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1 Introduction

The purpose of this paper is to demonstrate a close interconnec-
tion between Number Theory, Algebraic Geometry and Coding The-
ory and construct considerably long geometric Goppa codes on fibre
products with very good parameters.

Let F, be a prime finite field of characteristic p, which we identify
as a set with {1,2,...,p}, and F, be an extension of F, of degree
v > 1, so that ¢ = p. Let s > 2 be a positive divisor of ¢ — 1 and
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x ( resp. %) be a non-trivial multiplicative character of exponent
s (resp. a non-trivial additive character) of the field F;,. For any
two polynomials f,g € F,[z] of degree [ > 1, m > 1 respectively,
consider the following character sums

So(f) = 2_ x(f(2))

and

T(9) = >_ ¥(9(z))-
zekFy
If f = f' - f is the factorization of f into distinct irreducible
polynomials fi,... f, € F,[z] withdeg(fi--- f;) = pand (s, s1,...,5;)
= 1, the well-known Weil’s result [45] (see also Stepanov [33]) pro-
vides the upper bound

1S, < (p—1g"?. (1)

Similarly, if (m,p) = 1, we have

ITo(9)] < (m = 1)g"/% (2)

The upper bounds (1), (2) are not trivial only for p,m < ¢'/? + 1,
and we know several cases (see Stark [32], Korobov [18], Mit’kin [23],
Serre [30] and Stohr-Voloch [41]) when these bounds can be essen-
tially sharpened using the author’s elementary method (see Stepanov
[33]). Unfortunately, until now the algebraic structure of the polyno-
mials f and ¢ providing such improvement of the Weil bound is not
clear. If p,m > ¢'/? 4+ 1, we do not know practically any non-trivial
upper bounds for absolute values of the sums S,(f) and T,(g), ex-
cept in the case of polynomials f and ¢ of very special form. Thus
we have the following problem.

Problem 1. Determine the class of polynomials f,g € F,[z] of
degree |,m respectively, 1 < I,m < q, for which the upper bounds
(1), (2) can be sharpened and absolute values of the sums S,(f),

T,(g) can be estimated non-trivially for p,m > g'/? 4+ 1.
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Note that the bounds (1), (2) are sequences of the Riemann hypoth-
esis for zeta-functions ((X,s) and ((Y,s) of the smooth projective
curves defined over F, by equations

y* = f(z)

and

y* —y = g(z).
According to this hypothesis all the zeros of the zeta-functions (X, s)
and ((Y,s) lie on the complex line Re(s) = 1/2. Under such inter-
pretation we see that Problem 1 is related to the very deep question
concerning the distribution of the zeros of {(X,s) and ((Y, s) on the
critical line Re(s) = 1/2.

The problem becomes much more difficult if we consider the corre-
sponding incomplete sums. Let w,...,w, be a basis of F, over F,.
Every element z € F,, can be uniquely written in the form

T=rw1 + -+ W,

with z;,...,z, € F,, and for any positive integer NV < p we can
define the box By € Fy >~ F) of volume V = N" as

BN= {1:: (mla"’amv) € Fq l 1 Smi SN,]- SZSV}
Consider now the following incomplete character sums

Sw(f)= 2 x(f(2))

z€ByN

and

Tn(g) = > ¥(g(z)).

z€By

If f(z) = = + a and x is a non-trivial multiplicative character of
the field F, with ¢ = p” elements, it follows from the well-known
results of Burgess [4] and Davenport, Lewis [6] that for any € > 0
there exists § > 0 such that for p > po(e) and N > p(*/2+V)+¢ the
estimate

[Sn(z)] < (Np™*)"
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holds. On the other hand, as was proved by Elliot [8] in the case
when ¢ = p and Y is the non-trivial quadratic character of £}, for any
positive € < 1 and any positive integer N < ¢(¢) log p, the equality

N
ISn()l =1 x(z)|=N
z=1
holds for at least y'~° primes p < y.

In the general case when ¢ = p and f,g € F,[z] are polynomials of
degree [ > 1, m > 1 respectively, we are able only to obtain upper
bounds of the form (Burgess [5])

ISN(f)] < e()p'*log p (3)

and (Korobov [17])
Tn(g)] < '™, (4)

where N = p!/7 1 < r < m, min([r],[m — r + 1]) > em for any
positive € < 1/2, and the constants ¢y and v depend only of €. Thus
we have the following problem, which is very important for many
questions of analytic number theory.

Problem 2. Ertend estimates (3), (4) to the case of an arbitrary
finite field F,, and determine the class of polynomials f,g € F,[z]
of degree | > 1, m > 1 respectively, for which absolute values of the
sums Sn(f) and Tn(g) can be estimated non-trivially for all N >
lOgH-Eq.

In view of the difficulties connected with the solution of Problems
1 and 2 there arises the problem on finding of lower (i.e. existence)
bounds for absolute values of the sums S,(f) and 7,(g). This prob-
lem is especially interesting in connection with its extraordinary sig-
nificance for coding theory. Later on we shall consider two aspects
of the problem, namely, coding theoretic and number theoretic ones.
The first aspect concerns the obtaining of lower bounds for charac-
ter sums by the use of concepts and results of coding theory, whilst
the second one provides applications of the lower bounds for char-
acter sums, obtaining by the use of number theoretic methods, to
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the problem of construction of linear codes over F, with extremely
good parameters. Now we explain a close interconnection between
the problem concerning lower bounds for character sums and the
problem concerning construction of good linear codes. To do this we
shall recall shortly the basic idea of the Goppa construction [14] of
linear [n, k, d],-codes associated with a smooth projective curve over
an algebraic closure F; of the field F,.

Let X be a smooth projective curve of genus ¢ = g(X) defined over
a finite field F,. Let {zy,...,z,} be a set of F-rational points of X

and set

Do =21+ -+ zn.

Let D be a Fi-rational divisor on X. We assume that D has support
disjoint from Dy, i.e. the points z; occur with multiplicity zero in D.
Denote by F,(X) the field of functions on X rational over F, and
consider the following vector space over F:

L(D) = {f € Fy(X)" | (f)+ D = 0} U {0}.

The linear [n,k,d],-code C = C(Dy, D) associated with the pair

(Do, D) is the image of the linear evaluation map
Ev:L(D) = FT,  feo (fa)... flz).
Such a g-ary linear code is called a geometric Goppa code.

Let us estimate the parameter of the code C' = C(Dy, D). The kernel
of the map Ev is L(D — Dy), hence C ~ L(D)/L(D — Dy) and

k = dim C = dim L(D) — dim L(D — Do) = I(D) — I(D — Dy).

In particular, if deg D < n then the map Ev is an embedding, and
the Riemann-Roch theorem implies

k>degD—g+1; (5)

moreover, if 29 — 2 < deg D < n then

k=degD — g+ 1.
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Now, if the weight of Ev(f) is d then f vanishes at n — d points, say,
Tiyy-r s Zi_pn80 (f)+D—x; — - —z, _, > 0. By taking degrees
we obtain

d>n—degD. (6)

It follows from (5) and (6) that the relative parameters R = k/n and
§ = d/n of a geometric Goppa code C = C(Dy, D) satisfy

R>1-6-9—21 (7)
n
Thus to construct a long geometric Goppa [n, k, d],-code with rather
good parameters we need to find a smooth projective curve X of
genus g with a lot of Fi-rational points which ensures the condition
that the quantity (¢ — 1)/n is small enough. Recall that for any
linear [n, k, d],-codes we have the Singleton upper bound

R<1-6+ H
n
and for n — oo the asymptotic Gilbert-Varshamov lower bound
R >1- HQ(é)a
where H,(6) is the ¢g-ary entropy function defined as
Hy(6) = blog,(g—1) —dlog, & — (1 — &) log, (1 —¢).

The points (6, R) for all linear [n, k, d],-codes form the set of code
points V' C [0,1]%. Let Uy™ denote the subset of limit points of
VJ”‘. In other terms, (6,r) € Uéi" if and only if there exists an
infinite sequence of different linear codes C; with distinct relative

parameters 6; = 6(C;) and R; = R(C;) such that
llm ((5,‘, R,) = (5, R) .

If § >0 and R > 0 such a family of codes C; is called asymptotically
good. The structure of the set Uéi" can be described as follows
(Aaltonen [1], Manin [22]): there ezist a continuous function a,™(6)
such that
lin __ lin )
Uq —{ (6’R)|OS-RSaq (6) })
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moreover, aqg(0) = 1, ag(6) =0 for (¢ —1)/q < 6 < 1, and o2™(5)
decreases on the interval [0, (q¢ — 1)/q].

In order to produce a family of asymptotically good geometric Goppa
codes for which R+ 6 comes above the Gilbert-Varshamov bound one
needs an infinite family of smooth projective curves with a lot of F-
rational points compared to the genus. Examples of such families are
provided by classical modular curves Xo(N) and X (V) (Ihara [16],
Tsfasman-Vladut-Zink [44], or by Drinfeld modular curves (Tsfasman-
Vladut [43, Chapters 4.1 and 4.2]). So, if ¢ = p” i1s an even power
of a prime p, there exists an infinite sequence of geometric Goppa
codes C; which gives the lower bound

a8 21-68—(yg-1)".

The line R =1—6 — (/g —1)"" intersects the curve R =1 — H,(¢)
for ¢ > 49. Much easier proof of this result based on construction of
a sequence of Artin-Schreier coverings of the projective line P'(F,)
was recently proposed by Garcia and Stichtenoth [9].

In terms of algebraic geometry the problem on construction of asymp-
totically good codes can be reformulated as follows. Let N,(g) denote
the maximal number of F-rational points on a smooth projective
curve X defined over F| of genus g = ¢(X), and

Nq(g) .

A(g) = limsupy— oo

It follows from the Hasse-Weil bound [45] that

Alg) =24 -
The Serre bound [30]
[Ng = (g + 1)| < g[2/4]

yields
Ag) < [2v4) -

Much stronger upper bound

Alg) < vq-1
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was obtained by Drinfeld and Vladut [7] . This is the best possible
upper bound, and construction of asymptotically good geometric
codes is reduced to construction of a family of smooth projective
curves over F, for which A(q) is close to the Drinfeld-Vladut bound.

So, if ¢ = p” is an even power of a prime p , the result of Thara [16].
Tsfasman-Vladut-Zink [44] (see also Garcia-Stichtenoth [9]) implies

Alg) = Vq—-1.

If ¢ is an odd power of p, the result of Serre [30] provides existence
of an absolute constant ¢ > 0 such that

A(q) > clogq .

In some cases the Serre bound was improved by Perret [28] and Zink
[47]. In particular, the Zink result yields

2(¢*> -1
A(qs) > _@____) _

q+2
In this paper we construct a family of sufficiently long geometric
Goppa codes coming from smooth projective curves X, given over
F, by equations

zzzf,-(u), 1<:1<s.

Each such curve is actually a fibre product of hyperelliptic curves.
For some polynomials f; € F,[u} of a special form the curves X, have
a lot of F,-rational points and provide a family of linear [n,k, d|,-
codes with fairly good parameters and very fast construction and
decoding algorithms. For small values of s, the parameters of the
codes are comparable with the parameters of codes on Artin-Schreier
coverings introduced by Garcia and Stichtenoth [9]. Unfortunately,
the parameter s in our construction is bounded by ¢!/?, and as a
result the genus ¢g(X) is bounded by

(g—3)2vi 241,

However, since the above bound is large enough for ¢ > qo, the curves
X, provide sufficiently long geometric Goppa codes.
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A similar construction of non-singular projective curves with a lot of
F,-rational points based on the use of fibre products of some special
Artin-Schreier curves was independently considered by van der Geer
and van der Vlugt [10].

2 Coding Theoretic Aspects

Let p > 2 be a prime number, N < p a positive integer and x the
unique non-trivial quadratic character of the prime finite field F),,
1.e. the Legendre symbol. Using simple coding-theoretic arguments
we obtain the following result (Stepanov [33, p. 85] , [34]).

Theorem 1. If m is an integer satisfying

(N +1)log2
log p

+1<m<p

then there exists a square-free polynomial f € F,[u] of degree | = 2m
for which

N
Yo x(f(w)=N.

u=1

Proof. Consider the set {fi(u),..., fo(u)} of all distinct irreducible
monic polynomials in F,[u] of degree m > 1 and the corresponding
sequence C = {z1,...,z,} of vectors

zi = (x(fi(1)),.- -, x(fi(NV))), 1<i<n
with components x(f;(k)) = 1. We have
1
n=—3 p(d)p"",

m dlm

where pu(!) is the Mobius function, and hence n > p™/2m. On the
other hand, the supposition of the theorem implies p™/2m > 2V
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and we arrive at the inequality n > 2. Since there is at most 2V
of distinct vectors z; of length N it follows that at least two of the
n vectors z; must be equal. Let z; = z; for ¢+ # i'. The product
f = fi(u) fir(u) is a square-free polynomial in Fy[u] of degree | = 2m,
and all the components of (x(f(1)),...,x(f(N))) are equal to 1.
This.proves the theorem.

Note that the sequence C = {z;,...,z,} can be considered as a
code of cardinality n in the Hamming space {—1,1}". Now, the
equality z; = z; for © # j follows from the fact that cardinality of
the code C cannot exceed cardinality 2"V of the whole space. In this
way the result was slightly improved by Levenshtein [21] by the use
of the presently best known universal upper bounds for codes. It fol-
lows from Theorem 1 that the upper bound (1) cannot be improved
essentially, so in general we cannot obtain any inequality of the form

1Sp(f)l < e (NP)UZ :

The following theorem is more arithmetic in nature and essentially
extends the above mentioned result of Elliot.

Theorem 2. Let p > 3 be a prime number and m < p/4 be a
positive integer. If

log(p/2m) _ /9

1< N <
log 2

then there exists a square-free polynomial f = (u + ay)---(u +
a2m), « € F, of degree | = 2m for which

N
Y ox(f(u)=N.

u=l1

Proof. Consider polynomials u,u+1,...,u+p— N — 1 in F,[u] of
degree 1 and the corresponding vectors

z; = (x(1),.. ., x(N+1-1)), 1<i<p—-N
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with components x(k+1) = 1. By the assumption of the theorem,

| < N < logp/im

g2 = p/2,
hence p— N > m(2"V 4 1). Now let us consider m subsequences C; =
{z(s=1)r41s-- - Tsr }, 1 < s <m, of the sequence C = {z;,...,zp_n}
consisting of 7 = 2V 4 1 elements. Each subsequence C, contains
at least two equal vectors, say T(s_1)r4i, = T(s—1)r4i, for 1, # 2,1 <
i5,1, < r. The product

S

fu) = [T+ (s=)r+i)(ut (s = 1)r +7) = (ut ) -+~ (u+ azm)
s=1

is a square-free polynomial in F,[u] of degree | = 2m, and all the

components of (x(f(1)),...,x(f(/N))) are equal to 1. This completes

the proof.

Similarly, if ¥ 1s a non-trivial character of the field F,, we have
(Stepanov [33, p. 86]) the following result.

Theorem 3. Let p > 2 be a prime number, N < p a positive integer
and € < 1/4m a positive number. For every integer

-1
. Nlog(l+¢e™1)
- log p

there erists a non-zero polynomial g € Fp[u] of degree at most m for

which
N

| 2 (f(u))l = (1 - 2me) V.

u=1

The results of Theorems 1 and 3 (in a slightly stronger form) were
recently extended by Ozbudak [26] to the case of an arbitrary finite
field F, and arbitrary non-trivial characters x and 3. More sub-
tle technique of the coding theory, based on using some properties
of Reed-Muller codes, arrives at the following result for complete
exponential sums (Bassalygo, Zinov’ev, Litsyn [3]).
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Theorem 4. Let F, be a prime finite field of characteristic p > 2, let
F, be an extension of F,, of odd degree v > 1 and @ be a non-trivial
additive character of Fy. Then there exrists a polynomial g € F,[u] of
degree at most p*~V/? 4+ 1 such that tr g(u) is not a constant and

| To(9)l > ¢~/2.

Below we prove this result (Theorem 8) in a stronger form through
elementary arithmetical means.

3 Number Theoretic Aspects

Let p be a prime number, v a positive integer and F, a finite field
with ¢ = p” elements. The field F} is a Galois extension of the prime
finite field F), of degree v with a cyclic Galois group of order v. The
action of a generator 6 of this group on an element z € F, is given
by the rule §(z) = zP. The map

v—1

norm (z) =z -6(z)---6""'(z) =z -2P--- 2P

of F, onto F} is called a norm of the element z. Let x be a multi-
plicative character of the field F}, and = be an element of F,. Set

X'(z) = x(norm (z))

and call ¥’ a multiplicative character of the field F, induced by the
character x.

Similarly, the map

v-—1

tr(z) =z +0(z)+- +6"(2)=z+ 2P+ -+ 2

is called a trace of the element z € F;,. Let ) be a non-trivial additive
character of the field F,. Set

Y'(z) = P(tr (z))
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and call ¢’ the additive character of the field F, induced by the
character 1.

Now let f be a square-free polynomial in the ring F,[u] of degree [
and let g be a polynomial in F,[u] of degree m relatively prime to
q. Let x be the non-trivial quadratic character and ¥ a non-trivial
additive character of F},. Consider the character sums

So(f) = 2 X'(f(w)) = 3_ x(norm (f(w)),

UGFq 'U-EFq

and

Ty(g) = D_ ¥'(g(w)) = >_ ¥(tr (f(u)).

UEFq uqu

The following result of the author [35], [37] shows that the Weil
bound cannot be sharpened essentially in any extension F; of the

field Fj.

Theorem 5. Let F, be a finite field of characteristic p > 2 consisting
of ¢ = p¥ elements and x, be the character of F; induced by the non-
trivial quadratic character x of the field Fy,. If v > 1 then there exists
a square-free polynomial f € F,[u] of the form

u+ ur”? ifv =0 (mod 2)

f(U) — { (u + up(l/—l)/2)(u + up(V+1)/2) sz/ = 1 (mOd 2)
such that

_ [ (@*=1)¢"*  ifvr=0 (mod?2)
Sq(f)—{q—l ifv =1 (mod 2)

Proof. Let v > 1 be an even number. As u?” = u for every u € F,,
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we have
norm f(u) = H(u +u 1'/2) - H(u” i 1I/”H)
1=1 1=1
V/2 1 /24 1 v/2 + 1 1
=TI +7 ) [T + 02
1=1 1=1
U/Z 1 /2411
—= H(U,p + P )2
=1
Therefore,

> X'(f(w) = }_ x(norm(f(u))) =g — N,

u€Fy uely

where N is the number of roots of the polynomial f(u) = u + u pvl?

in the field F,. We have f(u) = u(l + u?’ v/ ~1); hence taking into

account the equality

(pu/Z _ l’pu _ 1) — pu/2 . 1’

we obtain by the Euler criterion that N = 1 4 (p*/? — 1) = ¢!/%

Thus,
Z X 1/2 1)q1/2’
uely

which proves the theorem for v an even positive integer.

Let now v > 1 be an odd number. In this case for any u € F, we
have

v

norm (f(u)) = H(up-‘-l 4 up(u—l)/2+-'—1)(up.'_1 n up(u+1)/2+|-—1)

1=1

(u—l)/2 ‘ v _ ‘
p(u—l)/2+l—1 ) H (up--l + up(u+1)/2+-—~1 )
1—1 1=(v+1)/2
(U—l)/2 i—1 (v41)/24i-1 z 1—1 (v41) /241
X uP' T P ) H (up 4+ uP )

1=1 1=(v+1)/2
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(v11)/2 i—1 (v—1)/24¢-1 (v-1)/2 (v41)/24;-1 71
= II " +w ) I @7 1)
1=1 7=1
(v=1)/2 o (v1)/2
" (up._l n up(u+1)/2+:-—1) H (up(u-—l)/2+1-1 4 up]-—l)
i=1 7=1
(v41)/2 (v-1)/2

= (u(pi—l +up(v.-1)/2+i—1)2 H (upi-—l +up(u+1)/2+i_1)2
=1 i1

and hence

> x'(f(w)) = Y x(norm (f(w))) =q— N,

ueFy uely

where N’ i1s the number of roots in F, of the polynomial f(u) =
(u 4+ u? ") (u + u?"* ") Clearly N’ = 1 and therefore

Yo X' (flw)=¢-1.

ueky
This completes the proof.

Note that the polynomial f(u) = u+uP" has degree I = p*/?%: hence
the Weil bound (1) is attained in any extension F, of the field F, of
an even degree v > 1. The result of Theorem 5 can be extended as

follows (Gluhov [11], [12], Gluhov, Ozbudak [13]).

Theorem 6. Let v > 1 be an integer, F, the finite field of charac-
teristic p > 2 consisting of ¢ = p” elements, x' the character of F,
induced by a non-trivial multiplicative character x of the field F, of
exponent s > 2 and a,b positive integers satisfying a + b = s. Then

(2) if v =1 (mod 2), there exists a polynomial f; € F,lu] of the
form

fl(u) — (u + uP(V—l)/2)a(u + UP(U+1)/2)b

such that

Sd(f)= > X'(fi(w)=q-1;

ueF,
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(22) if v =0 (mod 2), there ezxists a polynomial fo € F,[u| of the
form

folu) = (u + up"/2—1)a(u 4 uP"/2+1)b

! if 4 fv
SQ(f2)—{ pu__p Zf 4'1/ )

such that

(127) if v =0 (mod 2) and s =0 (mod 2), there exists a polyno-
mial f3 € Fp[u] of the form

falw) = (u +u?"*)?

such that

Sa(fs) = (P77 = 1)p*"*.

Theorem 7. Let v > 1 be an integer, F, the finite field of char-
acteristic p = 2 consisting of ¢ = p* elements, x' the character of
F, induced by a non-trivial multiplicative character of the field F,, of
exponent s > 3 and a,b positive integers satisfying a + b = s. Then

() if v =1 (mod 2), there ezists a polynomial fi € F,[u] of the
form
fulu) = (u+ w7y w4

such that

S{(f1) = X(fiw) =p" —p;

1) if v = 0 (mod 2), there exists a polynomaal f, € F,|u]| of the
P
form
fa(u) = (u+ u”u/z'l)a(u + upulz'H)b
such that

v 2 :
_Jpr-p if 4 fv
Sq(f2) - { pu —p if 4|1/

Similar results can be obtained for the exponential sums Ty(g) (Ste-
panov [35]).
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Theorem 8. Let v > 1 be an integer, F, the finite field of char-
acteristic p > 2 consisting of ¢ = p* elements and ' the character
of Fy induced by a non-trivial additive character 1) of the field F,.
There exists a polynomial g € F,[u] of the form

( . (U—Z)/z : v
W42 Y Wt 4 dag if v=0 (mod?2)
1=1

g(u} = 4

(v=1)/2
W42 Y wPt if v=1 (mod 2)
1=1

such that

T, (9)l = | D2 #'(9(w))| = p~'/2.

u€ Fy

Proof. Let wyq,...,w, be a basis of the field F, over F,. Then every
element z € F, can be uniquely written as a linear combination

z=zw + -+ 2wy

with coefficients z; from F,. Applying to both sides of the last equal-
ity the Frobenius automorphisms ’(z) = 2%’ for j = 0,1,...,v — 1
we arrive at the system of linear equations with respect to zy,..., z,:

z=z1w1 + -+ 2w,

0(z) = z0(w1) + -+ 2,0(w,)
6v-1(2) = 226N (wi) 4+ -+ + 2,01 ().
The determinant of the system
A = det(67 1 (w;))1<ij<v
differs from zero, and we find
z; = AN Az + Dg0(2) + - + A;007N(2), 1<) <,

where
Aij = (=1)F det(6'" (wi))1 <k icuksilei -
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It is clear that

and
O(A,‘_l,j) = (—l)u—zA,'j, 2<i1<vy, 1<)y<vw
Therefore |
Aii/A =671 (A D), 1<4,5<w
and hence
zi = (0;2) +0(asz) + -+ 6" (a;2)
= (j2) + (052)" + - + (ej2)"
= tr (a;z),
where

aj = (—l)j+1A1j/A, 1<y <
For p > 2 we have

2 _ - 2 ' p:—l ' pk-—l
z; = tr (a;2)" +2 Z (a;z)"  (aj2z)”
1<i<k<y
and setting «;z = u for some j =1,2,...,v we obtain
[ k—1
22 =tru®+2 Z uP o u?
1<1<k<y
Let v > 1 be an odd number. Represent the sum
[ | k-1
> o
1<i<k<y
in the form
-1 k-1 vl I ie1
Z ul P — (u uP )P
1<i<k<y 1=1 [=1
(v-1)/2 (v-1)/2 L
t-—1
- ('Y
1=1 =1
v—1 v—1 (v—-1)/2 v—1
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. v
Since u? = u for every u € F,, we have

(u ) upl )pi-l

(v-1)/2

v k-1
= Z Z u? B uP

k=(v+3)/2 I=(v+1)/2

and therefore

Z i—1 k-1l

1<i<k<y

v—1 v—1

+ Y Yy 4

i=(v—1)/2 =1

Put

_ Z Z upl——l upH-:——]
1—1 l:(l/+l)/2
v (u-—l)/2

I
]
g
&
~d

%

\-éa"
1

k=(v+3)/2 1=v—k+1

(u-—l)/2

ZZ

=(v+3)/2 l=v—-1+1

(v—=1)/2 (v—-1)/2

ZZUUPI

1—1

(v—-1)/2

E Zuup

i_(u+3)/21 v—1+1

(v—=1)/2
tr Z ur
1=1

(v—-1)/2

)/
g(u):u2+2 Z upl+1
=1

For every u € F, we have

zf = tr g(u)

and, consequently,

> ' (g(u

u€Fy

For the Gauss sum
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the equality

1s valid and hence

v-1/2

> blelu)) =

‘UEFq

Tq(g)} =

This proves the statement for v =1 (mod 2).

Let now v > 1 be an even number. In this case we have

v—=1 v—
z]2 = tru’+2 Z ur = tru®+ 22 Z(U : u’)')”"l
1<i<k<y i=1 (=1
v/2 (v=-2)/2 y=1 v=i
-1 Ly, =)
= tru®+2) Z (w- )P+ 2 3 S(uwwr)
1=1 =1 1:(y+2)/2 =1
(v-2)/2 v/2

+ 2 > (v - + ?Z(&'U’)m)”‘_ly
=1

=1 [=(v+2)/2

and since
(U—Q)/Q I/—’i . 1 (I/ 2)/2 v— 1, ; l+,’_,.1
(u - ul )P = Z Z uP  uP
i=1  (={v+2)/2 =1 I=(v+2)/2
i kil v—lyk-1 k—1 i (sz/z :——l
- UP B U,p =
k=(v44)/21={r42)/2 i=(v+a)/2 I=v— —141
and
vf2

v _
ZZ(u u"y/z)”' R Z{u . upm)?"-1
=1
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for any u € F,, we find that

q

v—-2)/2

, ( pl'——l |
22 = truf4 2> ( > u- upl) +> (u- u”m)”'_1
1=1 -1

(v=2)/2
tr |u?®+2 Z yP' + upy/2+1 )
=1
Thus, if
(v=2)/2 V2
g(u) = u? +2 Z uP 14 P
=1
then for every u € F,;, we have
ij_ = tr g(u)

and therefore

> Y'(g(u)| = p V2

To(9)] =

This completes the proof.

If char F, = 2 we are able to prove the following result.

Theorem 9. Let v > 1 be an odd number, F; the finite field of char-
acteristic p = 2 consisting of ¢ = p* elements and v’ the character
of F, induced by a non-trivial additive character ¢ of the field F;.
There ezists a polynomial g € F,[z] of the form

(v=-1)/2
9(2) = aya, 2’ + Z (a,a’s)l + ozflozs)z”l+1
=1

such that
Tq(g) = Pu—l-

Proof. Using the same arguments as in the proof of Theorem 8 we
find that

(v=-1)/2
Zrzs = tr (Otras22 + > (a- o + af -as)zpl“) =tr g(z)

=1
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for every z € F;. Now since

Yo Y(zzs) = p!

z1,..,20EF,

for r # s, we obtain the equality

TQ(g) = pu—l,

which proves the theorem.

4 Applications to Coding Theory

Now we apply the results of previous section to construct rather long
geometric Goppa codes with fairly good parameters.

Let F, be a finite field of characteristic p > 2, let F, be an algebraic
closure of the field F, and A**! be (s + 1)-dimensional affine space
over F.

Lemma 1. Let f,,...,f, be pairwise coprime square-free monic
polynomials in F, of the same odd degree | > 1 and Y be the fibre
product in A*T! given by

zf = fi(u), 1 <i1<s. (8)

1

Then the genus g = g(Y') of the curve Y is

g=(ls— 3)25'2 + 1.

Proof. Let X be a smooth projective model of the curve Y. Denote
by v, the canonical valuation of the function field F,(X), and by
Q[ X] the space of regular differential forms on X. The affine curve
Y is easily seen to be smooth. If Y is its projective closure, then X
is a normalization of Y and we have the map % : X — Y, which
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is an isomorphism between Y and 3 !(Y). Hence it follows that

g =g(X).

The rational map (u,zy,...,2;) — u of the curve Y into A' deter-
mines a morphism ¢ : X — P! of degree 2°, so that for ug € A! either
©~"(up) consists of 2° points of the form z’ = (u,%z,...,%2;) in
each of which v,/(t) = 1 for a local parameter ¢ at ug, or else ™! (up)
consists of 2°7! points of the form z! = (u, +z1,...,2i-1,0, £z41,. . .,
t2,), and vpr(t) = 2.

Let us consider the point at infinity us, € P'. If the coordinate on
A' is denoted by u, then t = u™! is a local parameter at uo. If
©~ (oo ) were to consist of 2° points z(7), then at each z., = z{7) the
function ¢ would be a local parameter. Hence it would follow that
vz, (t) =1 and v, (fi(t)) = —I. But since [ is odd, this contradicts
the condition that v, (fi(¢)) = 2vs(2). Thus ¢ (uw ) consists of
r = 2°71 points z{7),1 < 7 < r, with projective coordinates z{7) =
(0,1, £1,...,%1,0). It follows that X = YU {z(D}u...u{z(D}. At

any such point zo, = z{7) we have v, (u) = —2 and v, (z;) = —I.

Now we shall find a basis of the space Q[X] over the field F,. Any
element w € Q[Y] can be written as a F,-linear combination of the
differential forms wy = Fo(u)du and

Py, i (u)du
w11 .,io- - b]
Zij)zig
where 1, ...,1, are integers satisfying the condition 1 <, < --- <

i, < s and Py, P, ; are polynomials in F,[u]. Indeed, the differ-
ential form

du

zil...zi

a

Wiy ,ic —

is regular at any point ug € A! with the condition z;(ug) # 0 for 1 €
{t1,...,%0}. Now if z;(ug) = 0 for a unique ¢ € {iy,...,1,}, then z
is a local parameter at = = (ug,%z1,...,%2i-1,0, £2i41,..., £2,),
so that vyu(z;) = 1 and vzr(u —ug) = 2. Therefore, v #(du) = 1 and
again w;, _; 1s regular at ug. The form wy = du 1s also regular at
any point ug € A'. Thus, the differential forms wy = du and Wiy ke
form a basis of the F[u]-module Q[Y].
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It remains to clarify which of the forms wp and w;,  _;, are regular
at the points z{1),...2(). Let z., be one of these points. If t is a

Jocal parameter at zo, then u = t72u/, z; = t~'2!, where v’ and Z!
—_ tla—3

are units in the local ring O, . Therefore w Miy . iodt,
a unit in O,_, hence (w! ) = (loc —3) * £oo. Thus,

11,--94la

With i,

ilo

the differential form

P .. i, (u)du

1 ,..-,10'

Wis,yio =

-

z’l -..Zi

1 o

is regular at z., if and only if

Voo (Piy.. i (u)du) > —(lo — 3).

This means that deg P, ;. (u) < (lo —3)/2 and hence

lo~4 if e =0 (mod 2)
deg P, ,..i,(u) <
lo=3 if o =1 (mod 2)

The differential form wg = Pydu is not regular at =, for any non-zero
polynomial Py € F,[u], so the regular differential forms

14 ! n, !
114..0ta?

w

1 yeio? W95 g st
where 1 <1; <--- <1, < s and

lo-4 if o =0 (mod 2)

to =3 ifeo=1 (mod2)
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form a basis of the space £2[X] over F. Therefore

S

- > ¥ (o-?

o=1 1<t € <in<
=0 (mod 2) St<m<tess

S

+ % Z Z (lo —1)

o=1 <3 el1, <
c=1 (mod 2) 1_”< <toSs

| & S d S 1 i S
-52e0)- £ ()5 £ )
=0 (mod 2) o=1 (mod 2)

1
= -2-(1323—‘ —2° =271 4 2)

and hence
g =g(X) =dimg_ Q[X] = (Is - 3)2°7% + 1.

This completes the proof.

Lemma 2. Let F, be a prime finite field of characteristic p > 2, let
F, be an ea:gfen_éz'on of F, of even degree v > 1 and A be the set of
roots in F, of the polynomial

flu) =u+ "’

Then
(¢) A is a subgroup of the additive group F; of the field Fy;

(i) if {Ay = A, Ag,..., A} is the set of all cosets in F}/A and
{a1,...,a,} are distinct representatives of the cosets, the polynomi-
als

pu/2

filw) = (u+ @) + (u+ @), 1<i<r, (9)

are pairwise coprime in F,|u];
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(iii) r = |F}/A] = p/?.

Proof. The main point is (i). First of all we note that f(0) = 0.
Now, if a and 3 are roots of f(u), then

fla+B) = (a+B)+(a+B)P" = (a+ o)+ (8+ ")
= f(a)+ f(B) =0,

so that a + f( is also a root of the polynomial f(u). Thus A is a
subgroup of F}.

To prove (ii) let us suppose that f;(u) and f;(u) for : # j have a
common root in £, say u = §. In that case

0+ a; + (0 + a;)"

and therefore

v/2

0+ai+6"" + o =04a;+6" 4o

This yields

a;, — a; + (a; — aj)pulz,
and we find that «; — a; is a root of f(u); hence oy — a; € A.
But a; — a; € A by the choice of y,...,a,, and we arrive at a

contradiction.
Finally, since |A| = p*/? we find that
= FF A= 7 =

This finishes the proof.

Lemma 3. Let F, be a prime finite field of characteristic p > 2,
let F, be an extension of F, of even degree v > 1 and s < p*/? be
a positive integer. Let N, be the number of Fy-rational points of the
curve Y given by equations (8) with polynomials

v/2

filu) = (u+ i) + (v + )P, 1 <1< s,



Character Sums, Algebraic Curves and Goppa Codes 339
defined by (9). Then

Nq — (2q1/2 _ 3)(]1/223—1-

Proof. We have

Ny = 2 1+ X (W) (1 +X(f:(w)))

ueFy

_ z(ui 5 x'(fn(U))---x'(fia(U)))

and hence

Ny=p'+3 T X)X (fea ().

0=11<1;<-:<15<s

It follows from Theorem 5 and Lemma 2 that

, [0 if ue A;,
X' (fi(w)) = {1 if ue F,\ A,

and since any two distinct sets A; and A; have no common element
we obtain

(s
Nq — pu n <0> (pu _ o_pu/Z) =p, + (Zs _ l)pv _ szs—lpu/Z
o=1

— (Zpu/2 _ 3)p1//22s—1 — (2q1/2 _ S)ql/Zzs—-l.
This proves the lemma.

Now we are able to prove the following result (Stepanov [36]).

Theorem 10. Let p > 2 be a prime number, v > 1 be an even
integer, and F, the a finite field of characteristic p consisting of
q = p* elements. For any positive integers s < ¢*/? and r > (sql/2 -
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3)2°7% there ezists a geometric Goppa [n, k,d],-code C = C(Dy, D)
with

r < n S (2q1/2 _ 3)q1/223—1,
k> r—(sq'/?—3)2:"2,
d > n-—r.
Proof. Let fi,...,f; be pairwise coprime polynomials in F[u] of

the same odd degree [ = ¢'/? defined by (9), and Y C A**! be the
affine curve defined over F, by equations (8). Let Y C P**! be the
projective closure of Y and X be a non-singular projective model of
Y over an algebraic closure F, of the field F,.

Since the curves Y and X are birationally isomorphic, we have ¢ =

g(Y) = ¢g(X), and by Lemma 1
g = (sql/2 — 3)23'2 + 1.

The number V,(X) of F,-rational points of the curve X satisfies by
Lemma 3 the inequality

N, (X) > N, +1=(2¢"% = s)¢g"/?%2°7" 4+ 1.

Let n < N, be a positive integer, let z,,...,z, be Fj-rational points
of X at the finite part of X, and z, be a point of X at infinity. Set
Dy=z1+ - -+z, and D=r- z.

Applying to X the Goppa construction for r > (sq'/? — 3)2°7!, n >

r, and taking into account (5), (6), we obtain a geometric Goppa

[n, k,d],-code C = C(Dy, D) with

ro< n < (297 — s)qt/2251,
k > r—g+1=r—(sq/?=3)2°2,
d > n—r.

This completes the proof.

Now using (7) we obtain the following result.
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Corollary 11. The relative parameters R = k/n and 6 = d/n of
the code C = C(Dy, D) satisfy

(Sq1/2 _ 3)2s—2

n

R>1-6-

In particular, forn = N, = (2¢"/? — 5)q}/?2°~! we have

sqt/? —3
2(2¢"/2 — 5)q'/*

R>1—6—

Similar result is valid in the case of extension of the field F), of an

odd degree v > 1 (Stepanov, Ozbudak [38]).

Theorem 12. Let p > 2 be a prime number, v > 1 an odd inte-
ger and F, the finite field of characteristic p consisting of ¢ = p¥
elements. For any positive integers r, s satisfying

2+ 4
= PR - 2

S

and
2 ((p P (p+1) —2)s —4) <r < 2q

there exists a geometric Goppa [n, k,d],-code with parameters

r < n < 2%,
Eo>or D2 (R (p 4 1) - 2)s — 4),
d > n-—r.

Recently these results were extended to the case of codes on fibre
product of superelliptic curves (Ozbudak [27], Stepanov, Ozbudak
[39]).

For other applications of character sums to coding theory see Barg
[2], Helleseth [15], Lachaud [19], Lachaud, Wolfmann [20], C.J. Moreno,
O. Moreno [24], [25], Rodier [29], Tietaviinen [42] and Wolfmann
[46]. '
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