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1 Introduction

One of the expected products of this summer school is an answer to
the following question:

What is ALGEBRAIC GEOMETRY?

(We write AG for short.) Actually this is a hard task, because
everybody already has the fixed conviction that the objects of AG
are algebraic varieties.
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An irreducible algebraic variety X has a dimension dim X, and this
number is usually a rough indication of the level of completeness
of the geometric theory describing it. Algebraic varieties of small
dimension carry special names:

dimX =0: set of points
dimX =1: curves (Xavier Gomez-Mont’s lectures)
dimX = 2: surfaces (Rick Miranda’s lectures)
dimX =3 : 3-folds (Miles Reid’s lectures)

etc.

To explain how my lectures fit into this list, [ would like to remark
that two algebraic varieties of different dimension can be geometri-
cally tdentical. To see this, consider the following chain of examples:

dim =0 : a set of 6 distinct points on P' up to PGL(2, C) action;
dim =1 : a curve of genus 2;
dim =2 : a cubic surface in P* with one ordinary double point;

dim =3 : a nonsingular intersection of two quadrics in P°.

The identifications between the objects in dim < 3 are absolutely
obvious: the canonical map of a curve (see Rick Miranda’s lectures
[M] in this volume) of genus 2 is a double cover of P! ramified in
6 points; considering P! as a conic in CP?, blowing up 6 points on
this conic and constructing the anticanonical map of the resulting
surface, we get a cubic in P® with an ordinary double point, see [M].

The threefold in our list carries the imposing full name of Fano three-
fold of index 2 and degree 4; its halfanticanonical map [M] displays
it as the base locus of a pencil of quadrics in P°. The six singular
quadrics of this pencil take us back to a set of 6 distinct points on

P'.

This example of a chain of identifications i1s of course very classical
and simple. A more recent example is Mukai’s construction [Mu] of
an identification of a plane quartic with a Fano variety V..

Slogan: An algebraic geometer is skillful enough if he or she can



The Classical Geometry of Vector Bundles 349

recognize the geometric person under many guises of different di-
MEensions.

My first aim is to give you some experience in this direction. But my
task is a little more complicated, because there is some new person
In our game:

algebraic vector bundle.

In some sense this geometric object doesn’t have any dimension (or,
if you prefer, is infinite dimensional). But in any case, we can’t avoid
it. Even in our simplest chain of 1dentifications, the intersection of
two quadrics in P® is a moduli space of stable vector bundles on the
corresponding curve of genus 2.

So my second aim is to construct a simple but a new chain of geo-
metric identifications including a vector bundle as a geometric ob-
ject.

This new chain isn’t quite as simple as the previous one, but it is per-
haps the simplest illustration of new geometric observations showing
that CLASSICAL AG is a slice of much more general GEOMETRY.
Namely, some time ago Gromov observed that many results of ENU-
MERATIVE AG are true in SYMPLECTIC GEOMETRY. But a re-
cent observation due to Donaldson is much more unexpected: many

constants of ENUMERATIVE AG are invariants of the underlying

smooth structure of algebraic surfaces.

Thus my third aim is to explain these relations between AG and
differential geometry.

2 Clebsch and Darboux curves

Let CP? be the complex projective plane:

CP? = PT, where T = C>, so that PicCP* =7Z -,



350 Tyurin

where [ is a line. Then |d-l| = PS%T* is the complete linear system of
curves of degree d in CP?. So a homogeneous polynomial ¢c € SiT*
of degree d is the equation of a curve

C ={¢c =0} CCP? thatis, Celd-]I.

It is a classical enumerative problem in invariant theory to compute
the degree deg V' of some PGL(3, C) invariant subvariety V C |d - |.

Example 0: The discriminant hypersurface in |d - [|:
Veing = {C € 1d- 1] | SingC # 0},

This is obviously a subvariety of |d - {| invariant under PGL(3, C),
and an easy calculation shows that

deg Vi o =3 (d—1)%

sing —

Now a curve in CP? which splits completely as a union of lines
A= (2.1)
1=1

is called a polygon or an r-gon. In §4 we will define an r-gon to be
regular if all its sides [; and all its vertices [; N {; are distinct. Let
P. C |d - | be the subvariety of all r-gons.

Useful exercise: What 1s deg P, 7

Definition 2.1: We say that a curve C circumscribes a reqular r-
gon A, if for every pair (1,7) the vertex (= intersection of sides)

l,‘ﬂleC.

Let

MP? = {A,,Cy} C P, x |d- | (2.2)
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be the closure of the incidence variety of pairs consisting of a regular
r-gon A, and a curve Cy of degree d circumscribing it. We have two
projection maps:

MP¢

PA/ \Pc (23)
P, jd- 1]

Thus the subvariety
p(MP?) C [d- ] (2.4)

of curves of degree d circumscribing some r-gon is invariant under

PGL(3,C).
Problem: What is deg p.(MP?) ? More precisely, what is

s;(d) = deg p. - deg p.(MP%)? (2.5)

In terms of the defining equations, it is easy to see that

r

(A,C) € MPI™! = ¢¢ = E(m/qsl,.) (2.6)

where A = U_, Li.

Historically, the problem (2.5) is closely related to the following prob-
lem:

Definition 2.2: We say that a polygon A = U._, l; is apolar to a
curve C if

r

¢c = Z(¢la)d' (2'7)

1=1

Let

MPA? = {A,,Cy} C P, x |d - (2.8)
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be the space of apolar pairs of polygons and curves. We again have
two projection maps

MPA®?

Pa/ NP (2.9)
P |d - 1]

Thus the subvariety

ps(MPAZ) C |d- || (2.10)
is also invariant under PGL(3, C).
Problem: What is

c,(d) = degp. - deg p.(MPA%)? (2.11)

These problems were solved recently by Geir Ellingsrud and Stein
Strgmme. Using Bott’s formula, they computed the constants ¢, (d)
for r <9 and s,(r — 1) for r =6,7,8,9, 10.

For example, they find

5'-cs(d) = d'° —100d4° + 150d” + 3680d° — 102604°
—52985d* 4 2241304° 4 127344d?
—1500480d + 1664640. (2.12)

The following particular cases of the general enumerative problem
will be important for us:

Definition 3:

1. A curve

Ce PC(MP§+1)

1s called a Darbouz curve.

2. A curve

C e PC(MPAgﬂ)

1s called a Clebsch curve.
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For special reasons, Darboux curves of degree 4 are called Luroth
quartics. These names have a historical explanation. Namely it is
easy to see that the virtual (expected) dimension

v.dimMP4,, = v.dimMPAS,, = 3d + 2. (2.13)

Remark: This dimension is one more than the dimension of the
subvariety of rational curves of degree d.

But in 1865, Clebsch observed the following:

Clebsch’s Theorem:

1. The image p.(MPA}) is a hypersurface in |4 - 1| = P'*. (This
is in spite of the fact that

v.dimMPA; = dim [4 - | = 14.)

2. If C 1s nonsingular then

C € p.(MPA}) < p;!(C) =P.

deg p.(MPA}) = 6.

Exactly the same facts hold for MP}, that is, for Liiroth quartics,
as Luroth observed in 1868. But the degree of the hypersurface of
Liroth quartics was only computed in 1918 by F. Morley [Mo]:

deg p.(MP3) = 54. (2.14)

This constant was reproduced in modern investigation (Tyurin, Le

Potier, Ellingsrud and Strgmme) under absolutely new motivations
related to PDEs.
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Remarks:

1. It follows from Clebsch’s Theorem, that the polynomial (2.12)
satisfies

65(4) = O,

that is, 4 is a root of ss(d). Can you see this from the display
of this polynomial (2.12)7

2. The fibres of the projection p. of the diagram (2.9) were used
by S. Mukai to describe special Fano varieties: let

pe MP: — |4 -]
be the right side of the diagram (2.3). Then
(1) for general C, the inverse image P !(C) is a Fano threefold;

(i) if C = 2q is a double nonsingular conic, then P71(2q) is a
compactification of C*, [Mu).

(111) The exact formulas of Ellingsrud and Strgmme also work
when the degree of curve is not small with respect to the num-
ber of sides of polygons. More precisely, if d > r — 1, S. Mukai
proved that p.(MPA>) = |5 -], and that the map p, is bira-
tional. But you can see that the constant ¢7(5) is negative.

3 Vector Bundles on an Algebraic Sur-
face and Their Sections

Let me recall briefly the main constructions of sheaf theory on alge-
braic surfaces. The starting point is the structure sheaf Os = O of
an algebraic surface S. For a first approach, it is enough to consider
a nonsingular surface. Thus the stalk Op of O at a point p€ S is a
2-dimensional regular local ring. Every coherent sheaf F' has a stalk
Fp at each point P € S, which is a module of finite type over Op;
moreover, in a neighbourhood U of any point, there is a resolution

OZ—)O;]J—)FIU—)O'
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Thus each sheaf ' on S defines a filtration
S,CcScCcS

by the homological dimension of the stalk. If this filtration is trivial
then F is called a vector bundle and we will note it as E.

For a sheaf F on S the canonical homomorphism

can : F' — Hom(Hom(F, 0),0) = F** (3.1)
can be completed to a 4-term exact sequence

0 T(F)—> F 28 F* 5 C(F)— 0 (3.2)

We say that F is a torsion sheaf if ' = T'(F), a torsion free sheaf if
T(F)=0 and a reflezive sheaf if F = F**,

It is easy to see that on a surface, a reflezive sheaf is a vector bundle.
Moreover, for a torsion free sheaf F', we have dim SuppC(F) = 0;
that is, in this case C(F') is an Artinian sheaf.

A pair of sheaves F] and F;, defines three vector spaces Exti(Fl, F;),
for : = 0, 1,2 with the usual functorial properties.

In the short exact sequence of sheaves

0> F— F— F; -0, (*)

the sheaf F' is called an extension of Fy by F,; such an extension
is given by an element e(F) in the vector space Ext'(F}, F;), so
the set of classes of such extensions has the structure of the vector
space Ext'(Fy, Fy). For the zero class 0 € Ext'(Fy, F;) we have
F=F@&F,

Exercises:

1. Prove that on an algebraic curve C, every coherent sheaf F' 1s
a direct sum

F=T(F)e F™
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2. Suppose that we have two extensions F' and F' of F; by F, and
F{ by F;, together with a homomorphism ¢ F{ — F;. Then
the identity map F; = F3 and the given map ¢ extend to a
homomorphism F' — F if and only if the homomorphism

@ Ext'(Fy, F2) — Ext!(F], F})
induced by ¢ satisfies

B(e(F)) = e(F). (3.3)

Of course, we would prefer to work only with vector bundles, which
is enough for working over algebraic curves. But over algebraic sur-
faces, it 1s absolutely necessary to use torsion free sheaves.

Any rank 1 torsion free sheaf J on an algebraic surface S admits an
exact sequence of the form (3.2):

0—J—-0s(D)=J"—=C(J)—0, (3.4)

where D is some divisor on S, and we can untwist this sequence by

tensoring with Og(—D):
0— J(=D) - Os — O — 0. (3.5)

The last sheaf is the structure sheaf of 0-dimensional subscheme (a
cluster, or a “fine O-cycle”) € of S, and J(—-D) = I C Ogs is the

1deal sheaf of this subscheme. A cluster ¢ defines a cycle of points
[f] = Zdeg(fapi) " Pi-
We say that ¢ 1s reduced if we have
deg(¢,pi) =1 (or 0) for every .

In this case ¢ = [], and the cluster is a configuration of distinct
points on S.

Thus a rank 1 torsion free sheaf admits two invariants: ¢(J) =

c1(J**) and ¢3(J) = deg € = h°(O).
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Now let s Og¢ — FE be a section of a vector bundle E of rank 2.
We say that a section is regular if its zero set 1s a 0-dimensional
subscheme:

(S)O = f
In this case, by definition, deg ¢ = c;(E).

Remark: If the zero set of a section contains an effective curve C,
we can untwist it by —C' to obtain a regular section s Og — E(—C).
In this case

deg{ = c3(E) — C - (ar(E) - C).

For a rank 2 vector bundle F, the dual map to a regular section s
can be extended to the Koszul resolution (as in David Eisenbud’s
lectures)

2
0 ANE 25 B 05 25 0 - 0 (3.6)
of the zero set (s)o = & of s.

The kernel of can is just the ideal sheaf of ¢ from (3.5) and from the
first part of the sequence (3.6) we get the exact sequence

2
0—+/\E*—>E*—+I£——>O.

Tensoring this sequence by the invertible sheaf A\* E = det E we get
finally the short ezact sequence of a regular section:

0 — Os — E— Z(a(E)) — 0. (3.7)

As we know, an extension of this type is given by an element e €
Ext!(Z¢(ci(E)). For the last space, by Serre duality we have

EXtI(If(D), 05) = Extl(OS,Ig(D + IX’S))* = HI(IE(D + 1{5))‘(38)
where Kg is the canonical class of S.

Thus a pair (s, F) consisting of a vector bundle and a section is given

by a cluster (s)o = £ and a hyperplane p C H'(Z¢(c1(E) + K5s)).
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4 The First Interpretation — moduli
spaces of stable pairs

Now we will consider the space MPg+1 of pairs (2.2) only. A polygon
A=Yl iscalled reqularift # 7 = L #lj,and LNl =L NI, =
(z,7) = (k,n). That 1s, all the sides of A are distinct, and all the
vertices of A (= intersections of sides) are different too.

A pair (A, C) is called regular if A is regular and C is nonsingular.

Let P° be the open subset of regular polygons. Then we have the
open subset

MoPy = pa(PY)™ 0 p7" (pe(MP4y) \ Vaing N e(MPS,,)) (4.1)
of regular pairs.
Every regular polygon A = U_, [; defines a cycle of points
A"=114+---+ 1 (4.2)

on the dual plane P?*. It is a fine cycle, and we want to consider it
as a cluster (0-dimensional subscheme) of the dual plane.

On the other hand, A also determines the cycle of vertices

VerA = U l,‘ N lj (43)

]

on the plane CP? itself. The cluster A* defines an ideal sheaf Zx-,
and the family of extensions

0— Opze = E = TIa(2) =0 (4.4)

parametrized by the space PH'(Za:(—1))* (see the end of the pre-
vious section).

From the exact sequence

0— IA*(‘—].) — O(CPZ)‘(_I) — OA-(—I) — 0
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we get the 1somorphism
HY(Zp+(—1) = H°(Oa+(-1)), (4.4°)
so the extension (4.4) is given by a hyperplane in H°(Oa+(—1)).

On the other hand, the space of curves of degree d circumscribing A
is the following:

|d - 1 — VerA| = PH®(Iyjep,(d)). (4.5)

It’s easy to see that ranks of the spaces (4.4’) and (4.5) are equal.
We would like to prove that

H'(Zas(~1) = H(Tyepa(d)". (4.6)

Let me emphasize again that on the left-hand side we have a sheaf
on CP? but on the right-hand side we have a sheaf on the dual plane
(CP?)*.

Remark: Actually the proof of this equality is a very good exercise
for David Eisenbud’s lectures.

Here is the heart of our lectures: for a geometric object (A, C) on
the plane CP? we get a new interpretation as a pair (s, E) (see the

end of the §3) on the dual plane (CP?)*.
Let CP? = PT, where T = C*, and (CP?)* = PT*. Let
H (Za+(k)) = Vi (4.7
Then every line [ on (CP?)* defines a homomorphism
HY (Zp-(=1)) =V = HY(Za.) = Vo (4.8)
given by multiplication by ¢;.
When [ sweeps out PT = ((CP?)*)*, we get a homomorphism

T & V_1 — Vo, (4.9)
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which we can consider as a homomorphism of vector bundles on CP?!
Vo1 ® Ocpe(—1) = Vo ® Ocpo. (4.10)

The homomorphism ¢ is nothing other than a (d + 1) x d matrix of
linear forms-on CP?, which we can extend to the exact sequence

0 — Ocpe(—d —1) = Vo1 ® O¢p2(—1) = Vo ® Ocpe
— coker - 0 (4.11)

It is easy to see that Suppcoker = VerA.

Now applying the functor Hom(*, O¢p2(—1)) to this exact sequence,
we get Fagon-Northcott resolution

Ve ® Ocpz(—l) — V2, ® Ocpz — IVerA(d) -0 (4.12)

of the ideal sheaf Iy, ., (d).

Remark: Our Eagon-Northcott resolution is a slight generalization
of the Koszul complex (see Eisenbud’s lectures).

Now the cohomology long exact sequence of (4.11) provides the re-
quired equality (4.6) and an embedding

MoP§,, — MP(2,2,d + 1) (4.13)

to the moduli space MP(2,2,d + 1) of stable pairs (s, E) where E
is a vector bundle of rank 2 with ¢; = 2, ¢; = d + 1. Here the zero
set of s is a simple cluster in the dual plane, that is, a (d 4 1)-gon

in CP2.

Now the left-hand side of (4.13) admits a projection map p. to |d- ],
and the right-hand side admits the projection on the second compo-
nent — the vector bundle.

To compare these projections and to compute the fibres of p., we
have to consider a new geometric object, the noncommutative plane.



The Classical Geometry of Vector Bundles 361

5 Noncommutative Planes

For any pair (A, C) € MoPy,,, the nonsingular curve C contains the
effective divisor

VerA = U(l, N lj) (5.1)

v
(4.3) of degree 1d(d + 1). Let O¢(h) = (’)sz(l)lc.
Lemma 5.1: The divisor class
VerA —2h =0 (5.2)

is a reqular theta characteristic of C. That is, 20 = K¢ is the
canonical class of C, and h°(Oc(6)) = 0, in other words, this theta

characteristic is ineffective.

Proof: Consider the polygon as a curve of degree d + 1. Then the
support of the intersection

Supp(A - C) = Ver(4Q),
because for every line [; the intersection

cnl=Ln(UJL).
i

(Both sides have degree d and by definition the curve C contains the
set in the right-hand side of this equality). Now by definition

VerA = SingA

and every singular point of A is quadratic. Hence as divisor classes
on C, we have

2VerA =C - A =(d+1)h,

and

2VerA — 4h = (d — 3)h = K¢

by the adjunction formula.



362 Tyurin
Now if VerA — 2h = 5 1s effective then
n = (d—1)h — VerA

and there exists a curve C' of degree (d — 1) which contains VerA.
But then C' and A have a common component, because

C'-A>2degVerA=d(d+1)>degC'-degA=(d—1)-(d+1).
Thus i
CI:CO+ Uli,
1=1

where Cy doesn’t contain lines. Repeating this arguments for Cyy and
Agy1-n, We get a contradiction. Q.E.D.

Now the pair (C,0) defines a net of quadrics. Namely, if 8 is an
ineffective theta characteristic on C then the complete linear system
|6 4 k| is base point free and A°(O¢ (64 k)) = d. Consider O (6 + h)

as a Ocpe-sheaf, and the canonical surjective map
H°(Oc(8+ h)) ® Ocpz = Oc(6 + k) — 0.
We have the exact sequence
0 — ker = H°(Oc(8 4 k) ® Ocpz — Oc(8 + h) — 0,

and it is easy to see that

ker = H°(Oc(8 + 1))* ® Ogp2(—1)
and we have the net of correlations

a H® Ocp2(—1) = H* @ Ocpe (5.3)
where H = H°(Oc(6 + h))*.

Under any identification H = H* and a choice of the homogeneous
coordinates (g, A1, A2) of CP?, we can consider the homomorphism
(5.3) as a linear combination of a triple of symmetric d x d matrices

Xo- Ao+ A - Ap 4 A; - Ay, (5.4)
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where the equation of curve C is
Yc = det(Ao : AO + Al . A] + Az . Az) (55)

and we can consider the line bundle O¢(0 + k) as the family of
cokernels of the net of correlations (5.3).

Now the group GL(d, C) acts on the set of triples in the usual way:

9(Ao, A1, A2) = (9A0g”, 9A19",9A29") (5.6)

Let {(Ao, A1, A2)}°° be the set of semistable points with respect to
this action. Then the variety

{(Ao, A1, A2)}>® /| PGL(d,C) = P} (5.7)
is called the noncommutative plane.
C.T.C. Wall proved that

(Ao,Al,AZ) € {(Ao,Al,Az)}SS =
¢c = det(Aog - Ao+ A1 - Ar + A2 - Ag) #0. (5.8)

Thus we have a regular map
p. P2 — |d- 1| (5.9)
sending a triple to ¢¢ (5.5). Thus
degp. = 2971 (2° + 1), where g = 1(d—1)(d —2)

1s the number of even theta characteristics of a nonsingular plane
curve of degree d.

Now assume that a triple (Ag, A1, A2) satisfies det Ag # 0, and con-
sider the skew symmetric matrix

[AQ,A]AA2]2A1‘A51'Az—Az'Aal'Al. (510)

It easy to see that the rank of this matrix ranka is an invariant of a
class of a net of quadrics. Thus we have a filtration

Pi0) Cc P3(2)C .- C PE, (5.11)
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where

Pi(2r) = {(Ao, A1, 4;) | rank[Ao, Ay A Ag] < 2r}.

Now we have the pseudoclassical

Problem: What 1s

deg p.(P2(2r)) - deg p.? (5.12)

The relationship between our geometric objects is following

Proposition 5.1:

1. p(MPg,,) C pe(P3(2));
2. d <5 = p.(MPg,,) = p(P}(2)).
To prove these statements, we need a final interpretation of the geo-

metric objects.

Consider the flag diagram

F={pel}
P/ N (5.13)
CP? (CP?)*

Then we can apply the functor ¢, o p* for any net of quadrics « (5.3).
We get the exact sequence of sheaves on the dual plane (CP?)*:

0 — H® Oy (~1) " XM g g (1)
cokera — 0 (5.14)

and as second invariant of a net we have the number
rank Hom(cokera, O cpey-+ )

But actually it isn’t a new invariant, because of the following result:
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Barth’s theorem (see [B]):
rankHom(cokera, O(cp2).) = d — ranka
where 2r is the rank of the net of quadrics (5.10)—(5.11).

Thus for every net « of rank 2 on CP* we have the complex on its
dual plane

0 — H® Ogp.(~1) “7 CHEW g g q1)
=5 C @ Oeprye — 0 (5.15)
which is called a monad, and the middle cohomology
ker can/img, o p*(—1)(a(1)) = E (5.16)

is a semistable torsion free sheaf of rank 2 with the Chern classes
1 = 0, Cy = 2

So we have the map
Pi(2)) — M(2,0,d)

to the Gieseker closure of the moduli space of stable vector bundles
on CP?. The construction of the inverse map is as follows: a point
p € CP? gives a line [, € (CP?)* in the dual plane. A line [, € (CP?)*
is called a jumping line for £ if

E|lp # O, ® Oy,, which happens iff hO(E(—l)'lp) # 0. (5.17)

Thus in the dual plane (CP?)* we have the curve C(E) of jumping
lines of £.

Now it is easy to see that H'(E(—-2)) = H = C? and the Serre dual
space H'(E(—1)) = H*. Now multiplication by the equation of any
line ¢;, defines the correlation

H'(E(-2)=H — H'Y(E(-1)) = H* (5.18)

as an element of the net of correlations (5.4) C(F) = C(5.5).
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Now consider a regular pair (A,C) € MyP{,, (see (5.1)), where
A = [;. Then we have the chain of identifications:

(A, C)=(C-s,E) (5.19)
where s is a regular section of F;
E=(C0) = (o) (5.19)

So a pair (A, C) is geometrically equivalent to the exact sequence on

(CP?)*:
0 — O(C]pz).(-—l) — E — Tp+(1) = 0 (5.20)
where T, is the ideal sheaf of 0-dimensional cycle A* on (CP?)*.

Corollary: The space of circumscribed (d + 1)-gons to a Darbouz
curve C is a rational irreducible variety.

Indeed, it is birationally equivalent to PH°(E) !

These geometric identifications were done for “regular” geometric
objects. It is reasonable to construct some “natural” nonsingular
compactification of the space of regular objects sending the compu-
tation of constants of type (5.12), (2.11), (2.5) to the regular proce-
dure of computations of Chern classes of standard vector bundles on
“moduli space” our geometric figures.

6 Compactifications

A regular (d + 1)-gon (2.1) is of course a curve of degree d + 1 on
CP?, and so the space Py of all polygons is a compact irreducible
subvariety in the complete linear system |(d 4 1) - I|. Geometrically,

Pd+1 = Sd+1(CP2)* (61)

is the (d 4 1)-st symmetric power of (CP?)*, a rather singular alge-
braic variety. Fortunately for algebraic surfaces, there is a canonical
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desingularization of it. Let us recall that a regular polygon A defines
a zero dimensional subscheme A* (4.2). Thus as a compactification
of the space of regular polygons on CP?, we can consider the moduli
space of zero dimensional subscheme of (CP?)* of degree d:

Hilb™! = M(1,0,d + 1) (6.2)

which is called the Hilbert scheme on (CP?)*. The beautiful and very
important theory of Hilbert schemes says that for a nonsingular al-
gebraic surface, this scheme is again nonsingular (see [F]). The space
of extensions of type (5.20) is given by the projectivization of the
vector space H'(Z¢(—1)) (see (3.8)), because of ¢;(E(1)) = 2k, and
because the canonical class of the plane is given by K(cpz). = —3h.
Thus it is natural to represent the space of all nontrivial extensions
(5.20) as a projectivization of a vector bundle on Hilb**!. Of course
this variety is nonsingular.

From now on, all of our geometric objects are defined on the dual
projective plane (CP?)*, and we omit the star.

First of all, on the Hilbert scheme we have the special divisor class
H defined by clusters intersecting a fixed line. On the other hand,
the Hilbert scheme defines the universal subscheme Z C CP? x Hilb,
and the two projection maps to the direct components define the
diagram

Zayi
o 2% \FH (6.3)
CP? Hilb*+!

For any divisor class Ogp:(k), consider the vector bundle
& = R°pr(p5Ocpe (k). (6.4)
These sheaves are locally free, because the canonical homomorphism

1s surjective.

In particular, in our case k = —1, the fibre of this vector bundle over
¢ € Hilb is H°(O¢(—1)). Now the cohomology long exact sequence
of

0 - Z¢(—1) = O(=1) - O — 0 (6.5)
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gives the isomorphism
H°(O¢(-1)) = H'(Z¢(-1)) (6.6)
Thus the space of all extensions of type (5.20) is the projectivization
PEZ,. (6.7)

The next thing we have to understand is that our constant sg4;(d)
(2.5) 1s the top Segre class of the standard vector bundle on Hilb:

sapr(d) = spop(E-1(H)) (6.8)

To see this, we have to return to the isomorphism (4.6) and remark
that for s € H%(Iyj,,(d) the condition “a curve C = (s)o passes
through a point [* € (CP?)*” defines a section of £_;(H)! Thus by
the definition of the Segre class, 3d 4+ 2 general points determine a
general (3d + 2)-dimensional subspace W of H*(£_;(H)). Now the

canonical homomorphism
W ® O, 25 £_4(H)
is general enough and
deg cokercan =: 544, (E-1(H)) = $441(d) (6.9)
is the number of Darboux curves through 3d 4 2 general points.

Using this beautiful interpretation, G. Ellingsrud and S. Strgmme
computed (2.12) (using Bott’s formula for the C* action on Hilb, see
[E-S]):

ss(4) = 54

se(5) = 2540

s7(6) = 583020

ss(7) = 99951390
so(8) = 16059395240
s10(9) = 2598058192572.

This list can be extended if your computer is good enough and you
have S. A. Strgmme as a collaborator. But to understand the nature
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of these numbers (it’s new shape of mathematical questions, isn’t
it?), you have to use new identifications, proposed below, and the
collection of beautiful new results provided by differential topologists
such as Fintushel and Stern, Kotschick and Lisca and many others.
We will discuss this in the next section.

Thus this story 1sn’t finished yet. The nonsingular compactification

(6.7) of the moduli space of pairs (A, C) (on (CP*)*!) is called the
moduli space of stable pairs (C* - s, E) (see [T3], Lecture 6):

PE*, = MP(2,2,d + 1). (6.10)

Let us consider the general diagram of our identifications:

PE*, = MP(2,2,d+1)
Pa / \Pc _ \‘PE (6.11)
Hilb4+! |d- 1 D; M(2,2,d+1)

where M(2,2,d + 1) 1s the moduli space of semistable bundles, the
map pg sends a pair (E, s) to the vector bundle F, and p; sends the
vector bundle E to its curve of jumping lines (5.17). Now twisting
sheaves by O¢pz2(1) gives the isomorphism

M(2,0,d) = M(2,2,d + 1)
and we can use the chain of identifications (5.19).

Remark: The extension of the map p; to the compactification of
moduli spaces 1s a nontrivial task.

The map pg is only a rational map, as treated in detail in [T-T]:
we described there what has to be blown up and what gets blown
down. But in any case, we can describe the image of this rational
map: the final moduli space contains the Brill-Noether locus

M, ={E e M(2,2,d+1)|Rr°E)>1}. (6.12)
Thus we have

My = pg(MP(2,2,d + 1)) (6.13)
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This is just what we need. Now by the R-R theorem,
d<5= M = M(2,2,d+1). (6.14)

Moreover, if d = 4, that is, for the Luroth quartics we have the
following construction: let ) be a nonsingular plane conic and |n| be
a general linear pencil of divisors of degree 5 on Q. For an element
of this pencil p; + - - - + ps, consider the pentagon A = |JI[;, where ;
is the tangent line to @) at p;. When elements sweep out this pencil,
the cycles Verl{A) sweep out a quartic curve C.

So we have the divisor classes

Ope:, (1) = P:(Olaqy(1)) = Omp(2,2,441)(D) (6.15)
p(l) = pPi(Ony(1)) (6.16)

on MP(2,2,d + 1) and M,, which are related by the birational
map pg. This situation is a beautiful exercise in practical birational
geometry. As you know from Miles Reid’s lectures, a birational
map may well alter the degree of a divisor. But in our case ( this
beautiful observation is due to Dmitry Orlov ) the existence of the
regular maps p. and p; relating our divisors as in (6.15) and (6.16)
gives the equality

Stop(E-1(H)) = can(d) = D*** = (u())***  (6.17)

The last dearth of this beautiful chain of identifications of geometric
objects is the following: the points of each of the moduli spaces
MP(2,2,d +1), M(2,2,d + 1) and M, describe geometric objects
on the same algebraic surface, the plane CP?. But the construction of
the divisor class p(l) sends us to geometric objects (jumping curves)
on the dual plane (CP?)*. From the algebraic geometric point of view
this is reasonable, but we promised to extend these constructions to
objects of differential geometry. As a differential topological object,
the projective plane doesn’t define the dual plane. Avoiding this
obstacle, we would like to describe the constants s44+1(d) in terms of
CP?. That is, we want to define u-class () in terms of objects on

CP? only.
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Now on the direct product CP?x M(2,2,d+1), the universal sheaf F
exists locally only (for technical details see [T2]), but the Pontrjagin
class

p(F) = 4cy(F) — E(F) € PicCP? @ PicM(2,2,d + 1)  (6.18)

is defined correctly in any case. The intersection number on PicCP?
gives the isomorphism (PicCP?)* = PicCP? so we can consider the
Pontrjagin class (6.18) as the homomorphism

= 1/4p,(F) : PicCP? - PicM(2,2,d + 1). (6.19)

Now it’s easy to see that the divisor class ,u(l)m/[1 1s just (6.16).

Now to get our classical enumerative algebraic geometry constants
(2.11) in the more general set-up, we have to use the equality

carr(d) = (u(1))**?, (6.20)

and to extend the definitions of M; C M(2,2,d + 1) and p(I) in
differential geometric terms. Of course now M; C M(2,2,d+ 1) will
be compact spaces and pu(l) € H*(M(2,2,d + 1) is a 2-cohomology
class only but this is quite enough to define the constant (6.20)!

7 Differential Geometry

Algebraic geometry can be considered as a part of differential geo-
metry, namely as Kahler geometry. Then we have to use new notions
like connections, differential forms and so on; you can learn this ap-
proach from the standard monograph [G-H]. We also strongly rec-
ommend the monograph [D-K] as a unique source of new style to
use these ideas. But it is very important to understand that classical
algebraic geometry is a foundation of almost all the local construc-
tions of Riemannian geometry. We will discuss the special case of the
projective plane CPP?, but you can determine the generality quantor
yourself.
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Let M be the underlying 4-manifold of the complex projective plane
CP?. Any Riemannian metric ¢ on M defines a decomposition of
the complexified tangent bundle T M¢ as a tensor product

TMc= (W) @W?
of two rank 2 Hermitian vector bundles W* with
a(W%) = —3h,
where h is the generator of H*(M,Z).

Write * for the Hodge star operator on Q?(M) determined by the
metric g. Moreover, for any U(2)-bundle £ on M of topological
type (¢; = 2,c2 = d 4+ 1) and any Hermitian connection a € Ay on
E, putting any Hermitian connection Vo on A\* W¥ gives a coupled
Dirac operator

DIV T®(E@WH) 5 T®(EQ W) (7.1)

Now the orbit space of irreducible connections modulo the gauge

group
B(2,2,d+1) = A;(2,2,d+1)/G

contains the subspace

M3(2,2,d+1) = {(a) € M*(2,2,d +1) | +F, = —F,}
C B(E) (7.2)

of antiselfdual connections with respect to the Riemannian metric g
(here F, is the curvature form of a connection a).

Now we can consider the subspace of jumping connections:

Mi(d) = {(a) € M92,2,d+1) | rank ker D9'V° > 1}
C M9(2,2,d + 1). (7.3)

The virtual codimension of Mfd) (that is, the expected codimension
determined by the Atiyah-Singer index theorem) is given by

v.codimMyi(d) = 2 — 2x = 2(5 — d), (7.4)
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where x is the index of the coupled Dirac operator (7.1), which
depends only on the Chern classes of F.

So you can see that for d < 5
Mi(d) = M9(2,2,d + 1) (7.5)
Please compare this fact with (6.14)!

For a generic metric g, the moduli spaces M9(2,2,d+ 1) and M7 (d)
(7.3) are smooth manifolds of the expected dimension with regular
ends (see [D-K] and [P-T], Chap. 2, §3). Moreover, M9(2,2,d + 1)
admits a natural orientation (see [D-K]) inducing an orientation on
MJ, because its normal bundle has a natural complex structure.
This orientation is described in detail in [P-T], Chap. 1, §5.

Moreover there exists the so-called Uhlenbeck compactification of
our moduli spaces

Ms(2,2,d + 1) 2 MI(d) (7.6)

Now for any element of our filtration the first Pontrjagin class of the
universal connection on the direct product M x M9(2,2,d+ 1) (by
the slant product) defines cohomological correspondences

pa: H(M,Z) — H=(@5d71),2),
:U'(ll:Hi(M>Z) - H4—i(M!1](d)>Z)>

and two collections of numbers

Dy(d) = (pa(h))**~2, (7.7)

the so-called Donaldson numbers (Donaldson polynomials) of CP?,
and

s = (uh(R))2. (7.8)

Now suppose as a special case that our metric g is the Fubini-Study
metric gr_s. In this case, by the Donaldson-Uhlenbeck identification
theorem, we have

MF-5(2,2 d+ 1) = M(2,2,d + 1),
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where the right-hand side is the moduli space of holomorphic stable
bundles on CP? (6.11).
Making this identification (a) = F, we have identifications
ker D9F-s = H°(E) @ H?*(FE) and cokerDF-s = HY(E), (7.9)
where H(E) denote coherent cohomology groups (see [D-K]).
But by Serre duality H*(E) = H°(E(—2))* = 0, by the stability of
E. Thus the subspace M{"~%(d) is
MIF5(d) = {E e M(2,2,d+ 1) | h°(E) > 1}, (7.10)
that is (see (6.12)),
MIF-%(d) = M,
and our constants (7. 8)
V-5 = say1(d) (7.11)
are constants (2.5) and (6.8).

These integers don’t depend on the metric g,-because the space of all
Riemannian metrics is contractible. (In fact, to be rigorous, we have
to use much more sophisticated bordism arguments, similar to those
in [D-K], where the same statement was proved for the Donaldson’s

numbers (7. 7)).
Let us remark that the initial terms of both collections (7.7) and
(7.8) are coincidence by (7.5) and (6.14)

D4(4) = sv, =54

Dy(5) = sy, = 2540;

and the collection of Donaldson’s constants was extended to infinity

by Ellingsrud and Géttsche (see [E-G]):
D,(6) = 233208;

D,(7) = 35825553,

D,(8) = 8365418914

D,(9) = 2780195996868;
D,(10) = 12535588470906000;
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Let me remark that we have got the following striking fact:

Theorem: The constants (7.11) = (2.5) = (6.8) are tnvariants of
the underlying differentiable structure of CP?.

It is well known that the complex structure on M is unique. Recently
it was proved that the symplectic structure on M is unique. The
next question is the following differentiable version of the Poincaré
conjecture for CP?:

Conjecture (DPC for CP?): The complez projective plane CP? has
a unique differentiable structure.

In particular this statement would imply the following fact

Corollary: The constants (7.11) = (2.5) = (6.8) are invariants of
the topological structure of CP?.

There is overwhelming direct evidence for this statement, and hence
a partial confirmation of Conjecture DPC for CP?. Namely there
are two possible methods to construct our constants using the topo-
logical structure of the plane only. The first approach is related to
the following fundamental problem:

Hilbert scheme problem: Can we give a purely topological con-
struction of the Hilbert scheme Hilb? and of the standard vector bun-

dles (6.3)7

Of course this problem is interesting in full generality for all 4-
manifolds. If we could realize the scheme (6.3) topologically then, as
proposed by G. Ellingsrud, we could use induction over d to prove

Proposition 7.1: The constants (6.8) are topological invariants.

The second approach to prove the statement of Corollary is related to
proving of the same fact for Donaldson’s constants (7.7) proposed by
Kotschick and Lisca using the Kotschick-Morgan Conjecture from
[K-M].

The idea of this program is the following: let us blow up one or
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two points on CP? and for this new surface CP? let us consider
the same numbers as (7.7). But now these numbers depend on the
Riemannian metric in an essential way. However it can be shown
that the dependence of these numbers on the metric can be controlled

explicitly! Going from CP? to CP?, we have to consider the collection
{a}q C H}(CP?,Z) of classes such that

a=0mod2 and -—4d <o’ <0. (7.12)

The intersection of the positive cone in H?‘((al-;z, R) with the hyper-
plane at is called a d-wall (or the d-wall defined by «). Let A, be
the set of open chambers into which the positive cone is divided by

all d-walls.
Proposition 7.2:

1. The constant D,(d) of (7.7) for CP? depends on the chamber
C € Ay which contains the g-self dual harmonic 2-form.

2. If C and C' are chambers then

D¢ (d) — Dei(d Z&d (7.13)

where the sum is taken over all d-walls o such that
a-C'<l0<a-C

that is over all walls dividing C' and C’

Now the following result has been proved:

Proposition 7.3: The constant Dy(d) of (7.7) for CP? are deter-
mined by the difference terms 84 only.

The following fact 1s “almost” proved:

Kotschick-Morgan Conjecture (see [K-M]): The difference terms
d4 are homotopy tnvariants.
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So finishing the proof of this conjecture implies the topological defi-
nition of the Donaldson constants (7.7).

Remark: Mixing the Hilbert scheme method and the difference
terms method i1s a very fruitful technique. G. Ellingsrud and L.
Gottsche [E-G] can use it to compute any Donaldson number ex-
actly, but the real nature of these expressive numbers remains an
open question.

Finally, to prove the topological nature of the constants sy§_g =
sd+1(d) (7.11), we have to mimic these constructions for the moduli
spaces of jumping instantons (7.3) or, in full generality, for the spin
polynomials (see [T1]) in place of the Donaldson polynomials.

I would like to finish by drawing the following conclusion:

Moral: Different interpretations of classical algebraic geometric fig-
ures provide very fruitful approaches to understanding the nature of

results of ENUMFERATIVE AG.
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