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1 Introduction

This set of notes is intended for distribution to the participants of the
Algebraic Geometry Summer School in Bilkent University, Ankara,
Turkey. The notes provide a brief overview of some invariants asso-
clated to hypersurface singularities and indicate how one goes about
computing them. They are idiosyncratic, dealing with matters that
my students and I have found interesting. I have tried to supply
references to more complete (and balanced) treatments throughout
the text. But the road to hell is paved with good intentions. Caveat
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lector.

I would like to thank Prof. Sinan Sertoz for the wonderful envi-
ronment during the school and Prof. Dr. Thsan Dogramaci for his
extraordinary patronage. This work was partially supported by Na-
tional Science Foundation grant DMS 9404497.

These notes are divided into five parts as follows, roughly corre-
sponding to the contents of each lecture.

1. Brief overview of singularities

2. Limits of tangent spaces

3. Computational methods in polynomial rings

4. Milnor numbers

5. Computational methods in local rings
Good general references on singularity theory include [2], [10], [19]

and [21]. Good general references on computation in polynomial
rings include [3], [8], and [4].

2 Singularities: a brief overview

We begin with some basic definitions that we shall use throughout.
Let C be the field of complex numbers.

Definition 2.1 A subset V C C" is an algebraic set if V is the
set of common zeroes of polynomials in Clzy,...,z,].

Definition 2.2 An algebraic set V is called a variety or an irre-
ducible algebraic set if it cannot be expressed as the union of two
proper algebraic subsets.
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The following proposition characterizes the property of being a va-
riety algebraically.

Proposition 2.3 Let V C C* be an algebraic set and let I(V) be
the ideal of Clzy,...,z,] consisting of all polynomials which vanish
at every point of V. Then

Va variety <= L(V) prime <= Clz,,...,z,]/I(V) an integral domain.

This characterization ensures that the following definition makes
sense.

Definition 2.4 IfV is a variety, then the dimension of V, denoted
dim(V), is the transcendence degree over C of the quotient field of

Clav,. ., /I(V).
We are now ready to define a singular point.

Definition 2.5 Let V C C" be a nonempty algebraic set and sup-
pose that fi1,..., fix € Clzy,...,2,], k < oo are such that I(V) is
generated by f1...fr. We write (V) = (f1,..., fx). Let p be the
largest rank the k X m matriz (0f;/0z;) attains at any point x € V.
A point x € V is nonsingular or simple if (0f;/0z;) attains its
mazimal rank p at z and singular if

0 f;
rank (%—;) < p.

We remark that the Hilbert basis theorem guarantees that any ideal
in C[z,,...,z,] can be generated by a finite set of polynomials.
Moreover, it is easy to check that the definition above is (V') denote
the set of singular points of V. It is always a proper subset of V.

Theorem 2.6 (Whitney) If V is a nonempty algebraic set, the set
V —3(V) is a smooth non-empty, complez manifold. It is complex
analytic of dimension n — p over C.
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Our main question will be: what does V look like in a neighbor-
hood of a singular point? To even begin to answer this question, we
need to decide when two varieties look alike in some neighborhood.
The definitions are easiest in the case when the variety can be de-
fined by a single polynomial. Accordingly, in what follows, unless
explicitly stated otherwise, we specialize to (complex) hypersur-
faces.

Definition 2.7 A variety V C C™ s called a hypersurface if V is
the set of zeroes of a single polynomial.

By a standard theorem in algebraic geometry, a variety in C” is a
hypersurface if and only if dimg V' = n —1. (This fails spectacularly
over R, where every algebraic set can be given by a single equation.)

Notice that if V is a hypersurface, V = {f = 0}, then

. of .\ _ of
p € V singular <= —a—x-:(p) =...+ Py

(p) =0.

For hypersurfaces, we formalize the phrase “a singular point p of V
looks like a singular point p’ of V'” in one of the following ways.

Definition 2.8 IfV,V' C C" are hypersurfaces with singular points
p,p', respectively, then we say that the singular point p of V 1is
topologically equivalent to p' of V' if there exists a neighbor-
hood B = {x € C* : |t — p| < ¢ in C* and a homeomorphism
I : B, — h(Be such that h(p) = p' and h(V N B,) = V' N h(B,).
We say that p of V is analytically equivalent to p' of V' if there
exist Be and H as above with h an analytic diffeomorphism.

Other equivalences are possible: for example, we could insist that h
be Lipschitz, or C'" for some r. Or we could drop the requirement
that h be defined on the ambient space.

A usual tool in visualizing a singularity p is its link.
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Definition 2.9 Let p € V C C" and for each € > 0 let B, = {z €
C*:|lz—p|<e€} and S = 0B, ={z € C*: |z — p| =€}. Then for
¢ sufficiently small, V N S, is called the ink of the singularity.

In order for this definition to make sense, it must be the case that
for € suficiently small V NS, does not depend on € in any important
way. This is indeed the case as the following result will show. First,
we recall that if K is a set in C™*, then the cone over K based at the
point p, denoted Cone,(K), is the set tp+ (1 —t)k: k € K,t € R.
By the cone over a pair of sets (G, K), denoted Cone,(G, K), we
mean the pair of cones (Cone,(G), Cone,(K')). Note that the cone
over a sphere based at the center of the sphere is just the ball centered
on the same point.

Theorem 2.10 Let V' be a hypersurface and p € V. Then for all
e sufficiently small, and S, as in definition 9, p € V is topologically
equivalent to Cone,(V N S.. In other words, if B is the ball of
radius € centered on p, then (B¢, BeN'V) and Coney(S., ScNV) are
homeomorphic as pairs.

This result tells us both that the link of a singularity is well-defined
up to homeomorphisms, and that the link determines the singularity
up to topological equivalence. A proof can be found in [21] in the
case of isolated singularities (see below for the definition) and in (7]
in general.

We say that a singularity p € V isisolated if there exists B, centered
at p such that the only singularity of V N B is p. In the case that
p is isolated, then V — {p} is a manifold near p and it is easy to
see that S¢ intersects V' transversely for small e. It follows that the
link of an isolated singularity is a smooth manifold. Here are some
examples.

o If V = {2%?—y° =0}, then S, is the 3-sphere and V' N S is
homeomorphic to a circle. It is, however, embedded in S, as a
torus knot of type (2,3). That is, the link is homeomorphic to
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the type of knot one obtains in the three-sphere, by winding a
curve twice around a torus in one direction and three times in
the other. If one thinks of the torus as obtained by identifying
opposite sides of a unit square, then a torus knot of type (3,2)
1s traced out by a straight line of slope 3/2. In particular,
there 1s no homeomorphism of S¢ which carries the link onto
an unknotted circle.

o If V = {z*+ y' = 0} with k,! relatively prime, then the link
is a torus knot of type (k,1).

o If V = {zF+y* =0} with k, ! relatively prime, then the link is
a torus link consisting of k£ unknotted circles, any two of which
have linking number /.

e The above three items are easily proved by parameterizing V.
In general, if V is a plane curve with one branch, then the link
is an iterated torus knot (a torus knot on the boundary of a
tubular neighborhood of a knot which is a torus knot on the
boundary of a tubular neighborhood of ... of a torus knot).

See [12]

o If V ={2zy — 22 =0}, then the link is homeomorphic to RP"
embedded in the 5-sphere S.. One sees this by parameterizing:
V = {(s% 1% V2st)|s,t € C} where (s,t) and (—s, —t) give the

same point. On V,
|2 ® + Jyl* + [2]* = (Is]* + [t%)?,

so that VNS, is homeomorphic to the unit sphere in (s,t) space
modulo identification of antipodal points, and this is just real
projective 3-space.

e If V={z{+z,+...+22 =0} and n is even, then the link
is a topological sphere, which may fail to be diffeomorphic to

the standard sphere. This fact was discovered by Hirzebruch:
see [21].

One studies singularities by associating various invariants to them.
These invariants can be geometric, algebraic or topological or (in
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the best cases) some combination of two of these. We are going to
concentrate on two sorts of invariants: geometric invariants related
to the tangent cone and algebraic (and topological) invariants related
to “Milnor numbers”. To compute the former, we will have to have
some knowledge of computation in polynomial rings. To compute
the latter, we will need to look at how one can do computations in
local rings.

3 Tangent cones and limits of tangent
spaces

Suppose that V C C™ is a variety (not necessarily a hypersurface).
Then at any point p of V' we can consider the tangent space T'(V, p),
which is defined as follows.

Definition 3.1 If f € Clzy,...,z,] is a polynomial, the linear
part of f at p, denoted d,(f), is defined to be the polynomial

B = 50N =)+ ()~ pa).

Note that d,(f) has total degree < 1. V. C C* and p = (p1,..-,pn) €
V then the tangent space to V at p, denoted T(V, p) is the variety

T(Vip) = V(do(f) : f € I(V)) .

If p is nonsingular, then V is a manifold near p and the definition
of tangent space above coincides with the usual definition of the
tangent space to a manifold at a point. However, if p is a singular
point, then the dimension of the tangent space is “too big”.

Example 3.2 Suppose that V = {22+ 3> = 0}. If p = (1,1) then
T(V,p) is the line 2(x — 1) + 3(y — 1) = 0 through (1,1) normal to
(2,8). However, if p = (0,0) is the singular point, then T(v,p) =
{C?} has dimension 2.
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To get something more useful we approximate V near p not by linear
terms in the defining equations (which might well be zero), but by
the lowest degree nonvanishing homogeneous pieces of the defining
equations. More precisely, suppose that p = (p;,...,p,) € C*. If
a=(al,...,a,) € L2, let

(.’13 _p)oz = (.’131 _pl)a1 '“ (xn - pn)an ’

and note that (z —p)® has total degree |a| = a;+- - -+a,. Now, given
any polynomial f € C[z,,...,z,] of total degree d, we can write f
as a polynomial in x; — p;, so that f is a C-linear combination of
(z — p)© for |a] < d. If we group terms according to total degree, we
can write

f:fp,0+fp»1+"'+fp»d’

where f,; is a C-linear combination of (z — p)* for |a| = 5. Note
that f,o0 = f(p) and f,1 = d,(f) (as defined above). One can use
Taylor’s formula to express f,; in terms of the partial derivatives
of f at p. Notice also that if p = 0, then we are writing f as the
sum of its homogeneous components. In most situations, it will be
convenient to translate p to the origin. We now define the tangent
corne.

Definition 3.3 If f € C[z,,...,,] is a nonzero polynomial, then
fpmin s defined to be f,;, where j is the smallest integer such that
fp; # 0 in the displayed formula above. The tangent cone of V at
p, denoted C(V,p), is the variety

C(Vip) = V(fpmin : fE€LV)) .

The tangent cone of at a point on a hypersurface V C C™ is especially
easy to compute. It is an easy exercise to show that if I(V) =
(f), then C(V,p) is defined by the the single equation f,min = 0.
However, when I(V) = (fi,..., fs) has more generators, it need
not follow that C(V,p) = V((fi)pmin,- -, (fs)pmin). For example,
suppose that V is defined by 2y = z2 + z(y* — 2?) = 0. One shows
without difficulty that I(V) = (zy,zz + 2(y* — 2%)). To see that
C(V,0) # V(zy,z2), note that f = yz(y? — 2?) = y(zz + 2(y* —
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2%)) — z(zy) € (V). Then fomin = y2(y* — 2?) vanishes on C(V,0),
but not on all of V(zy, zz2).

The tangent cone C'(V,p) to a variety V at the point p is made up
of lines through p. To describe which lines through p lie in C(V, p)
we recall first that a line L in C™ through p is called a secant line
if it meets V in a point distinct from p. If we take secant lines
determined by points of V' getting closer and closer to p, then the
“limit” of the secant lines lies on the tangent cone. To make this idea
precise, suppose we have parametrized L as p + tv, where v € C* is
a nonzero vector parallel to L and t € C. We say that a line L € C™
through a point p € C" is a limit of lines {L;}{2, through p if
given a parameterization p + tv of L, there exist parametrizations
p + tug of Ly such that limy_ . vy = v in C*. A standard result
in algebraic geometry then asserts that the tangent cone consists
precisely of limits of secant lines (see, for example, [26].)

Theorem 3.4 Let V C C" be a variety. Then a line L through
p in C" lies in the tangent cone C(V,p) if and only if there exists
a sequence {qr}%>, of points in V — {p} converging to p with the
property that the secant lines joining p and gy converge to the given

line L.

Instead of introducing the tangent cone using its defining equations,
we could have begun with the geometric characterization afforded
by the result above. First note that the tangent cone can be viewed
as the subspace of projective space whose points correspond to lines
through a prescribed point. Limits of lines then translate into limits
of points in projective space.

Now, let V C C” be a variety and p € V a singular point. If ¢ maps
V — {0} to the set P! of lines through p:

¢p:z—0z, zeV-{0},
and 1f we consider the graph of ¢,

gro C (V —{0}) x P71,
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then the closure

cgr¢) cV x P!
projects onto V. Call this projection 7. Then, one checks easily that

m~'(p) = {p} x [C(V, D)},
where [C(V, p)] denotes the canonical image of C(V,p) in P*~1.

The tangent cone provides an approximation to a surface near a
singular point in the sense that, given any conical neighborhood of
the tangent cone, a sufficiently small neighborhood of the surface
lies entirely within the conical neighborhood (see [23] for a precise
statement). It is also easy to see that the tangent cone transforms
well under analytic diffeomorphism. Thus the tangent cone is an
invariant of a singularity which is easy to compute. The difficulty
with the tangent cone is that it is too coarse — it gives no indication
of a number of features of a variety about which one would want to
know, and entirely dissimilar varieties may have the same tangent
cone. For example the surfaces {y?+2°—2%2? = 0} and {y—z*—2% =
0} have the same tangent cone, namely the plane y = 0.

A more subtle invariant is the space K(V,p) of limiting tangent
spaces to V at p. Since we shall restrict ourselves to hypersurfaces
in what follows, we only provide a definition in the case that V C C”
is a hypersurface. Suppose that this is the case. Then, if z € V is
a nonsingular point of V| the tangent space T'(V,z) to-V at z is a
hyperplane, which we label by its “conormal vector”, df(z), whose
components are just the partials of f evaluated at z (its complex
conjugate is normal to T(V, z) with respect to the usual Hermitian
metric on C*). Let ¥ denote the singular set of V' and let ) map
V — ¥ to the set P*~! of planes in C* through p by

Yz [df(z)], zeV =%,

where [df(z)] denotes the canonical image of the vector df(z) in
projective space (that is, the set of all nonzero scalar multiples of
df(z)). Again, we consider the closure of the graph of 1 and let 7
be the map onto V induced by projection. We define K(V,p) by
demanding that its image [K(V, p)] in P*! satisfy

' (p) = {p} x [K(V,p)].
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We call an element of K(V,p) a limiting tangent space to V at p.

An element of K(V,p) consists of the set of vectors v in C* based at
the point p with the property that there exists a sequence of points
zr, € V — X, zx — p, for which the lines through z, in the direction
df (zx) converge to the line thru p in the direction v. Each such vector
determines a hyperplane T in C* through p (if v = (vy,...,v,) and
p = (p1,.--,pa), the equation of T = {u = (uy,...,u,) € C* :
vi(ur —p1) + ...+ v (u, — p,) = 0), and each such hyperplane is the
limit of some sequence of tangent hyperplanes T(V, z\) as z; tends
to p, the convergence of the tangent hyperplanes being understood as
convergence in the “dual” projective space P*~!. In order to avoid
trivialities, we shall suppose that p € ¥ (otherwise K(V,p) is the
one point set {T(V,p)}).

As we shall see shortly, the invariant K(V, p) contains a great deal of
information about the surface. Since it is so easy to find the equation
for C(V, p) given the equation for V, one might ask if the same is
true for K(V,p): can we find its equation(s) given the equation for
V? Sadly, things are not so straightforward as they are for tangent
cones. In order to compute equations for K(V,p), we will need to
develop some computational techniques in polynomial rings. Before
doing so, we develop a few other facts about the geometry of K (V] p).

A moment’s reflection will convince one that a limiting tangent space
to the tangent cone of a variety “ought” to be a limiting tangent
space to the variety itself: that is, K(C(V,p)) C K(V,p). This in-
clusion was established by [27]. However, as Whitney points out, this
inclusion can be, and typically is, strict. The question of character-
izing the “extra” limiting tangent spaces is answered by a structure
theorem due to Lé and Teissier [18] for arbitrary varieties.

Theorem 3.5 There ezists a finite (possibly empty) set of proper
subcones

Ci,...,Cr C C(V,p), C; cones over p for all (called exceptional
cones) such that

K(V,p) = K(C(V,p),p) U Ui, K(C)),
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where K(C;) denotes the set of all hyperplanes in C™ tangent to C;
along some line in C; through p.

Thus, one knows K(V,p), given C(V, p) and the exceptional cones.
The data {tangent cone, exceptional cones} are called the aureole of
V at p and signal important geometric features of the variety near
p. For example, the z-axis is an exceptional cone for {y? + z° —
z2z? = 0}, and this signals the “vanishing fold”. The fact that the
z-axis 1s a line of singular points is incidental: one can easily concoct
similar examples in which the surface has an isolated singularity at
the origin.

Lé and Teissier also characterize the exceptional cones as the non-
moving parts of tangent cones to polar varieties. We explain briefly
in the case of surfaces. So suppose, temporarily, that V C C? is
a surface. Then the exceptional subcones of C(V,p) will be lines
through p. To find them, let 7 : C®* — C? be a linear projection
and define the polar curve P, of V with respect to 7 to be the closure
of the critical locus of the restriction of 7 to the smooth part of V:

P, = cl(crit (n|v-x)).

Generically, P, is either empty or one-dimensional (over C). Con-
sider the tangent cone at 0 of P,. If P; is one-dimensional, the
tangent cone will be a union of lines in C® through p. In fact, it is
easy to see that, as sets, C'(P,,p) C C(V,p). As 7 varies, some lines
in C'(Pr,p) will vary, while others will stay fixed.

Theorem 3.6 The exceptional lines (of V at p) are precisely those
lines in C(Pr,p) C C(V,p) which do not vary as 7 varies.

(The result, above, for surfaces was first proved by Lé and Henry for
surfaces with isolated singularities and by Lé for arbitrary surfaces.)
This result gives us another approach to computing K (V, p), at least
for surfaces. Here, again, however, we will need to develop some
computational techniques for working with polynomials, an issue to
which we now turn.
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4 Computational Methods in Polyno-
mial Rings

The modern algorithmic theory of computation in polynomial rings
begins with the constructive solution, in 1965, of the ideal member-
ship problem. This problem, first posed by Macaulay in [20] asks
the following:

(Ideal Membership Problem). Givenanideall = (fi,...,f;) C
Clz,...,z,] and a polynomial g € Clz,,...,z,|, determine whether
gel.

The problem is easy if n = 1. For in this case every ideal can be
generated by a single polynomial and to decide if a polynomial ¢
belongs to the ideal, one merely divides g by the generating polyno-
mial - if the remainder is zero, then g belongs to the ideal; otherwise
it doesn’t. The problem is likewise easy if fq,..., f, are linear and
n 1s arbitrary. The problem in the general case is more difficult
and Macaulay never did solve it. A fully algorithmic solution to
the ideal membership problem only appeared in 1965, when Bruno
Buchberger, a student of Groebner, created a working algorithm to
test ideal membership [6]. (A year earlier in 1964, Hironaka had
established a solution in principle as a part of his work on resolution
of singularities [16].)

The solution of the ideal membership problem consisted of three

pieces:

1. the introduction of a linear multiplicative order on all mono-
mials

2. the extension of the division algorithm from polynomials of one
variable to polynomials in an arbitrary number of variables,
and

3. the notion of a Groebner basis,
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each of which we describe in turn.

1. Multiplicative Orders on Monomaials

Ifa=(ay,...,a,) € Z%,, we let 2* denote the monomial z{" - - - z2~.
The first ingredient in the Hironaka-Buchberger solution was to lin-
early order all monomials in Clzy,...,z,] in such a way that if

z® > 2P, where o, € Z7%,, then **" > z°%" for all vy € Z7,,.
Such an ordering is called a multiplicative ordering. Multiplica-
tive orderings were already used to great effect by Macaulay.

The best known example of a multiplicative ordering is the lexico-
graphic or lex ordering. Here we say that z® >, z° (and drop the
subscript lex when the order is understood) if the first nonzero term
of o — 3 is greater than 0. Thus, 2z,x3z4 > r2z222z) because the
first nonzero term (reading from the left) of (2,1,5,1) —(2,1,2,9) =
(0,0,3,—8) is 3 which is greater than 0. As another example, in the

lex ordering we have

et > > ey > 2t >y > >y >y > 1

A different multiplicative ordering is the graded lexicographic or
glex ordering. This ordering sorts first by total degree and then uses
the lexicographic order to sort monomials of the same degree. That
is, we say that 2% >, 2° if |a| > |0] (here, |a| = a1 + ... + oy
and |G| is defined similarly) or if |a| = |3| and the first nonzero term
of @ — f is nonzero. Again we drop the subscript glex when the
ordering is clear from the context. With respect to the graded lex
ordering we have

Y1 > 220 s >yt > et st s >y > 1

In general, a multiplicative ordering is said to be graded if it first
sorts by degree.

There are many other examples of monomial orderings, some better
than others for different sorts of computations. In doing computa-
tions in polynomial rings, one usually restricts oneself to orderings
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that are well-orderings: that is, which are such that every non-
empty subset of monomials has a least element. One can show that
this is equivalent to the condition that 1 < z; for all variables (see
[8], §2.4). So, the lex and graded lex orders are well-orderings.

If f=%,a,2” € Clzy,...,z,) is a polynomial, we say that a mono-
mial £ = z{' --- z”" or a term a,z” belongs to f if the correspond-
ing coefficient a, 1s nonzero. Once we have established an order >
on monomials, we define the leading term vr s (f) of f to be a,z”’
where 27 is the largest monomial (with respect to the order >) which
belongs to f. Thus, for example,

triee(z? + 2y + 2 + 159" 4y + 1) = 2,

while
LT gzex($4 +zy’ +z 4+ 159"° +y + 1) = 5y,

2. The Dwvision Algorithm for Polynomials

The second ingredient of the solution to the ideal membership prob-
lem is the division algorithm for polynomials. This is a procedure
for dividing a polynomial in any number of variables by an ordered
collection of polynomials. This procedure works once a monomial
order has been chosen. It is best explained by an example, which I

have lifted from [24].

Consider the following question.
Does z'y —zy’+y*+2%ye(ay+ 1,z —y)?

With the case of one variable in our mind, the natural thing to do is
to try to divide 24y — zy® + y* + 2%y by zy + 1 and 2 — y. Suppose
we choose the graded lex order with > y. Then the terms in the
three polynomials are written in descending order and

ur (zly—zy’+yi+2%y) = 'y, r(zy+1) =2y, and vr(z—y) = z.

The leading monomial zy of zy + 1 divides the leading monomial
iy of 2%y — zy® + y* + 2%y to give 3. Multiplying z° by zy + 1 and
subtracting gives —zy® 4 y* — 2% + z%y. The leading monomial zy of
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zy + 1 divides the leading term —zy® of —zy® + y* — 23+ 22y to give
—y?%. Multiplying —y? by zy+1 and subtracting gives y* —z3+z%y +
y2. Neither the leading monomial of zy + 1 nor the leading monomial
z of z —y divide the leading monomial y* of y* — 23+ 2%y +y?. Thus,
we put y? into the remainder and subtract it from y* — 2 + 2%y + y?
to get —z3+ 2%y + y?. Now the leading monomial zy of zy + 1 does
not divide the leading term —z3 of —z> + 2%y + y2, but the leading
monomial z of z — y does. Dividing the latter (that is, z) into —z®
gives —z?; multiplying —z? by ¢ —y and subtracting the result from
—z3 4 2%y + y? gives y®. Neither the leading monomial of zy + 1 nor
the leading monomial z of z — y divide the leading monomial y? of
y2, so we put y? into the remainder leaving nothing left to divide.
Thus, the process terminates and we have found that

tly —ey® +yt 2ty = (2 -yt (ey +1) — 2Pz —y) +y +

We leave it as an exercise to show that if we divide in a different
order, putting ¢ — y before zy + 1, then we get

$4y _ $y3 + y4 + $2y —
(2Py + 22y +zy® + vt — P+ 2y + y¥)(z —y) + 0(zy + 1) +4° + ¢°.

Notice that the answers and, in particular, the remainders are sensi-
tive to the order in which we divide! This is bad or, at least, highly
undesirable. In particular, the results of our efforts might lead us to
carelessly conclude that z4y — zy® + y* + 2%y does not belong to the
ideal (z — y,zy + 1), which is false because

iy —zy +yt + 2ly =22y + 1) + (2° + 0)(z — y).

In fact, the reader may enjoy finding an example of polynomials
g, fi, f2 € Clz,y] such that dividing ¢ by fi, f gives nonzero re-
mainder, but dividing g by f;, fi gives zero remainder!

The last ingredient which allows the division algorithm to to be used
to determine ideal membership is the notion of a Groebner basis,
together with Buchberger’s algorithm which allows one to compute
such bases.
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3. Groebner Bases

Fix a multiplicative ordering > on the monomialsin Clzy,...,z,]. If
I is an ideal in C[z,,...,z,], we let LT (1) denote the ideal generated
by all leading terms of elements of I:

(1) = (e (f): f € 1),

A Groebner basis of an ideal I (with respect to the ordering >) is
a set of polynomials f1,..., f, € I such that

vr (1) = (L (fr),-..,ur(fr)).

We leave it as an easy exercise to show that if fi,..., f; is a Groeb-
ner basis of I, then fi,..., fr is actually a basis of I; that is, I =

(fiy. oy fr)

Consider our example above and let / = (zy + 1,z — y). Note that

ur ((z —y,zy + 1)) # (v (2 —y),ur (zy + 1)) = (z,2y) = (z)

because
—yz-y)+(ey+) =y +1€ ],
but
y* = (y’ +1) ¢ ().
An easy computation shows that vr (1) = (z,y?) so that zy + 1,z —
y,y? + 1 is a Groebner basis of I. Dividing z'y — zy® + y* + z%y by
zy+ 1,z —y,y* + 1 gives

iy —z’+yt + 2y = (P -y + )+ 2z —y) + ¥2(B° + 1)

clearly showing that the former is in /. (In fact, the polynomial
zy + 1 is redundant and z —y,y? + 1 is actually a Groebner basis of
1)

Bruno Buchberger introduced the notion of a Groebner basis in 1965
(naming in honor of his thesis supervisor) and, equally importantly,
he discovered an algorithm for computing them. The idea behind the
algorithm i1s simplicity itself. Given a set of generators {fi,..., fr}
of an ideal, one successively considers the polynomials

S(fis fi) = (f)fi —r (f5)fs
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If ur S(f, f;) is not divisible by some vt fi (that is, if Lt S(f;, f;) €
(fi,.-- fr)) then one adds vrS(fi, f;) to the list of generators
{f1,.-., fr}, otherwise one does nothing. The actual algorithm is a
few lines of code and relies on a result which characterizes Groebner
bases as those bases which give zero remainder when divided into all
possible S-polynomials (eee [3], Chap 2.7). Simple arguments show
that the algorithm terminates.

Groebner bases allow one to solve the ideal membership problem
because the remainder obtained by dividing any f € Clz,,...,z,]
by a Groebner basis is unique (that is, independent of the order in
which one takes the elements of the basis) and f € I if and only
if the remainder is 0. Algorithmically, one first uses Buchberger’s
algorithm to compute a Groebner basis, then divides the polynomial
in question by this basis, and checks whether the remainder is zero.

Buchberger’s algorithm and the division algorithm are implemented
on many computer algebra systems. These two algorithms allow one
to explicitly carry out operations on polynomial ideals. In particular,
they allow us to carry out the operations we will need to compute
limits of tangent spaces: namely, elimination and intersection.

Suppose that want to eliminate variables in a system of equations.
In other words, suppose we are given an ideal I C Clzy,...,z,],
and we want to find the ideal INClz,_,41,...,T,] generated by the
elements of I containing only the last r, say, variables. (This is the
algebraic operation corresponding to computing the closure of the
projection of the variety defined by I onto the coordinate subspace
of C™ spanned by the last r coordinate vectors.) The following result
shows that this can be done by ordering the variables lexicographi-
cally and computing a Groebner basis with respect to this ordering.

Theorem 4.1 [fgy,...,9s ts a Groebner basis of I C Clz,y, ..., z,]
with respect to the lexicographic order in which

Ty > Ta> ... > Ty,

then, for some k < s, the polynomials gryq,...,9, will only involve
the last r variables ,_ry1,...,2Z, (and any polynomial g; with ¢ <
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k, will involve at least one of the variables z,,...,Zn_r in a term
with nonvanishing coefficient). The polynomials giy1,...,9s are a
standard basis for I N Clz,—ry1,...,Tn):

N C[xn-‘T+1" s ’xn] = <fn—1‘+1""’fn>-

The proof consists in examining the division algorithm carefully (see
[8], Chap. 2.8). To return to our example above, if I = (zy+1,z—y)
and we want to compute I NCly], then we compute a standard basis

for I, finding that I = (z —y,y* + 1) so that I N C[y] = (y* + 1).

Being able to eliminate variables immediately allows us to compute
the equations of the image of an algebraic set. To be more precise,
let I C Clzy,...,z,] be an ideal and V = V(I) the corresponding
algebraic set in C" (here, and henceforth, we use the notation V(I)
to denote the set of common zeroes of the polynomials in I). If & :
C" — C™ is a polynomial map in the sense that & = (¢y,..., én)
with each ¢; € Clzy,...,z,], then the the image of ®(V') of V under
the map ® need not be algebraic set. However, 1t is the case that the
topological closure of ®(V) is algebraic (and, in fact, the smallest
algebraic set containing ®(V') - see [23]) We can use theorem 4.1
to compute an ideal which defines the closure of ¢(V). Namely, the
following holds.

Proposition 4.2 Let I = (fi,..., f:) be an ideal in Clz,,...,z,]
and ® = (é1,...,¢m) an algebraic map. Consider the ideal

J = (fla"'afhyl _¢1"'~’ym_¢m>mc[y1,-'°aym]-

Then V(J) is the closure of ®(V).

The proof is straightforward: see [8] Chap. 2.8.

This already allows us to compute the limits of tangent spaces at an
isolated singularity because of the following lovely observation, due
to Hénaut [15].
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Proposition 4.3 Let V = {z € C* : f(z) =}, f € Clzy,...,z,)
be a hypersurface with an isolated singularily at the origin. Let ¢ :
C",0 — C™,0 be the Jacobian map ¢(z) = (%(w),...,%(a:)).
In a sufficiently small neighborhood U of the origin, (VNU) is a hy-
persurface in ¢(U) (which we denote somewhat carelessly as ¢(V)).
Then, as sets, the limit of tangent spaces (thought of as normals)

K(V,0) to V at 0 is the tangent cone C($(V),0) to ¢(V) at 0.

The proposition is almost a tautology when we represent tangent
spaces by their “normals”. We leave the easy proof to the reader
(or see [24]). As an example of the proposition, consider the hy-
persurface V = {122 + 292 + 12° = O} Here #(z,y,z) = (z,y, 2%
and we can parameterlze V as {(s,t,( 3t2)1/3} Thus, ¢(V) =
{(s, t,(— 3t2)2/3} A local equat1on for (V) is the hypersurface
2% = (- § 2 — 242)? and the reduced tangent cone is {z = 0}. So
K(V,0) con51sts of all normals lying in the zy-plane (or all planes
containing the z-axis), which is certainly plausible from the (real)
picture.

Combining the two previous propositions allows us to write out a
procedure for computing the equation for K(V,0) when V has an
isolated singularity.

Proposition 4.4 Let V = {z € C*: f(z) =}, f € Clzy,...,z,]
be a hypersurface with an isolated singularity at the origin. Then
K(V,0) is a hypersurface in C™ with a local equation given by the
initial form of the generator of (the radical of) the ideal

of of
<f’y1 _5;1" sy Yn — a$n>nc[y1,---,yn]‘

In practice, one does not bother computing radicals. We leave it
as an easy computation to redo our example above to show directly
that

(32412 +32% u—z,v—y, w—2%)NClu, v, w] = (4w3+9u’+18u?v?4+9v?).
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Being able to eliminate variables also allows us to compute intersec-
tions of ideals. This, in turn, allows us to compute equations for
K(V,0) in the case that 0 is not an isolated singularity. To pursue
this, suppose that I and J are two ideals in Clzy,...,z,] and let
t - I denote the ideal in Cl[t, 2y, ..., z,] generated by all multiples of
elements of I by ¢ and (1 —1) - J the ideal generated by multiplying
all elements of J by 1 —1). Then, the following holds.

Proposition 4.5 INJ =t- 1+ (1 —1)-JNClzy,...,z,].

The proof is easy (see, for example, [8], §4). Moreover, because we
can compute intersections, the following proposition is algorithmic.

Proposition 4.6 Let V = {z € C" : f(z) =}, f € Clz1,...,z,]
be a hypersurface with an tsolated singularity at the origin and let
K(V,0) C C™ be the space of limiting tangent spaces. Let A denote
the ideal in Clzy,...,Zn, S, Y1, -,Ys] given by setting

of af
= (= 55y ¥ = 5.

Then the ideal I(K(V,0)) of K(V,0) is the radical of the ideal in
Cly1,- .-, Yn] gtven by eliminating s and setting x,,...,x, equal to
zero. That 1s,

I(K(V,0)) fﬂCwl, oy Ty Y1y Yn) (T, o Th).

For a proof, see [24]. As an example, suppose again that V = {122+
1y*+ 123 =0}. Then

A= (2?4 y? +22 u—tz,v—ty,w—tz?).

Note that zt*(z? + y* 4+ 22°) (which belongs to A) is congruent to
zu® + zv? + 2w? modulo A and thus belongs to A. But the latter
does not depend on t and belongs, therefore, to ANClz,y, z, u, v, w].
Thus, w? € (ANClz,y, z,u,v,w])/(z,y, z) (we leave it as an exercise
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to show that the latter ideal is, in fact, equal to (w?)), in agreement
with the calculation we did using Hénaut’s observation.

One can also compute the exceptional cones, using their charac-
terization as non-moving parts of tangent cones to polar varieties.
However, the computational techniques needed for this would bring
us beyond the scope of these lectures. For more information about
this approach, see [24].

5 Milnor Numbers

Suppose henceforth that V = {z € C": f(z) = 0}, f € Clz,,..., 2]
is a hypersurface with an isolated singularity at the origin. We have
already seen several geometric invariants of V', namely C(V,0) and
K(V,0). These are invariant under analytic equivalence of a sin-
gularity. Arguably, the most important invariant, however, of an
isolated singularity of a hypersurface is its Milnor number.

Definition 5.1 Let V and f be as above, then the Milnor number
of V at 0 denoted u(V,0) is the number

dimg C[[zy, . .. ,:z:n]]/<—g—xj%, s %)C[[wl, S

where C[[zy,...,z,])] denotes the ring of formal power series in

I <y Tn.

y e

An argument that we sketch later shows that the Milnor number is
finite precisely when 0 is an isolated singularity.

This is a purely algebraic definition. However, the Milnor num-
ber can be characterized in a number of different ways. For u =
(uy,...,u,) sufficiently close to the origin and generic, the Milnor
number of f at the origin is precisely the number of critical points of
fu = f(z)+uz1+...4+u,z, near 0 (if the Milnor number is y, what
happens is that the critical point of f at 0 breaks up into a number
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of critical points near 0 which have smaller Milnor number. For u
generic, these decomposed critical points all are nondegenerate (i.e.
have Milnor number one), and there p of them).

The Milnor number can also be characterized topologically. For e
sufficiently small, the ball B, = {z € C™ : || < €} contains no sin-
gularities of f other than the origin and is such that for all § << ¢
sufficiently small, f~'(z), z € C, |2| < é meets S, transversally. For
z #0,]z] < 8, the level hypersurfaces f~!(z) N B, are all diffeomor-
phic, and nonsingular. Any one of them is called the Milnor fiber
of f. They are (2n — 2)-dimensional real manifolds with boundary,
and no homology except in the middle dimension n — 1. The rank
of the homology group H,_(F,Z), F = f~'(z)N B turns out to be
the Milnor number. More is true: if u is the Milnor number, then
the Milnor fiber has the same homotopy type as a bouquet of u real
(n — 1)-dimensional spheres. For proofs and more see [21].

Best of all, if two hypersurface singularities are topologically equiva-
lent, then they have the same Milnor numbers [17]. Thus, the Milnor
number is an invariant that has both topological and algebraic sig-
nificance ~ hence, its importance.

There are a number of invariants of hypersurfaces that also appear as
dimensions of algebras. Best known is the Tjurina number 7(V, 0)
of a hypersurface, which is defined to be

9 9
dime Cller, .. . 2.]]/( EEf{’“"aQ'

The Tjurina number is equal to the dimension of the base space
of a so-called miniversal deformation of the singularity (see [19] for
details), and is an analytic invariant.

Once the Milnor number of a hypersurface is defined, one can define a
sequence of Milnor numbers as follows. If 0 is an isolated singularity
of the hypersurface V C C™ and if H C C" is a generic hyperplane
passing through the origin, then VN H is a hypersurface in H = C*!
with an isolated singularity at the origin. For almost all hyperplanes
H, the Milnor number u(VNH,0) is constant (and a minimum). Call
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this number u™~1(V,0), Iterating, we get a sequence

pr(V,0) = {p=ppu )

of numbers called the y*-invariant. We remark that u! is the Mil-
nor number of the intersection of a generic line through the origin
with V — an easy exercise shows that this is just one less than the
multiplicity m(V,0) of V at the origin. Here, the multiplicity is the
usual multiplicity of a hypersurface; namely, the degree of the lowest
degree term that belongs to f. Equivalently, 1t is the intersection
multiplicity of a generic line through the origin with V.

Incidentally, the hyperplanes H for which u(V N H,0) = u™! are
precisely those which do not correspond to elementsin K(V,0). Sim-
ilarly, the lines L for which u(V N L,0) = p! (that is, lines whose
intersection number with V at 0 is the m(V,0)) are precisely those
which do not belong to C(V,0). Thus, being able to compute Mil-
nor numbers would give us another way to determine membership

in K(V,0) and C(V,0)!

Teissier, who introduced the p*-invariants, showed that the p*-in-
variant is an analytic invariant (see [25] p.315). It is known that
it is not a topological invariant (two singularities with are topologi-
cally equivalent can have different yu*-invariants (see [5]). One of the
most stubbornly resistant unsolved problems in singularity theory
is whether multiplicity is invariant under topological equivalence of
hypersurfaces (this question was asked by Zariski in 1971 (see [28])
and the assertion that the multiplicity is a topological invariant is
often referred to as Zariski’s conjecture, notwithstanding the fact
that Zariski did not take any position on the issue, other than mus-
ing in public that it ought to be easy to settle.) It would be a major
advance if one could determine whether all members of family of sin-
gularities in which the Milnor number is constant necessarily have
the same multiplicity (except in dimension 3, it 1s known that all
members of such families are topologically equivalent).

We would like to have a way to compute Milnor numbers and related
invariants.
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6 Computations in Local Rings

In order to compute Milnor numbers, it is useful to be able to make
computations in local rings. Recall that a local ring is a ring with
exactly one maximal ideal.

The ring C[[z1, ..., z,]] of formal power series

Cllz1,...,za)] = D aaz® @ € Z% ,a, € C},

a>0

with the usual definitions of addition and multiplication, is a local
ring with maximalideal (z,,...,z,). Any elementnot in (z4,...,z,)
is invertible as a formal series and is, therefore, a unit (in particu-
lar, it cannot belong to any proper ideal). The ring C{z1,...,z,}
consisting of power series in zy, . . ., , which converge in some neigh-
borhood of the origin is also a local ring. Another example of a local
ring is the ring of complex-valued rational functions defined at the
origin, denoted C[z1,...,Zn)(z,...on);

C[.’B], s axn](xl,...,xn) - {§ : f’g € C[.’B],...,.'Bn],g(()) 7£ O}’

with the usual operations of addition and multiplication. We have
natural inclusions

Clzy,...,2.) C Clry, .., Zn)(zy,) C C{z1, ..., 20} C Cllzy, ..., 24,]]

and ideals in Clz,, ..., z,] containing < z > extend to ideals in these
local rings.

In computing Milnor numbers, we are called to compute the dimen-
sion of the quotient ring by a zero-dimensional ideal. We remark,
that it doesn’t matter in which local ring we compute the dimension
of the quotient.

Proposition 6.1 Suppose that fy,...,f, € Clx1,...,2z,] have a
common isolated zero which we take to be at the origin (isolated,
means that there is a ball about the origin containing no common
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zeroes of f1,..., fn other than the origin). Then, the the quotient by
the ideal generated by the f/s is a finite dimensional algebra and

dimc C[.’B], e ,xn](xl,...,xn)/<f1’ . .,fn>C[$1, c ,xn](xl,...,xn) =
- dimCC[[xl,...,xn]]/(fl,,..,fn>C[[x1,...,xn]]:
— dimc Cz,. ...z} /{1y, fa)Clar,s o 20},

To see why this is so, suppose that we want to compute the quotient
by the ideal generated by x?+z° and y2. Then dim C[z, y(z4)/(z*+
2%,y )Clz,y)zyy = 4 because (2? + 2%,9*)Clz,yly =
(2%, y?)Clz, y)(zy since 1/(1 + z) € Clz,y)(sy) and because the
monomials 1, z,y, zy are a vector space basis of dim C[z, ¥,/ (2?%, y?).
We can represent 1/(1 + ) as the formal power series 1 — z + 22 —
3 +z*— ... € Cl[z,y]] and then

(*+2) (1l —z+2* -2 42— .. ) =2

in C[[z,y]]. This shows that (z* + 2°,y*)C[[z, y]] = (2?,y*) C[[z, y]]

from which 1t follows that

dime C[[z, y]]/(z%,y*)C[[z, y]] = 4

(as before, the monomials 1,z,y,zy are a vector space basis of
Cllz,y]]/(z* y*)). However, the power series 1 —z+z?—z’+ 24— ..
is, in fact, convergent, and precisely the same reasoning shows that
(22 + 28, y*)C{z,y} = (22,y*)C{x,y} and, therefore,

dimc C{z, y)}(z? y*)C{z,y} = 4.

One can generalize from this example to-give an clumsy, but valid
proof of the proposition assuming that one of the dimensions is fi-
nite. The dimension dimg C{z1,...,z.}/{f1,.., f2)C{z1,..., 20}
is finite by the local analytic Nullstellensatz (the hypothesis that
the origin is isolated and the local analytic Nullstellensatz say that

\/(fl,...,fn> = (zy,...,Z,) so that some power of the ideal (f1,. .., fr)

must lie in the maximal ideal). The proposition is true, however, for
quite general reasons. See {11].
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In the case of the usual polynomial ring, the corresponding dimen-
sion bounds the number of common zeroes of the generators of the
ideal. That 1s, if the polynomials f1,..., f,, have a finite num-
ber of zeroes, then the ring Clzy,...,z.)/{(f1,..-, fm) is finite di-
mensional and the number of common zeroes is less or equal to
dimg Clz, ..., z.)/{f1,- -+, fm). More is true: if m = n (so the
number of polynomials is the same as the number of variables), then
dimg Clzy,...,z.)/(f1,- -, fx) is exactly the number of common ze-
roes of fy,..., fn counted with multiplicity. (See [13] §2.9, Proposi-
tion 6.)

Happily, we know how to compute the dimension in the case of poly-
nomial rings. For any ordering and any ideal I such that
dimg Clzy, ..., 2,])/I < oo, we have

dimg Clzy,...,z,]/1 = dimeg Clzy, ..., z,]/(Lr]),
and the latter is just the number of monomials
% z* ¢< (url).

(See, for example, [8], Chapter 5.3.)
So, for example, if

I'= (2 +2%y*) C Cla,y),
and we are using lexicographic order, then

dim C[z,y]/I = dim C[z, y}/(tr]) = dim C|z, y]/(z°, y*) = 6.

The rightmost equality follows because 1, z, 2%, y, 2y, zy® project to a
vector space basis of Clz,y]/(z> y?). So there are at most 6 common
zeroes of 2 +z3 and y?, in A%. In fact, we see there are two solutions

(—1,0) and (0,0).

So, in the polynomial case, the heart of the matter i1s to compute
(Lrl) given generators fi,..., f; of I and this is done by computing
a Groebner basis of 1.

Our computation in the local case suggests that a similar strategy
works for quotient of local rings. If I = (z? + z°,y*) and R were
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C{z,y}(zy (or Cl[z,y]] or C{z,y}), we computed dim R/IR by
replacing I by the monomial ideal J = (22, y?). Note that I consists
of the lowest degree terms of I in contrast to the situation in which
we compute dim C|z,y]/I by replacing I by (url) = (z?,3°%), the
highest degree terms in the generators.

It should come as no surprise to us that we need to examine lowest
degree terms. When dealing with a power series (or a rational func-
tion), it is natural to define the initial form to be the lowest degree
homogeneous piece.

There are two ways of proceeding: we could retain the term order-
ings we have been using with polynomials, but re-examine what we
did in picking out terms which were maximal with respect to that
ordering with a view to modifying the procedures to pick out terms
minimal with respect to the ordering. There is a trick, often credited
to Lazard, which allows one to do this easily. Or, we could admit or-
derings in which the maximal elements would have least degree, and
try to carry over the theory of Groebner bases to that situation. We
adopt the latter procedure, see[9] for more on the Lazard procedure.

So, we will we consider degree-anticompatible (or anti-graded) or-
derings:

la] < |8 = z* > 2°.
We still insist that such orderings be total orderings and multiplica-
tive.

Definition 6.2 A  degree-anticompatible  ordering on
Clzy,. .., za], Clzy, .. o, Znl(ey,zn), ClE1, .- 2n}, or Cllzy, .., 24

is a relation > on ZT,, or equivalently, on the set of monomials

%, a € 23, satisfying:

(i) > is a total ordering on ZZ,
(ii) > is a multiplicative ordering on Z%,

(iii) > is degree-anticompatible on Z7.
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n

Recall that the first property means that for any o, 8 € ZZ3,, exactly
one of the following is true:

z* > 2P, ¥ =12 2% > 2P,
and the second means that
for any v € Z3,, if z* > z°, then z*t7 > 2P+,

Notice that the third property impliesthat 1 > z; forall 2,1 <1 < n.
Any ordering satisfying (i), (ii) and this latter property is called
a local ordering. So a degree-anticompatible ordering is a local
ordering (but not conversely).

Perhaps the simplest example is degree-anticompatible lexicographic
order, abbreviated alex, which first sorts by degree, lower degree
terms preceding higher degree terms, and then sorts monomials of
the same degree lexicographically.

Definition 6.3 (Anti-graded Lex Order) Let o,f € Z%,. We
SaY T >glex TP if

n n
la| = Zai <|f] = Zﬂi, or |a|=18] and z% >, 2P
1=1 1i=1

Thus, for example, we have:

2 2 3
1 >alex T >alex y Zalex T~ >alex ry > alex Yy >alex T alex - - -

Notice that a degree-anticompatible (and, more generally, any local)
ordering is not a well-ordering and, hence, not a monomial ordering
in the sense of most books on Groebner bases (which require that
monomial orderings satisfy (i), (ii) and be well-orderings — see, for
example, [8], Definition 2.2.1)). Since the property of being a well
ordering is often used to assert that algorithms terminate, one needs
to be especially careful in checking that procedures which use degree-
anticompatible orderings terminate.
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If f=75,a,z%1s a non-zero power series and < a local order, we
define the multidegree, the leading coeflicient, the leading monomial,
and the leading term of f exactly as for a well-ordering:

multideg(f) = m<ax{a €723, : aq # 0},

Le(f) = amultideg(f), LM(f) = xmumdeg(f), and vr(f) = le(f)-wm(f).

If fe C[xl,...,:r.n](l.l ,,,,, ), then we first re-write f (uniquely) in
the form

and set

multideg(f) = multideg(g), vrc(f) = rc(g),
wm(f) = wm(g), and cr(f) = ().

Notice  that the  multidegree and leading term  of
f € Clz1,...,%n](s,,..2,) agree with what one obtains upon view-
ing f as a power series.

Lemma 6.4 Let f,g both be in Clzy,...,To)(z1, 20}
(or C{z1,...,2,} or C[[z1,...,24.]]) and both be non-zero, Then

1. multidegree(fg) = multidegree(f) + multidegree(g).
. If f+gF#0, then
multidegree( f + g) < max(multidegree( f), multidegree(g))

with equality if multidegree( f) # multidegree(g).

Now, just as for well-orderings, given an ideal I in a local ring R,
where R = Clzy,...,Znl(zy,..20), Cll21, - -, Z4]], or C{z1,.. ., 20},
and an ordering <, we define the the set of leading terms of I. de-
noted tr(/), to be the set of leading terms of elements of I with
respect to <, and define the ideal of leading terms of I, denoted
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(url), to be the ideal generated by the set ur(I). Just as for ide-
als in polynomial rings, it can happen that I = (f1,..., f;), but
vr(l) # (vr(f1),...v1(fs)). In analogy to the notion of a Groebner
basis, we define a Groebner or standard basis of an ideal I to
be a set fi,...,fs € I such that (vrl) = (vr(f1),...v0(fs)). It is
easy to show that such a set necessarily generates the ideal I. In
the literature, the phrase “standard basis” is more common than
the expression “Groebner basis” when referring to local orderings,
so that is what we use here.

It is also not too difficult to show that

dimc C[xl, e ey xn](xl

.....

= dimc Clzy, ..., )iy, zn)/ (LT Clzy, - ., To iz, 20)

where (Lr/) is taken with respect to a graded anti-compatible order.
The argument is similar to that in the polynomial case (see [9]).

Given generators of an ideal, how can we compute a standard basis
for the ideal? Recall that the key elements in the polynomial case
were the division algorithm and Buchberger’s algorithm. Let us
review each of them here and see what needs to be modified to allow
us to use them with local orderings.

The key step in the division algorithm is the reduction of one poly-
nomial f by another ¢g. If ur(f) = tur(g), we define

Red (£,9) = £ g

and say that we have reduced f by g. The polynomial Red(f,g) is
just what is left after the first step in dividing f by ¢ — it is the first
partial dividend. In the one variable case, the division algorithm in
which one divides a polynomial f by another ¢ is just the process of
repeatedly reducing by g until either one gets 0 or a polynomial that
cannot be reduced by ¢ (because its leading term is not divisible
ur(g)). In the case of several variables, the division algorithm, in
which one divides a polynomial by a set of other polynomials, is just
the process of repeatedly reducing the polynomial by members of
the set, adding leading terms to the remainder, when no reductions
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are possible. This terminates in the case of polynomials because
successive leading terms form a strictly decreasing sequence, and
such sequences always terminate for well-orderings.

In the case of power series and local orders, one defines Red ( f, g)
exactly as above. However, a sequence of successive reductions need
no longer terminate. For example, suppose f = z and we decide to

2

divide by ¢ = £ — z?, so that we successively reduce by z — z2. We

get

fo
i = d(
f» = Red(f1,9) =2
fz = Red(

I
= o
I
v&)

fn = Red(fn—lag)zan,

which clearly does not terminate. The difficulty, of course, is that
z >z > 23 > ... is a strictly decreasing sequence of terms which
does not terminate.

We can evade this difficulty, with a splendid idea of Mora’s: when
dividing f by a single polynomial or power series g say, we allow
ourselves to reduce not just by g, ‘but by the result of any previous
reduction. More generally, when dividing a set of polynomials or
power series, we allow ourselves to reduce by the original set together
with the results of any previous reductions. So, in our example,
where we are dividing f = x by ¢ = ¢ — z?, after the first reduction,
we we allow ourselves to reduce with f (the result of the zeroth
reduction) as well as g. The first reduction by g tells us that

f=1-g+z°

Reducing the result z? with f instead of g gives Red (2%, f) = 0 so
that we halt. Moreover, the fact that the reduction is zero gives
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z? = z f from which we obtain the relation

f=g9+zf
But this relation tells us that in Clzy,. .., Za)(z;,00)
1
f= g.

l—1=z

Looking at the above example, one might ask whether it would al-
ways suffice to first reduce by ¢, then subsequently reduce by f.
Sadly, this is not the case: it is easy to construct examples where
the sequence of reductions does not terminate. Suppose, for exam-
ple, that we wish to divide f = z+ 22 by ¢ = 2+ 3+ z°. Reducing
f by ¢ and then subsequently reducing the results by f gives the
sequence

fo = f=z+42%
fi = Red(fo,9) =2*—2°—2°
fa = Red(fi,f) =—22°—2°,
fs = Red(fs, f) =2z* —z°,
fi = Red(fs, f)=—3z°,
fs = Red(fy, f) = 32°,

(fs, f) = =327,

f6 = Red fs,

which clearly does not terminate. We get something which termi-
nates by reducing fs by f4:

fs = Red(fs, f) = —32%,
fe = Red(fs, fa) =0.
From this, we can easily write out an expression for f as a sum of a

polynomial times g, plus a polynomial which vanishes at the origin
times f plus a polynomial which vanishes at the origin times fs:

f= )og+( ) f+( ) S
r+z: = 1-(x+x3+x5)+(x—2x2+2x3—33:4)-(a:+a:2)
—z - (—3z°)
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Since, fs can be expressed as a sum of a polynomial times g plus a
polynomial times f, we can actually express f as a sum of a poly-
nomial times g plus a polynomial which vanishes at the origin times
f by backsubstituting:

r+z? = 1-(z+42°+2%
+ (z —22% +22° - 32*) - (z 4 2?)

— z-(=32°)
3z = —1-(z+2°+2>+ (1 ~z+22*-22%) (z+ %)
—
z4+z? = (1—-2z)(z+2°+2°)+ (=2 —zY)(z + %)
so

f = (polynomial) - g 4+ (polynomial vanishing at 0) - f +( ).
This, of course, is what we want because, upon transposing, we have

(unit) - f = (polynomial) - g.

In order to create an algorithm, we have to specify a way to choose
a sequence of elements by which to reduce so that the reduction ter-
minates, either by giving 0 or a polynomial whose leading coefficient
is not divisible by the leading term of anything by which we can
reduce.

Looking at the sequence fo, f1,...fs in our division of f = z + z2
by ¢ = z 4+ z32° above gives us some clue how to proceed. Notice
that neither the degree of the dividends nor the order necessarily
decreases. However, the difference between the degrees of the high-
est degree term and lowest degree terms in the partial dividends
does decrease. Is there someday to guarantee that this will happen?
Before addressing this, let us fix notation.

Definition 6.5 Let g € Clz,,...,z,],9 # 0, and write g as a finite
sum of homogeneous, non-zero polynomaials of different degrees: g =
K L 9i, 9i # homogeneous, deg(g1) < ... < deg(gx). Define the
order of g, denoted ord (g) to be the degree of g1 and the écart of
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g, denoted E(g), to be the difference of the degree of g and the order

of g:
E(g) = deg(g) — ord (f).

By convention, we set F(0) = —1,
A simple argument which we leave as an exercise shows the following.

Lemma 6.6 Let f and g be two nonzero polynomials such that vr(g)
diwvides vr(f). Then

E(Red (f,9)) < max{E(f), E(9)}.

If f,q are polynomials of a single variable, then the inequality is
always strict. If, in the case of several variables, E(g) < E(f) and

E(Red(f,g)) = E(f), then ord (Red (f, g)) = ord (f).

In the one variable case, this gives us a strategy that guarantees
termination. Namely, at each stage, among all the polynomials by
which we can reduce, we reduce by the polynomial whose écart is
least. This will ensure that the écarts of the sequence of partial div-
idends strictly decreases to zero, at which point we have a monomial
which can be used to reduce any subsequent monomial to 0. In the
multivariable, case we use the same strategy, but the écart may not
strictly decrease — however, we can again assert that the sequence of
reductions will terminate after a finite number of steps, essentially
because whenever the écart stays fixed, the order must, too, and
there are only finitely many monomials of a given order.

Making these remarks precise, gives us an algorithm for successively
reducing one polynomial by others using an anti-graded local order,
a proof that the algorithm is correct, and a proof that the algorithm
terminates. see [14], [22], or [1].

With this in place, we now have a way of computing a standard
basis of an ideal with respect to an anti-graded order, and hence the
Milnor number of a singularity. Given an isolated singularity f, we
compute the ideal of leading terms (with respect to an anti-graded



254 O’Shea

order) of the ideal generated by the first partial derivatives of f.
The Milnor number is just the number of monomials not contained
in this (monomial) ideal. The same strategy allows is to compute
Tjurina numbers and the p*-invariant.
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