Weierstrass form
y2 =23+ Az + B

where A and B are numbers such that 44% + 27B? # 0 (this is a

smoothness condition). The chosen point is the point at infinity.

Taking our cue from this, we can try to form a family of elliptic
curves {F;} by letting A and B vary with ¢, obtaining

y’ =z° + A(t)z + B(t).

In this way one obtains an elliptic surface, with the property that
the chosen point also varies with ¢, forming a section Sy (called the
zero-section of the fibration). If ¢ varies on an algebraic curve, and A
and B are rational functions, then this describes an algebraic elliptic
surface.

There is no problem when A and/or B has a pole: one can “clear
denominators” at will, since the same family of curves is obtained
using the equation

y2:x3+Af4x+Bf6

where f is any holomorphic function. (Just change coordinates,
replacing y by yf° and z by zf?, then divide through by f%.) So
locally the family is always definable with regular coefficients.

One sees readily now that there is actually a line bundle L (the
conormal bundle of the zero-section Sp) such that A and B are global
sections of L* and L® respectively; the discriminant D = 443+ 27B?
is a section of L' and vanishes at a point p of the curve exactly
when the fiber over p is not smooth.
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An elliptic surface defined in this way with a Weierstrass equation
1s called a Jacobian elliptic surface; moreover an elliptic surface is a
Jacobian surface if and only if the elliptic fibration has a section.

4.3 Kodaira’s Classification of Singular Fibers

In the 1950’s, in his fundamental papers [K] on surfaces, Kodaira
realized the importance of elliptic surfaces in the whole picture and
proved the first classification theorems. One of the most fascinating
and useful results was his classification of the possible singular fibers
of an elliptic fibration; to this day it represents the only complete
classification of degenerations which one can remember (degenera-
tions of curves of genus two are also classified, but the list is quite

long).

Kodaira’s list of singular fibers:

Notation Description

Iy smooth elliptic curve

I rational curve with one node

I, two lines meeting at two points

I,,n >3 n lines meeting in a cycle

11 rational curve with one cusp

111 two lines simply tangent at one point

1V three concurrent lines

I3 five lines, one meeting the other four (as in Dy)
I n + 5 lines, meeting as in f)n+4

A% 7 lines, meeting as in Fg

I1r* 8 lines, meeting as in E,

17 9 lines, meeting as in Eg

mAn like I,,, but all components with multiplicity m

By the word “line” in the above table, I mean a smooth rational
curve. These diagrams (the extended Dynkin diagrams) mentioned
above are



An Overview of Algebraic Surfaces 199

D4:
1
|
I — 2 — 1
|
1
Dn+4:
1 — 2 — -2 -1
| |
1 1
Eﬁl
1 - 2 -3 - 2 — 1
|
2
|
1
E72
1 - 2 -3 -4 -3 - 2 -1
|
2
Eg:

The numbers each stand for a single P! component, of self-intersection
—2; the value of the number is the multiplicity of that component
in the fiber. So for example in the I} case of the D, diagram, the
central component Cy has multiplicity two, while the other compo-
nents C1, ..., C4 have multiplicity one, and the fiber (as a divisor on

the surface) is 2Cy + Cy + C3 + C3 + Cy.

A smooth elliptic curve may always be written in the plane as a
smooth cubic curve, and many of these degenerate fibers can also
be seen there. For example, I 1s a nodal cubic curve, Il i1s a cusp-
idal cubic curve, I; is a conic plus non-tangent line, I1[] is a conic
plus a tangent line, I3 are three lines in a triangle, and IV is three
concurrent lines.
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4.4 The J-function

Two elliptic curves in Weierstrass form y%2 = z° + Az + B are iso-
morphic if and only if their J-invariants

4 A3

J =
4A3 + 27B?

are equal. For an elliptic surface f : X — C, the J-function becomes
a function on the base curve C'. When there are singular fibers J may
have a pole, and so one usually considers it as a map J : C — P
However J may not have a pole, even at singular fibers; for surfaces
in Weierstrass form the local behaviour of J is determined by the
order of A, B, and D = 4A3 4 27B%. We have the following table
(where a = order(A), b = order(B), and d = order(D)):

Name a b d J mult(J)
Iy 0 0 0 #0,1,00 -
Iy a>1 0 0 0 3a
Iy 0 b>1 0 1 2b

I.,n>1 0 0 n 00 n
I3 2 3 6 #0,1,00 -
Iy a>3 3 6 0 3a — 6
Iy 2 b>4 6 1 2b— 6

I.,n>1 2 3 n+6 00 n
11 a>1 1 2 0 3a — 2
111 1 b>2 3 1 2b— 3
1V a> 2 2 4 0 3a — 4
A% a>3 4 8 0 Ja — 8
11r- 3 b>5 9 1 2b—9
11 a>4 5 10 0 3a — 10

Note that in the above table, we do not consider @ > 4 and b >
6 together; if this happens, we can divide (locally) by t* and t°

respectively and get an isomorphic family, and continue doing this
until either ¢ < 3 or b < 5.

Note that if one has a local parameter t, and one replaces A by
At? and B by Bt3, the J-function is left invariant. However this
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operation (called a “quadratic twist”) does change the nature of
the singular fiber: for example, it switches an I, fiber to an I}
fiber, and vice-versa, and a glance at the table shows that it also
switches the types II and IV*, III and III*, and IV and II".
Therefore knowledge of the J-function does not determine the elliptic
surface locally: not even the type of the singular fiber is determined
completely.

However this quadratic twist is the only way that two Jacobian el-
liptic surfaces can have the same J-function, at least locally: the
precise result is that a Jacobian elliptic fibration is determined by
the J-function up to quadratic twists.

For more on the basic theory of elliptic surfaces, the reader may
consult [Mi], which is an elementary introduction concentrating on
the Jacobian elliptic surfaces.

4.5 Multiple Fibers and Logarithmic Transforms

The existence of the multiple fibers 1s somewhat counter-intuitive:
how can an elliptic curve degenerate to a double one? There is no real
contradiction, and actually examples are not too hard to come by.
Take a plane sextic curve S with 9 double points; this has geometric
genus 1, and can be constructed by embedding any elliptic curve in
P°® via a linear system of degree 6 and generically projecting to a
plane. Through these nine points there also lies a cubic curve C.
Consider the pencil generated by 2C (which is a sextic) and S. This
pencil has nine base points (the nine double points) since these are
the only points at which C and S meet. Blowing these nine points up
one obtains an elliptic surface over P!, and the fiber corresponding
to 2C is a fiber of multiplicity two (of type oo if C' is smooth).

Indeed, this pattern continues: one may construct fibers of multi-
plicity m by taking a S to be a curve of degree 3m with 9 points of
multiplicity m, and the cubic C' through the nine points, and looking
at the pencil generated by § and mC.
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There can only be a finite set of singular fibers, and in particular only
finitely many multiple fibers. Therefore in a punctured neighborhood
of a multiple fiber (that is, take a neighborhood and delete the fiber
itself), the surface looks like a surface without any multiple fiber,
with a well-defined J-function.

Now take an elliptic fibration f : X — (', and a point 0 € C,
and a small neighborhood A of 0 in . Consider the pre-image
f~1(A —{0}); for small A, f restricts to this pre-image and gives an
elliptic fibration with no singular fibers.

The punctured disc is unfortunately not a small neighborhood of
any point, so the J-function does not quite determine the elliptic
fibration over A — {0}. To be brief, there is also the monodromy
of the two real generators of H; going around 0. The theorem for
punctured discs is that the elliptic fibration is determined by the
J-function and the monodromy.

Therefore one can do “surgery” at will: take out this neighborhood
and glue in another, with the same J-function and monodromy on
the punctured disc of course, but with a different singular fiber.

Now comes the surprise: a multiple fiber has the same J-function
and monodromy as a multiplicity one fiber! Therefore this surgery
is possible, and we can replace any ,,I, (where J has a pole of
order n) with any other I, (where J also has a pole of order n).
This operation is called a “logarithmic transform”, and can radically
change the nature of the elliptic surface.

4.6 Numerical Invariants

Let f : X — C be a minimal elliptic surface, with no (—1)-curves
lying in the fibers of f. The canonical class K does not meet the
general fiber, and is therefore supported at fibers. In fact, there is a
canonical bundle formula

K= f"(Kc+ D)+ Z(m,- —1)F;
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where the F; are the multiple fibers (#; having multiplicity m;) and
D is some non-negative divisor on C. (If f is a Jacobian fibration
then D is the conormal bundle of the zero-section of f.) This formula
implies in particular that K2 = 0 for an elliptic surface.

All one-forms are pulled back from C, unless X is the product surface
C x E for some elliptic curve E. Therefore ¢ = g(C) (unless X is a
product, in which case ¢ = ¢(C) + 1). The value of p, depends on
the multiplicities and the divisor D of course.

Suppose for example that we start with the product surface X =
P! x E. This is ruled, and has Kodaira dimension kK = —oo. We
have K = —2F, numerically, where F' is a fiber of the elliptic struc-
ture, namely the projection to P!. Now start making logarithmic
transforms; this will begin to add terms of the form (m — 1)F;, and
for enough terms, we can switch K to a positive divisor eventually.
In particular, we can change the Kodaira dimension!

Suppose that we take the previous example of P! x £ and only
perform a single logarithmic transform. A relatively straightforward
computation of the homology of this space shows that it has b; = 1;
thus it is not even an algebraic surface! (For an algebraic surface
bi = 2q and is always even.)

As an example of a rational elliptic surface, take two cubic curves
in the plane and blow up the nine base points of the pencil they
generate; this blowup maps to the parameter line P! of the pencil,
with general fiber a general cubic curve in the pencil, exhibiting its
elliptic structure.

Of course, if F is an elliptic curve, then £ x P! is both ruled (over
E) and elliptic (over P!).

Any product F x E’ with both E and F’ elliptic is an elliptic abelian
surface.

A quartic surface in P® containing a line is a K3 surface which is
elliptic; the pencil of hyperplanes through the line cuts the surface
in the line plus a residual cubic curve, which exhibits the elliptic
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fibration.

If one takes a rational elliptic surface and performs two logarithmic
transformations, creating two double fibers, one gets an Enriques
surface. Moreover every Enriques surface can be obtained in this
way; every Enriques surface is elliptic, with infinitely many elliptic
fibrations.

The hyperelliptic surfaces are obviously elliptic by their definition,
and in fact carry two elliptic structures.

To finally see an example of an elliptic surface with « = 1, consider
the Weierstrass equation

y? =2 + As () + Ben(t),

where A and B are polynomials of degree 4n and 6n respectively.
This is the general Weierstrass form for a Jacobian elliptic surface
over P!. For n = 0 we have the product surface £ x P'. For n =1
the surface is a rational elliptic surface, and can be described by a
pencil of cubic curves as mentioned above. For n = 2 the surface is
a K3 surface. For n > 3 the surface has k = 1; the canonical class

K =(n—-2)F.

4.7 Classification Questions

The classification problem for elliptic surfaces is considered to be
“solved”. Let me explain the sense in which this is true.

The first step is to classify all Jacobian elliptic surfaces. As noted
above, these are all described by a line bundle L on the base curve C,
and two sections A of L* and B of L?; then the Weierstrass equation

y’=z*+ Az + B

defines the surface. So up to understanding curves, line bundles, and
sections of powers of the bundle, we consider this to be manageable.

The second step is to realize that, using logarithmic transformations,
one can add or subtract multiple fibers on a given elliptic surface at



An Overview of Algebraic Surfaces 205

will. Therefore one needs only to classify the elliptic surfaces without
any multiple fibers; all others are obtained from these by performing
logarithmic transformations.

Finally there is the problem of classifying elliptic surfaces with no
multiple fibers, but without any section (so that it is not a Jacobian
surface). A glance at the list of possible singular fibers shows that
for any non-multiple fiber, there is at least one component of multi-
plicity one, and hence a local section. So every such surface is locally
isomorphic to a Jacobian surface, and the classification problem be-
comes a cohomological one, as does every classification of objects
locally like a given one. For more details, the reader may consult
the Shafarevich seminar notes [S2].

5 Surfaces of General Type

5.1 Positivity of K2, e, x

We have now introduced all of the surfaces of special type, and finally
we turn to the surfaces of general type, that is, surfaces with Kodaira,
dimension & = 2. By Riemann-Roch, one has a formula for the
higher plurigenera

P, =dim H°(nK) = (nK)(nK — K)/2+x =x +n(n —1)K?/2

for n > 2, using Kodaira vanishing for H!(nK) (this is assuming the
surface is minimal). Therefore since for kK = 2 the plurigenera grow
quadratically, we must have

K*>0

for a minimal surface of general type. In the Mori minimal model
point of view this property, if K is nef, becomes the definition of
general type.

Slightly more technical is the positivity of the Euler number

e > 0.
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Therefore by Noether’s inequality 12y = K% + e we have that
x=1—-q¢+p; >0

or, in other words, p, > ¢.

5.2 Noether’s Inequality

About 100 year ago Max Noether proved the inequality
pe <2+ K?/2

for a minimal surface of general type. The basic idea is as follows;
assume that a general member C € | K| is irreducible, and recall that
by adjunction we have

(A’ + C)Ic = K¢.
On the one hand we know that
o (Kc)=g(C)=(C*+CK)/2+1=K*+1;

but a general fact says that in this situation we have A°((K +C)|c) >
RO(K|c) + h°(Clc) — 1 = 2h°(K|c) — 1. Now from the sequence

0—-0—-K— K|lc—0

we see that h°(K|c) > p, — 1, so that R°((K + C)|c) > 2p, — 3.
Hence K? +1 > 2p, — 3, leading to Noether’s inequality.

More care is necessary in the case that the linear system |K| does
not have an irreducible member, but this is the main line of the
argument.

5.3 The Bogomolov-Miyaoka-Yau Inequality

The positivity of the Euler number e leads immediately to the in-
equality
K? <12y
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by Noether’s formula. This has been sharpened to the Bogomolov-
Miyaoka-Yau inequality
K? <9y

which is much deeper and 100 years younger than the previous in-
equalities.

5.4 Geography

The four inequalities
K*>1, x>1, K*>2x—6, and K* <9y

give a region in the first quadrant of the (x, K?) plane, and the
classification questions concerning surfaces of general type center
primarily on understanding the particular surfaces with K2 and yx
in this region. It is a theorem of Ulf Persson [P] that all values with
K?* < 8x actually occur; there exist surfaces of general type in this
sub-region of the region of invariants.

Note that the signature 7 of the intersection form on H*(R) is
T=(K*—2e)/3=(K*-2(12x — K%)/3 = K* — 8x

so that these surfaces constructed by Persson have negative signa-
ture. Surfaces with positive signature are in general much harder to
construct.

5.5 Complete Intersections

Suppose that X is a complete intersection in P™ of type (d;,dz, ..., dn_2).
Then

n-—-2

1=1
so that as soon as )~ d; > n + 2 the surface is of general type. Since
we should always take d; > 2, the only exceptions to this are the
complete intersections of the following types:



208 Miranda

n=3: (2) quadric surface, rational

n=3: (3) cubic surface, rational

n=3J3: (4) quartic surface, K3

n=4: (2,2) quartic Del Pezzo surface, rational
n=4: (2,3) K3 surface of genus 4

n=2>5: (2,2,2) K3 surface of genus 5.

All other complete intersections are of general type.

For hypersurfaces, that is, surfaces of degree d in P, one has

(d—1)(d—2)(d—3)

=1
X + 6

while K = (d — 4)H so that
K?* = (d—4)%.
Hence, asymptotically for large d, one has K? =~ 6.

A similar but more complicated analysis for general complete inter-
sections yields the following:

Proposition 5.21 If X is a complete intersection surface of general
type, then K? < 8x. Moreover asymptotically, K* ~ 8x as the
degrees grow.

5.6 Double Covers

A double cover of the plane 1s a surface defined affinely by an equation

z* = f(z,y)

where f is a polynomial of even degree (otherwise the covering is
branched also at the line at infinity). Note that z is a square root of
f, and therefore numerically, if f has degree 2d, then z has degree
d. Note that

2zdz = df
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so that dz = df /z.

Globalizing this is a straight-forward matter. Passing to a general
divisor B on a general surface Y, suppose that B = 2L for some
divisor L (this is the analogue of the “even degree” assumption).
Then a double cover # : X — Y exists, branched over the curve
B; the local formula that dz = df/z as above, where f is a local
equation for B, leads to the global formula that

Kx = W*([X’y + L)

The Euler number of the covering is easy to calculate; let us illustrate
this for Y = P2, Assume that the branch curve B is smooth of degree
2d, so that also its preimage R C X is smooth. Then
e(X) =e(X — R) + e(R)

= 2¢(P? — B) + ¢(B)

= 2¢(P?) — ¢(B)

=6 (2—29(B))

=4+ (2d —1)(2d — 2) = 4d* — 6d + 6.

Since K? = n*((d — 3)H), and since H?> = 1 and 7* doubles inter-
sections, then

K* =2(d —3)* = 2d* — 12d + 18.

Therefore
1

1 1
= — [’2 = — d2—— = — 2 _ .
X 12(e-i— {°) 12(6 18d + 24) 2(d 3d + 4)

Therefore we see that, asymptotically, double covers of P2 only gives
surfaces with K% ~ 4y.

5.7 Horikawa’s Analysis of Surfaces on the Noether
Line

Let us consider minimal surfaces of general type whose invariants lie
on the Noether line K? = 2y — 6. For these surfaces ¢ = 0, and
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p; = X — 1. The canonical map has total degree K? of course, but
Horikawa in the 1970s (see [Ho2]) found that in fact, in almost all
cases this map is a double cover onto a surface of degree x — 3 in
PX~2. This is a surface of minimal degree, and therefore is either
a rational normal scroll or the Veronese surface in P°. Therefore
these surfaces are constructed rather easily as double covers of very
well-understood surfaces.

If one takes the double cover of P? branched over a curve of degree
8 or 10, then the formulas above give invariants

B of degree 8: xy =4; K?=
Bof degree 10: x=17; K?*=38

which are on the Noether line; for degrees 12 or larger, they are not.

Let us consider also the double covers of Fg = P! x P! branched over
a curve of bidegree (6, 2d), that is, a curve B linearly equivalent to
6G + (2d)F', where G' and F' are the horizontal and vertical rulings.
Then L = 3G + dF, and Ky, = —2G — 2F, so that on the double

cover X we have
K? = 2(G + (d— 2)F)* = 4d — 8.
A similar computation as the above one for P? leads to
v =2d—1

so that for any d > 3 we have a minimal surface of general type on
the Noether line.

These examples, and others built in the same way from the higher
F.’s, classify all surfaces on the Noether line, except for a few
surfaces with low invariants. These surfaces are being called the
Horikawa surfaces.
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5.8 Surfaces on the BMY Line

As indicated above, it is quite difficult to construct surfaces with
positive index, and especially difficult to construct surfaces whose
invariants satisfy the Bogomolov-Miyaoka-Yau equality K? = 9y.
About 25 years ago Mumford in [Mu] made a complicated construc-
tion involving lifting a singular configuration of surfaces over a char-
acteristic two field to characteristic zero, and produced an example
of a surface with ¥ = 1 and K% = 9. Hirzebruch, about 13 years
ago, produced relatively simple constructions involving covers of the
plane, of degree larger than two, branched over unions of lines (see
[Hi]). That is, these examples were surfaces defined by equations of
the form

2" = H Li(z,y)

t=1

where the L;’s are linear. One needs the lines in a very special
position for the resulting surface to lie on the BMY line. The first
example is to take four general points, then take the six lines through
any two; with n = 5, one obtains (as a quintic cover of the plane) a

surface with K2 =9-5* and e = 3 - 5% so x = 5% and we are on the

BMY line.

Another example is to take a smooth cubic curve, and consider the
nine flex points; take the corresponding nine lines in the dual plane,
and take the quintic cover. Here K? = 333 - 58!

There are only finitely many such constructions known, though.
Constructions of surfaces with K% = 9y is still an active and in-
teresting area of current research. It is known that every such sur-
face 1s a quotient of the 2-ball by a group acting freely and properly
discontinuously. For each value of y, there are only finitely many
minimal surfaces of general type up to isomorphism with K? = 9x;
these surfaces are rigid (i.e., no deformations).
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5.9 Quintic Surfaces

A quintic surface in P® has K = H, so K = H* = 5; ¢ = 0 and
Py = 4 so x = 9 too.

Another example of a surface with these invariants is the double
cover of Fy branched along a curve of bidegree (6,8), with two
quadruple points lying on a single fiber of the ruling on Fy. With-
out the singularities, we saw above that this surface has y = 7 and
K? = 8. However the singularities drop the invariants; in this case
Horikawa shows that y drops by 2 and K? by three. Therefore the
resulting surface actually has Yy = K? = 5 as does the quintic.

Horikawa (see [Hol]) proved that every surface with K2 = y = 5
was either a quintic or a double cover of this type, or a degeneration
of one of these; there are two components to the moduli space of
surfaces with these invariants. These two components meet; there
are common degenerations of these surfaces.

5.10 Godeaux Surfaces

Very few other surfaces are completely classified. As an embarrassing
example, let us consider surfaces with K2 = 1 and p, = 0, the small-
est possible set of invariants for minimal surfaces of general type.
These surfaces are historically important; after Enriques’ example
of the Enriques surface, disproving the conjecture that if p, = ¢ =0
then the surface was rational, it was not known that a surface of
general type could be constructed with p, = ¢ = 0 until Godeaux in
the 1930’s gave the following example.

Take the Fermat quintic surface z° + y®> + 2° + w®* = 0 in P3. Let G
be the cyclic group of order 5, acting on P> by letting the generator
send a point [z :y : z: w]to [z : {y: (%2 : (Pw] (where ( is a
primitive fifth root of unity). This acts on the quintic, freely. The
quotient X is a compact surface of general type, and it is easy to see
that there are no G-invariant holomorphic 1-forms or 2-forms on the
quintic; hence p, = ¢ = 0 for the quotient X. The canonical class
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on X lifts to that on the quintic, and since K? = 5 for the quintic,
we have K2 = 1 for X. The fundamental group is Z/5.

A minimal surface of general type with p, = ¢ = 0 and K? = 1 is
called a Godeauz surface honoring this example. Godeaux surfaces
are not classified; it is not known how many components the moduli
space has.

Miles Reid in [Rd] has shown that Godeaux surfaces have at most an
order five torsion subgroup T' of the Picard group, and has classified
those with T' of order at least 3.

5.11 Rational Double Points (DuVal Singulari-
ties) and Canonical Models

Suppose that a surface contains a (—2)-curve, that is, a smooth
rational curve C isomorphic to P!, with self-intersection —2. By the
adjunction formula, we have

—2=29(C)-2=C*+(C-K)=-2+(C-K)

so that (C'- K) = 0.

Suppose that X 1s a minimal surface of general type, and consider
a pluricanonical map for X, given by the sections of nK for some
large n. Since X is of general type, the image of this map will be
a surface; however since (C - nK) = 0, any (—2)-curve C' will be
contracted by this map.

The contraction of a (—2)-curve creates a singular point on the im-
age. More generally, if one has any connected collection of (—2)-
curves on X, they are all contracted, to a single singular point on the
image. Any connected configuration of curves which is contracted
must be have a negative definite intersection form by the Hodge In-
dex Theorem, and this restricts greatly the possible configurations;
they are
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A
i -1 - -1 - 1
D,
1 - 2 - -2 -1
|
1
Es!
1 - 2 -3 - 2 — 1
|
2
E7Z
1 - 2 -3 -4 — 3 — 2
|
2
Eg:

The singular points which are created are the most important in
the singularity theory of surfaces; they are called the rational double
points, or the DuVal singularities. They are relatively ubiquitous in
the theory of surfaces, although we have not mentioned them up until
this point. The reader can see their relationship with the singular
fibers of elliptic surfaces; the numbers which appear above are the
multiplicities of the corresponding curve in the inverse image of the
maximal ideal of the singular point in the smooth resolution X'. An
interesting account may be found in [D].

These singularities, as we have seen, cannot be avoided in the pluri-
canonical images of a surface of general type. However these are the
only singularities which appear.

Theorem 5.22 Let X be a minimal surface of general type. Then
for any n > 5, the pluricanonical map given by the linear system
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|InK| maps X birationally to a surface Y, contracting all configu-
rations of (—2)-curves to rational double points. This map is an
isomorphism away from the (—2)-curves.

The statement that 5K is enough to embed any surface X is due
to Bombieri [Bo], and there is much more detailed information con-
cerning surfaces which can be embedded by lower multiples of K.
An alternate approach to this was given by Reider in [Rr].

The image Y is independent of n, and is called the canonical model
of X. It can be described rather succinctly as

Y = Proj €5 H°(nKx).

n=0
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