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Preface

Originally this manuscript was prepared for my talk at the workshop on
Sequences, Curves and Codes in Antalya, 25-29 September 2009. Later I
had given a talk with the same title on October 5, 2009 at the conference on
Positivity, Valuations, and Quadratic Forms in Konstanz.

In the discussion after the talk I learned that there may be an error in
Arf’s paper and perhaps his main theorem has to be modified. I am in-
debted to Karim Johannes Becher for this comment. Indeed, after another
check I found the error in the proof of one of Arf’s lemmas. Accordingly the
manuscript had to be corrected, taking care of the situation and clarifying
the scope of Arf’s theorems after the correction. We have done this in two
papers [LR10, LR11].1

The present article is the result of unifying and re-editing our two papers
mentioned above. For the convenience of the reader we have included an
appendix containing very simple proofs of Arf ’s main results in the corrected
form. It seems to be of interest that all the facts and methods which we use
in these proofs can be found in Arf’s paper already.

1We are indebted to Detlev Hoffmann for providing us with relevant information. Also
we would like to thank K. Conrad and S. Garibaldi for their help in this matter. We are
indebted to the referee for his informative comments, who called our attention to the book
[EKM08], in particular §39.
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1 Introduction

In January 2009 I received a letter from the organizers of the workshop in
Antalya on Sequences, Curves and Codes, with a friendly invitation to par-
ticipate. The letter was accompanied by a bank note of 10 Turkish Lira.
Reading the letter I found out that this was not meant as an advance hono-
rarium for my talk, but it was to tell me that the note carried the portrait of
the Turkish mathematician Cahit Arf (1910-1997). Besides the portrait there
appears some mathematical text pointing to Arf’s discovery of what today is
called the Arf invariant. Accordingly the organizers in their letter suggested
that perhaps I would want to talk about the Arf invariant of quadratic forms.

Although I do not consider myself as a specialist on quadratic forms, it
was my pleasure to follow this suggestion. Cahit Arf had been a Ph.D. stu-
dent of Helmut Hasse in 1937/38. Arf’s thesis [Arf39] has become widely
known, where he had obtained a generalization of a former theorem of Hasse
about the ramification behavior of abelian number fields; today this is known
as the “Hasse-Arf theorem”.2 His next paper, after his thesis, contains the
“Arf invariant” which is our concern here. This work too was inspired by
a suggestion of Hasse. So this report about the Arf invariant fits into my
general project to investigate the mathematical contacts of Hasse with var-
ious other mathematicians, including Emil Artin, Emmy Noether, Richard
Brauer and others, and now with Cahit Arf.

Much of what I know in this respect is based upon the letters between
Hasse and his correspondence partners. Those letters are kept in the Hand-
schriftenabteilung of the Göttingen University Library, they contain a rich

2This generalization had been asked for by Artin in a letter to Hasse. For details from
the historic perspective see, e.g., section 6 of [Roq00].
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source for those who are interested in the development of algebraic number
theory in the 20th century. Among those documents there are preserved
about 65 letters between Arf and Hasse from 1939 until 1975.3 We can see
from them that in the course of time there developed a heartfelt friendship
between the two.

2 Arf’s first letter

The first ten letters are concerned with Arf’s work on quadratic forms in
characteristic 2. But where are the earlier letters, those about Arf’s thesis?
The answer is easy: There were no earlier letters, for during his graduate
studies while composing his thesis, Arf worked at Göttingen University where
Hasse was teaching. And people at the same university usually don’t write
letters but talk to each other.

Fortunately for us, when Arf worked on quadratic forms in characteristic 2
he was back in Istanbul, and therefore the communication with his former
academic teacher travelled by means of letters. On October 12, 1939 Arf
wrote to Hasse:4

Sehr geehrter Herr Professor,

Ich habe Ihren Brief vom 29. 9. 39 mit grosser Freude erhalten . . .
Ich habe jetzt eine unschöne Arbeit über quadratische Formen fast
fertig geschrieben. Diese Arbeit wollte ich Ihnen vorlegen. Ich glau-
be aber, dass Sie jetzt wenig Zeit haben. Es handelt sich kurz um
folgendes:

Sie hatten einmal den Wunsch geäußert, die Geschlechtsinvarianten
einer quadratischen Form mit Hilfe der Algebrentheorie begründet zu
sehen. Ich habe versucht dies zu tun. Da die Aufstellung dieser Inva-
rianten für p 6= 2 fast trivial ist, habe ich gedacht, dass es nützlich
sein würde wenn man zunächst die Theorie in Körpern von der Cha-
rakteristik 2 zu übertragen versucht. In der genannten Arbeit über-

3In addition there are about 90 letters between Hasse and Arf’s wife Halide, mostly in
Turkish language, in which Hasse tried to practice and improve his mastery of the Turkish
language.

4Observe the date of this letter. On September 1, 1939 World War II had started.
Perhaps this was the reason why Arf believed that Hasse would not be able to devote
much time to deal with Arf’s paper since in war time Hasse may have been assigned other
duties.
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trage ich die Ergebnisse von Witt durch passende Änderungen in den
Körpern von der Charakteristik 2 und ich gebe dann die vollständi-
gen Invariantensysteme für arithmetische Äquivalenz der ternären
und quaternären Formen in einem Potenzreihenkörper k((t)) , wobei
der Koeffizientenkörper k die Charakteristik 2 hat und vollkommen
ist . . .

Dear Professor,

I am very glad to have received your letter of September 29,
1939. . . I have almost completed the draft of a paper on quadratic
forms. I had intended to submit it to you. But I believe that now
you will not have much time for it. In short, the situation is as
follows:

You had once expressed your wish to see the genus invariants of
a quadratic form be established with the help of the theory of al-
gebras. This I have tried to do. Since the compilation of those
invariants is almost trivial in characterisctic 6= 2 I thought it
would be useful at first to try to transfer the theory to fields of
characteristic 2. In the above mentioned paper I transfer the re-
sults of Witt by suitable modifications to fields of characteristic 2.
And then I give a complete system of invariants for the arith-
metic equivalence of ternary and quaternary forms in a power
series field k((t)) 5 where the field of coefficients k is perfect of
characteristic 2 . . .

From this we learn that it had been Hasse who had suggested the topic of
Arf’s investigation. Hasse’s interest in quadratic forms stems from the time
of his own thesis, 1923/24, when he had proved the Local-Global Principle for
quadratic forms over number fields [Has23, Has24]. Later he had established
the Local-Global Principle for central simple algebras over number fields, in
cooperation with Emmy Noether and Richard Brauer [BHN32]. There arose
the question as to the mutual interrelation between the theory of quadratic
forms and the theory of algebras. Perhaps it would be possible to deduce the
Local-Global Principle for quadratic forms from that for algebras ?

This question (and more) had been answered beautifully in Witt’s seminal
paper [Wit37a]. At that time Witt held the position as assistant professor
in Göttingen, and he was the leading member of the Arbeitsgemeinschaft in

5 I will use throughout my own notation and do not always follow the various notations
in the original letters and papers.
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cooperation with Hasse. In his paper Witt associates to every quadratic form
f a central simple algebra S(f) of 2-power index, called the Hasse algebra
which, together with the dimension and the discriminant of the form, makes
a complete set of invariants at least over global and local function fields.
(Over number fields there is an additional invariant, namely the signature of
a quadratic form over the real localizations of the field.)

Witt’s paper represents a watershed in the theory of quadratic forms. It
provided the basis of the subsequent enormous expansion of the theory of
quadratic forms. His biographer Ina Kersten says that this paper “ranks as
one of his most famous works” [Ker00]. However, Witt’s theory covered only
forms over a field of characteristic 6= 2. This is the point where Arf’s paper
comes in. He extended Witt’s theory to fields of characteristic 2. In particular
this applies to the case of local and global function fields of characteristic 2.

The desire to extend Witt’s result to characteristic 2 had also been ex-
pressed by A. A. Albert in a paper which had just appeared in 1938 in the
Annals of Mathematics [Alb38]. There had been some letters exchanged
between Albert and Hasse during the years 1931-1935 and we know that Al-
bert’s interest in the theory of quadratic forms over global fields had been
encouraged by Hasse.6 The above mentioned paper by Albert shows that this
interest continued. His paper is a follow-up on Witt’s [Wit37a] on quadratic
forms: Albert first reproves, in his own way, some of Witt’s results for global
function fields and then shows that these hold also in the characteristic 2
case: namely that every quadratic form in 5 or more variables is isotropic.
And then, in a footnote, he says about Witt’s general theory:

The results of Witt on quadratic forms on a field of character-
istic not two may probably be obtained for the characteristic two
case only for forms with cross product terms .7 It would be very
interesting to study the analogues of Witt’s results for our char-
acteristic two case but the author has not yet done so.

We see that Arf did just what was proposed here. I do not know whether
Arf knew about Albert’s paper and its footnote. In his own paper he cites
Witt only and says in the introduction:

Die Anregung zu dieser Arbeit verdanke ich H. Hasse.

6See chapter 8 in [Roq05].
7It appears that Albert means quadratic forms which are “regular” in the sense as

defined below (and “completely regular” in Arf’s terminology). See section 4.
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I owe to H. Hasse the suggestion for this work.

As we learn from Arf’s letter, there was a second part in his manuscript
where he investigates quadratic forms over rings of power series and their
arithmetic invariants , at least for quadratic forms of low dimension. Again,
the motivation for this comes from number theory. Due to his results in this
second part Arf can be regarded as a forerunner of the general theory of
quadratic forms over rings, not necessarily fields.8

But in the end it turned out that Parts 1 and 2 were published separately.
Part 1 appeared in Crelle’s Journal where Hasse was editor [Arf41]. Hasse
would have liked to get also Part 2 for Crelle’s Journal but it seems that
there arose difficulties with the printing due to paper shortage in war times
and so the second part appeared in the journal of the University of Istanbul.9

Here I will discuss only the first paper of Arf [Arf41] where he introduces
his Arf invariant. I has turned out that there is an error in Arf’s paper which
on the one hand reduces the scope of his main result but on the other hand
has led to an interesting development in the theory of quaternion algebras
over fields of characteristic 2. We shall discuss this in due course.

But before going into details let us familiarize a little with the people
involved and with the time of the game.

3 Some personal data

Cahit Arf was born in 1910 in the town of Selanik which today is Thessa-
loniki. At that time it belonged to the Ottoman empire. But in the course
of the Balkan war 1912 his home town was affected and the family escaped
to Istanbul, later in 1919 to Ankara and finally moved to Izmir.10

Cahit Arf ’s childhood encompassed the Balkan wars, the World

8This is evident when we look at the book by Knus who gives a survey on quadratic
forms over rings [Knu80] where the notion of Arf invariant over rings is systematically
treated. (However we do not find Arf’s Part 2 [Arf43] cited in the bibliography of Knus’
book.) It seems that the most recent survey on the topic is contained in the book [EKM08].

9See [Arf43]. The paper is usually cited for the year 1943 but at the end of the paper
we read that it has been received on May 15, 1944.

10The following citations are taken from the Arf biography written by Ali Sinan Sertöz
[Ser08]. There one can find more interesting information about the life, the work and the
personality of Cahit Arf.
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War I, the grand war at Gallipoli, the Greek invasion of west-
ern Anatolia and the invasion of Istanbul by the Allied Powers.
When finally Turkey emerged as a new independent parliamentary
republic in 1923 Cahit Arf was 13 years old. It was the beginning
of a new era. The new Republic was hopeful, determined and
full of invincible self confidence. These traits were also deeply
trenched in young Arf. This would shape his attitude towards
mathematics in the future.

In public school Arf’s ease in mathematics was soon to be noticed by
his teachers. In 1926 his father sent him to France to finish his secondary
education at the prestigious St. Louis Lycée. Because of his extraordinary
grades in mathematics he graduated in two years instead of the expected
three years. Then he obtained a state scholarship to continue his studies at
the École Normale Supérieur, again in France.

After his return to Turkey in 1932 Arf taught at high school and since
1933 he worked as instructor at Istanbul University.

It did not take him long to realize that he needed graduate study
in mathematics. In 1937 he arrived at Göttingen University to
study with Helmut Hasse.

At that time Arf was 27 years of age. I do not know why he had chosen
Göttingen as his place of graduate study. Although Göttingen used to be an
excellent mathematical center which was attractive to students throughout
the world, that period had ended in 1933 when in consequence of the new
Nazi policy many of the professors had left Göttingen; this had disastrous
effects to the mathematical scene there. It seems improbable that Arf had
not heard about the political situation in Germany and its consequences for
the academic life in Göttingen. Perhaps his mathematical interests at that
time leaned towards algebra and arithmetics and he had found out (maybe
someone had advised him) that in Göttingen there was Hasse who was known
as an outstanding mathematician in those fields. In fact, measured by the
high standard of Arf’s thesis which he completed within one year after his
appearance in Göttingen, it seems that already in Istanbul he had acquired
a profound knowledge in the basics of modern algebra and algebraic number
theory, and accordingly he may have chosen Göttingen because of Hasse’s
presence there.

Helmut Hasse was 38 years of age when in 1937 Arf arrived in Göttin-
gen. Hasse was known as a leading figure in the development of algebraic
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number theory, in particular of class field theory. Just one year earlier in
1936 he had been chosen as an invited speaker at the International Congress
of Mathematicians in Oslo. There he reported on his proof of the Rie-
mann hypothesis for elliptic function fields over finite fields of constants;
this proof had appeared in three parts in the 1936 issue of Crelle’s Journal
[Has36a, Has36b, Has36c]. I would say that in those years Hasse was at
the height of his mathematical power (notwithstanding a certain peak of his
mathematical activities in the years after World War II). In 1934 Hasse had
decided to leave the University of Marburg and to accept an offer to Göttin-
gen. Hasse was not a Nazi but he described his political position as being
patriotic. He strongly disagreed with the policy of expelling so many scien-
tists from Germany; he considered this as a tragic loss of intellectual power
in Germany. And he tried to do what he could to counteract this. When he
decided to move from Marburg to Göttingen he did this with the expressed
intention to restore, at least to a certain extent, the glory of Göttingen as
an international place for mathematics. Although he spent a lot of time and
energy on this, he could not be successful in the political situation. 11

However, on a relatively small scale Hasse’s activity in Göttingen had re-
markable success. He managed to attract a number of highly motivated stu-
dents to his seminar and the Arbeitsgemeinschaft. The latter was organized
by Witt but Hasse participated at the meetings and led the mathematical
direction of the work.

The high scientific level of the work in the Arbeitsgemeinschaft is docu-
mented in a number of publications in Crelle’s Journal and other mathemat-
ical journals. Here we only mention volume 176 of Crelle’s Journal which
appeared just in 1937 when Arf came to Göttingen. A whole part of this
volume12 contains papers which arose in the Arbeitsgemeinschaft and in the
Seminar, of which Witt’s famous paper on the so-called Witt vectors is to be
regarded as a highlight. In the same volume (but in another part) appeared
Witt’s paper on quadratic forms [Wit37a] which, as said earlier already, has
decisively influenced Arf’s paper on his invariant [Arf41].

Ernst Witt was 26 when he met Arf, hence one year younger. He had
studied in Göttingen since 1930. He had received the topic of his Ph.D.
thesis from Emmy Noether but since she had been dismissed she could not

11For more facts from Hasse’s biography see, e.g., Frei’s biography [Fre85], as well as
Frei’s recollections about Hasse in [FR08]. Hasse’s involvement with the Nazi regime is
discussed, e.g., in [Seg03].

12Each volume of Crelle’s Journal appeared in 4 parts (4 Hefte).
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act as his thesis referee.13 The thesis was concerned with central simple
algebras over function fields in the course of which he proved the Riemann-
Roch theorem for algebras, a ground breaking paper [Wit34] which nowadays
attracts new interest in the setting of non-commutative algebraic geometry.14

When Hasse came to Göttingen in 1934 he accepted Witt as his assistant on
the recommendation of Emmy Noether. Witt has not many publications
when compared to the work of other mathematicians, but each one is of
high level and witnesses a profound insight into matematical structure. We
have already mentioned his 1937 paper where he introduces “Witt vectors”
[Wit37b].15 Earlier the same year there had appeared his paper on quadratic
forms [Wit37a] which actually constituted his Habilitation thesis.16

It seems fortunate that Arf in Göttingen had the chance to join the in-
spiring and motivated group of young mathematicians around Hasse, and
among them Witt. There arose a friendship between the two which lasted
for many years. It is without doubt that Arf’s paper on quadratic forms in
characteristic 2 has been influenced by Witt’s in characteristic 6= 2.

4 Quadratic spaces

Let K be a field. Classically, a quadratic form over K is given by an expres-
sion

q(x) =
∑

1≤i≤j≤n

aijxixj with aij ∈ K . (1)

Two quadratic forms are said to be equivalent if one is obtained from the other
by a non-degenerateK-linear transformation of the variables x = (x1, . . . , xn).
An invariant is a mathematical entity attached to quadratic forms which does
not change if a form is replaced by an equivalent form.

Witt had replaced the above notion of quadratic form by the notion of

13This was Herglotz with whom Witt maintained close relationship.
14It is said that Witt completed the manuscript of his thesis within one week.
15It should not be forgotten that Witt vectors had been discovered somewhat ear-

lier already by H. L Schmid [Sch36] who also was one of Hasse’s assistants at that time.
H. L. Schmid however worked with the main vector components only (Hauptkomponenten)
where the formulas for addition and multiplication are quite cumbersome. It was Witt
who observed that the structural operations for Witt vectors can be described quite easily
in terms of the ghost components (Nebenkomponenten). In this way he made the calculus
of Witt vectors widely applicable.

16More biographic information about Witt can be obtained from Ina Kersten’s biography
[Ker00] and the articles cited there.
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quadratic space which was adapted to the “Modern Algebra” of the time
[Wit37a]. A quadratic space over K is a vector space V equipped with a
function q : V → K and a bilinear function β : V × V → K subject to the
following conditions:

q(λx) = λ2q(x)

q(x+ y) = q(x) + q(y) + β(x, y)

}
for λ ∈ K , x, y ∈ V. (2)

We assume V to be of finite dimension n. If u1, . . . , un is a basis of V
then any x ∈ V may be written as x = x1u1 + · · ·xnun with xi ∈ K
and then q(x) appears in the form (1) with aij = β(ui, uj) for i < j and
aii = q(ui). In Witt’s setup the notion of “invariant” now refers to isomor-
phisms of quadratic spaces instead of equivalences of quadratic forms.17

It is common to interpret q(x) as the “length” of the vector x ∈ V , more
precisely as the square of its length. In fact, Witt and also Arf write |x|2
instead of q(x). Similarly β(x, y) is interpreted as the “inner product” of the
vectors x and y and accordingly Arf writes x · y for it. Witt however writes
x ·y for 1

2
β(x, y) which is possible in characteristic 6= 2 and corresponds more

to our geometric intuition, for then one has x · x = |x|2. In characteristic 2
however this is not possible and so we have x · x = 2|x|2 = 0. In other
words, in characteristic 2 we have to live with the fact that every vector is
orthogonal to itself.

This has consequences. The first observation is that the process of dia-
gonalization is not generally possible in characteristic 2. Recall that in char-
acteristic 6= 2 every quadratic form admits an equivalent “diagonal” form:

q(x) =
∑

1≤i≤n

aix
2
i with ai ∈ K . (3)

In Witt’s terminology this means that every quadratic space V admits an
orthogonal basis u1, . . . , un, where q(ui) = ai. Thus V splits as an orthogonal
direct sum of one-dimensional quadratic subspaces:

V = ⊥
∑

1≤i≤n

Kui in char. 6= 2 . (4)

But in characteristic 2 this is not always possible. Arf observed that one has
to admit also two-dimensional subspaces:

V = ⊥
∑
1≤i≤r

(Kui +Kvi)+ ⊥
∑
1≤j≤s

Kwj in char. 2 , (5)

17Sometimes equivalent quadratic forms are called “isomorphic”, meaning that their
quadratic spaces are isomorphic.
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where ui and vi are not orthogonal to each other, i.e., β(ui, vi) 6= 0. After
suitable normalization we may assume that

β(ui, vi) = 1.18

The dimension n of V is n = 2r + s. Thus in characteristic 2 any quadratic
form admits an equivalent form as follows:

q(x) =
∑
1≤i≤r

(
aix

2
i + xiyi + biy

2
i

)
+
∑
1≤j≤s

cjz
2
j (6)

for x =
∑
1≤i≤r

(xiui + yivi) +
∑
1≤j≤s

zjwj

where we have put

ai = q(ui) , bi = q(vi) , cj = q(wj) .

Arf speaks of “quasi-diagonalization” since only the second sum in (6) is in
pure “diagonal form” whereas the matrix of the first sum splits into 2 × 2
submatrices along the diagonal. Note that in characteristic 2 the square
operator is additive; accordingly the second sum in (6) is called the quasi-
linear part of q. The second sum in (5) consists of all z ∈ V which are
orthogonal to V ; therefore it is denoted by V ⊥.

In characteristic 6= 2 a quadratic form (1) is called regular, or equivalently
non-singular, if it has no equivalent form which can be written in fewer than n
variables; this means that in the diagonal form (3) all the coefficients ai 6= 0.
In characteristic 2 things are different. Arf retained the above definition of
“regular”; in characteristic 2 this means that the coefficients cj in the quasi-
linear part of (6) are linearly independent over the subfield K2. If there does
not appear a quasi-linear part, i.e., if s = 0, then Arf called the quadratic
form “completely regular” (vollregulär).

Today the terminology has changed. Instead of Arf’s “completely regular”
one says “regular” (or “non-singular”) whereas Arf’s “regular” is now referred
to as “semi-regular”. This reflects the experience that in the new terminology,
the “regular” forms in characteristic 2 behave in many respects similar to the
regular forms in characteristic 6= 2.

We shall use here the terminology of today, deviating from Arf’s.

18Arf however does not assume this and he admits for β(ui, vi) any non-zero element
in K. Therefore his formulas for the Arf invariant look a little more complicated than
ours.
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The notions of “regular” und “semi-regular” are invariant, and can also
be applied to a quadratic space: V is “regular” if V ⊥ = 0, and V is “semi-
regular” if V ⊥ does not contain a vector x 6= 0 with q(x) = 0, i.e., if V ⊥ is
anisotropic.

Every quadratic space (V, q) can be scaled. If 0 6= c ∈ K then the scaled
quadratic space with scaling factor c is defined to be (V, cq). Notation: V (c).
Thus in V (c) the “length” of every vector x is c · q(x) whereas in V it is q(x).

5 Clifford algebras

The Clifford algebra C(V ) of a quadratic space V is defined as an associative
K-algebra (not commutative in general) generated by the K-module V and
with the defining relations :

x2 = q(x) for x ∈ V . (7)

In view of (2) this implies

xy + yx = β(x, y) for x, y ∈ V . (8)

If u1, . . . , un is a K-basis of V then a K-basis of C(V ) is given by the products
ui1ui2 · · ·uik with i1 < i2 < · · · < ik and 0 ≤ k ≤ n. The K-dimension of
C(V ) is 2n.

In view of its definition C(V ) is an invariant of V . So is the subalgebra
C0(V ) ⊂ C(V ) which is generated by the products ui1ui2 · · ·uik with an even
number k of factors. The invariance of C0(V ) is a consequence of the fact
that the defining relations (7) are of degree 2. The dimension of C0(V ) is
2n−1.

If K is of characteristic 2 then we have the following rule:

If V = V1 ⊥ V2 then C(V ) = C(V1)⊗ C(V2) . (9)

Here I have written V1 ⊥ V2 to indicate the orthogonal direct sum of V1 and
V2. The tensor product is taken over K as the base field. The validity of
(9) is immediate if we observe that any x1 ∈ V1 and x2 ∈ V2 are orthogonal
to each other, i.e., β(x1, x2) = 0. Hence from (8) we conclude that x1x2 =
−x2x1 = x2x1 showing that C(V1) and C(V2) commute elementwise. (At the
same time we see that in characteristic 6= 2 this is not the case since the
appearing minus sign cannot be disregarded.)
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In view of the decomposition (4) we obtain for characteristic 2 that
the Clifford algebra C(V ) decomposes into the tensor product of r factors
C(Kui + Kvi) of dimension 4, and the factor C(V ⊥) of dimension 2s. The
latter is the center of C(V ) and does not appear if V is regular.

6 Binary quadratic spaces

First Arf investigates the Clifford algebra of a regular quadratic space which
is binary, i.e., of dimension 2. This discussion is quite elementary but it is
fundamental for all of Arf’s results.

A binary regular quadratic space is generated by 2 elements u, v with the
relations

q(u) = a , q(v) = b , β(u, v) = 1 . (10)

Its Clifford algebra C(V ) is given by the defining relations

u2 = a , v2 = b , uv + vu = 1 . (11)

This is a central simple algebra of dimension 4, i.e., a quaternion algebra,
with the K-basis 1, u, v, uv.

The even subalgebra C0(V ) is of dimension 2 and has the basis elements
1 and uv with the relation:

(uv)2 + uv = uv(vu+ 1) + uv = u2v2 = ab .

Putting w = uv and introducing the Artin-Schreier operator ℘(X) = X2−X
we may write this as:

C0(V ) = K(w) with ℘(w) = ab . (12)

Let us first assume that ab 6≡ 0 mod ℘(K) . Then K(w) is a separable
quadratic field extension of Artin-Schreier type. Hence it is uniquely deter-
mined by the class of ab modulo the additive subgroup ℘(K) of K. This
class consists of all elements c ∈ K of the form c = ℘(z) with z ∈ K(w).
The nontrivial automorphism of K(w) is induced by transformation with u,
since u−1wu = w+ 1 according to (11.) We conclude that C(V ) is the cyclic
crossed product of K(w) with the factor a ∈ K×. The usual notation for such
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crossed product is C(V ) = (K(w), a). The factor a is uniquely determined
up to norms from K(w).19

If ab ≡ 0 mod ℘(K) then the the situation is quite similar except that in
this case K(w) is not a field but a commutative separable K-algebra which
decomposes into the direct product of two copies of K. Writing ab = ℘(c)
with c ∈ K and putting e1 = w + c and e2 = e1 + 1, we obtain orthogonal
idempotents e1 and e2 , hence K(w) = Ke1 ⊕Ke2. By suitable choice of the
basis u, v of V one can achieve that u2 = a 6= 0; then u admits an inverse
in C(V ) and conjugation with u induces the automorphism of K(w) which
permutes e1 and e2. Hence again, C(V ) is a crossed product of K(w) and
we write C(V ) = (K(w), a). 20 Again, a is determined modulo norms from
K(w) but in this case this is trivial since every element in K is a norm from
K(w).

The above discussion shows in particular that the class of ab modulo the
additive subgroup ℘(K) is an invariant of V . This is defined to be the Arf
invariant:

Arf(V ) ≡ ab mod ℘(K) . 21

Arf showed that the original quadratic form q(x1, x2) of V can be re-
discovered (up to equivalence) from these data by the norm function N :
K(w)→ K as follows:

a ·N(x1 + x2w) = a · (x1 + x2w)(x1 + x2(w + 1))

= ax21 + x1(ax2) + b(ax2)
2

= q(x1, ax2) . (13)

Although this is not the original quadratic form q(x1, x2), it is equivalent to
it.

Formula (13) can be interpreted as follows: We may regard K(w) as a
quadratic space with respect to the norm function N : K(w)→ K. Consider

19Let L|K is a separable quadratic field extension and (L, a), (L, a′) are two crossed
product algebras. If (L, a) and (L, a′) are isomorphic then a′ = ac with c ∈ N(L), and
conversely. – Quite generally, for cyclic algebras we refer the reader to [LR03] and to
[Lor08].

20K(w) is a commutative separable algebra over K with an automorphism group G
of order 2 (the group interchanging the two copies Ke1 and Ke2 of K). Thus K(w) is
a quadratic “Galois algebra”. The theory of crossed products of Galois algebras can be
developed in complete analogy to the theory of crossed products for Galois field extensions.
The first who had done this explicitly seems to be Teichmüller in his paper [Tei36b]. His
terminology was “Normalring” for what today is called “Galois algebra”.

21Arf in his paper writes ∆(V ).
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the scaled space K(w)(a) which has the quadratic form aN : K(w) → K.
Then formula (13) says that K(w)(a) as a quadratic space is isomorphic to V .
This isomorphsm is given by 1 7→ u, w 7→ a−1v.

We observe that the extension K(w) of K is uniquely determined by the
Arf invariant Arf(V ), according to the theory of Artin-Schreier extensions.
Moreover, since C(V ) is the crossed product C(V ) = (K(w), a), it follows
from the theory of crossed products that the factor a is uniquely determined
(up to norms from K(w)) by the algebra C(V ) and its splitting field K(w).22

Combining this information we conclude from (13):

Theorem: Every regular binary space V is uniquely determined
(up to isomorphism) by its Arf invariant and its Clifford algebra.

A quadratic space (V, q) is called isotropic if there exists a vector x 6= 0
in V such that q(x) = 0. Otherwise V is anisotropic. As a consequence of
formula (13) we note:

A regular binary quadratic space V is isotropic if and only if
Arf(V ) ≡ 0 mod ℘(K).

For, if Arf(V ) 6≡ 0 mod ℘(K) then K(w) is a field extension of K and hence
the norm N(z) 6= 0 for every 0 6= z ∈ K(w). If Arf(V ) ≡ 0 mod ℘(K)
then the quadratic form is equivalent to q(x1, x2) = x1x2. The corresponding
quadratic space is called the hyperbolic plane and denoted by H.

Remark: Central simple algebras in arbitrary characteristic p > 0 with
defining relations

up = a , ℘(w) = c , uw = (w + 1)u . (14)

had been systematically studied earlier, in particular by Teichmüller in his
paper [Tei36a]. Such an algebra is called p-algebra. Teichmüller denotes it
by (a, c ].23

22If Arf(w)=0 then K(w) is not a field but a quadratic Galois algebra, as explained
above. In this case V ∼= H; see below.

23Apparently this notation had been chosen to signalize the fact that the symbol (a, c ]
is not symmetric in a and c. Compare it with the notation (a, b) for a quaternion algebra
in characteristic 6= 2, given by the defining relations (16) below. That symbol is symmetric
in the sense that (a, b) = (b, a).
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In the case p = 2 we obtain a quaternion algebra A. In view of the above
considerations we see that A = (a, c ] is the Clifford algebra C(V ) of the
binary quadratic space V = Ku + Kv with (10) for b = a−1c. Whereas the
relations (11) represent the description of A as the Clifford algebra of the
given quadratic space V , the relations (14) put into evidence the description
of A as a crossed product of some separable quadratic extension K(w) of K
with ℘(w) = c. The connection between the two is given by the fact that c
is the Arf invariant of the space V , while the quadratic form of V is given by
the norm form of K(w) scaled by a; see (13).

The paper of Teichmüller mentioned above appeared in 1936, one year
before Arf came to Göttingen. In this paper Teichmüller studies, among
other things, the conditions for two such p-algebras (a, c ] and (a, c ′ ] to be
isomorphic. If p = 2 then this result has some bearing on Arf’s investigations.
It would have been desirable that Arf cites Teichmüller’s paper and points
out the connection between his and Teichmüller’s investigation. However Arf
did not do this. Why not? Did he not know Teichmüller’s paper?

Teichmüller had been a very active member of the Göttingen Arbeitsge-
meinschaft but he had left for Berlin in early 1937. Hence Arf had probably
not met Teichmüller. But certainly Teichmüller’s results were known and
valued in Göttingen and Arf must have heard about it. I find an explanation
for Arf’s silence about Teichmüller’s work in a certain character trait of Arf
which is mentioned in the biography of Sertöz [Ser08]:24

Arf was in the habit of encouraging young mathematicians to dis-
cover mathematics by themselves rather than to learn it from oth-
ers. To support his cause he would tell how in his university
years, i.e., his École Normale years in Paris, he would never at-
tend classes . . . but proceed to develop that theory himself.

It seems that during his stay in Göttingen Arf had proceeded similarly, for
Sertöz reports in his biography:

Years later in Silivri, Turkey, Hasse would recall that after taking
his problem25 Arf had disappeared from the scene for a few months
only to come back with the solution.

24The story has been confirmed to me by several Turkish colleagues who had known
Cahit Arf personally.

25 Namely the problem for his Ph.D. thesis.
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This suggests to me that when Arf in 1939 was back in Istanbul and worked
on quadratic forms then again he had proceeded similarly, i.e., discovering the
solution of his problem by himself and not consulting other people or papers.
In fact, in his paper [Arf41] Arf cites only one paper explicitly, namely Witt’s
on quadratic forms [Wit37a]. –

The above Theorem holds in characteristic 2. Let us briefly compare it
with the similar situation in Witt’s paper for characteristic 6= 2: In this case
a binary quadratic space is of the form V = 〈u, v〉 with mutually orthogonal
vectors u and v and instead of (10), (11) we have

q(u) = a , q(v) = b , β(u, v) = 0 (15)

The Clifford algebra C(V ) is now given by the defining relations

u2 = a , v2 = b , uv = −vu . (16)

Again, this is a quaternion algebra. In the theory of algebras it is often
denoted by (a, b). The even subalgebra C0(V ) is of dimension 2 and has the
basis 1, uv but this time with the relation:

(uv)2 = −uv(vu) = −u2v2 = −ab = d .

where d is the discriminant of V . Thus

C0(V ) = K(
√
d) .

If d /∈ K×2 then26 this is a quadratic field extension whose non-trivial auto-
morphism is given by transformation with u. And again, we conclude that
C(V ) is a crossed product of K(

√
d) which splits if and only if a is a norm

from L.

If d ∈ K×2 then K(uv) is not a field but the direct product of two copies
of K. In this case and only in this case the quadratic space is isotropic, and
it turns out that in this case the corrsponding quadratic form is equivalent
to q(x, y) = xy, the hyperbolic plane.

So we see that for binary quadratic spaces Arf’s situation in characteris-
tic 2 is quite similar to Witt’s situation in characteristic 6= 2, the only differ-
ence being quite natural, namely that the quadratic splitting field of C(V )
is generated by

√
−ab in the case of characteristic 6= 2, whereas in charac-

teristic 2 it is generated by a root of the Artin-Schreier equation ℘(x) = ab.
And we see already here in the binary case:

26K× denotes the multiplicative group of the field K and K×2 is the group of squares.
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In characteristic 2 the Arf invariant Arf(V ) ∈ K/℘(K) is the
analogue of the discriminant d(V ) ∈ K×/K×2 in characteris-
tic 6= 2.

This was the guiding idea of Arf when he wrote his paper.

7 Higher dimensional quadratic spaces

Now let V be an arbitrary regular quadratic space over a field K of charac-
teristic 2. From (5) we know that V decomposes into an orthogonal direct
sum of two-dimensional spaces:

V = ⊥
∑
1≤i≤r

Vi where Vi = 〈ui, vi〉 (17)

and

q(ui) = ai , q(vi) = bi , β(ui, vi) = 1 (1 ≤ i ≤ r) . (18)

Definition of Arf invariant:

Arf(V ) ≡
∑
1≤i≤r

Arf(Vi) mod ℘(K) . (19)

Recall that by definition Arf(Vi) ≡ aibi mod ℘(K) so that this definition can
also be written as:

Arf(V ) ≡
∑
1≤i≤r

q(ui)q(vi) mod ℘(K) . (20)

This formula is printed on the Turkish 10-Lira note where, however, the
underlying field is restricted to be K = F2, the prime field in characteristic 2.
In that case ℘(F2) = 0 and hence the congruence sign ≡ in (20) can be
replaced by equality.

If r > 1 then it is not clear a priori that Arf(V ) is an invariant of V .
For, the definition (20) depends on how V is decomposed into orthogonal
subspaces Vi in the form (17). One has to show that for every two such
decompositions the corresponding sums in (19) are in the same class modulo
℘(K). Arf does it in his paper but the proof requires some cumbersome
computations. In later years Witt [Wit54] and Klingenberg [KW54] have
given simplified descriptions of Arf(V ) from which one can see more directly
its invariance. In the comments to Witt’s paper in [Wit98] the editor Ina
Kersten reports:
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It was Witt’s concern in the fifties to eliminate the assumption
that the characteristic of the ground field is different from 2.

We interpret this such that Witt had carefully read Arf’s paper and tried not
only to simplify Arf’s proof but also to build a unified theory of quadratic
forms, independent of the characteristic. In particular Kersten mentions
Witt’s cancellation theorem (see section 8 below) and his attempts to inves-
tigate in detail the geometric situation which guarantees its validity.

Today we would verify the invariance of Arf(V ) by investigating in more
detail the structure of the Clifford algebra C(V ). We have already said in
section 5 that C(V ) contains a subalgebra C0(V ) which is canonically de-
fined by V , namely: C0(V ) is generated by the products with an even num-
ber k of factors in V . And in section 6 we have seen that in the binary case,
C0(Vi) = K(wi) is a quadratic extension defined by the relation w2

i +wi = aibi
which shows, using Artin-Schreier theory, that the class Arf(Vi) of aibi is an
invariant of C0(Vi), hence of Vi. But Arf did not consider the subalgebra
C0(V ), probably he was not aware at that time that C0(V ) was canonically
defined by the quadratic space V . Therefore he had to use somewhat cum-
bersome explicit computations.

But using the invariance of C0(V ), the following statement immediately
shows that Arf(V ) is an invariant: 27

Proposition:Let V be a regular quadratic space, represented as
an orthogonal sum of two-dimensional spaces as in (17), (18). For
each i let C0(Vi) = K(wi) with ℘(wi) = aibi. Put w =

∑
iwi, so

that ℘(w) =
∑

i aibi. Then the quadratic extension K(w) equals
the center of C0(V ), and hence by Artin-Schreier theory the class
of
∑

i aibi is an invariant of V .28

The essential part of the proof consists in verifying w to commute with
every element in C0(V ). I recommend to verify this for r = 2 (and then use
induction). One has to use that

C0(V ) = C0(V1)⊗ C0(V2) + C1(V1)⊗ C1(V2)

= K(w1, w2) + V1 ⊗ V2
27See Kneser’s paper [Kne54].
28If ℘(w) ≡ 0 mod ℘(K) then K(w) is not a field but the direct sum of two fields

isomorphic to K. We have discussed this situation already in the case of two-dimensional
quadratic spaces.
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where C1(Vi) denotes the K-space generated by all products of an odd num-
ber of elements in Vi, hence C1(Vi) = Vi. Show that w = w1 + w2 commutes
with w1, with w2 and with every product x1x2 with xi ∈ Vi. (Use the fact
that wixi = xiwi + xi).

Let us mention that in Witt’s situation of characteristic 6= 2 there arises
a problem with the Clifford algebra C(V ). For, in general this is not a
central simple algebra and it is not a product of quaternion algebras. For
this reason in characteristic 6= 2 Witt replaced the Clifford algebra C(V ) by
another algebra S(V ) which Witt has called “Hasse algebra”; this is defined
as follows: First recall the notation (a, b) for the quaternion algebra defined
by the relations (16) in characteristic 6= 2. Now consider the coefficients ai
appearing in the diagonal form (3) and put di = a1a2 · · · ai. Then the Hasse
algebra is defined as the n-fold tensor product

S(V ) = ⊗
∏

1≤i≤n

(di, ai) ∼ ⊗
∏

1≤i≤j≤n

(ai, aj)
29 (21)

This is a central simple K-algebra and plays a role in Witt’s theory of
quadratic forms in characteristic 6= 2, analoguous to the Clifford algebra
in characteristic 2. But its definition (21) depends on the coefficients ai in
the diagonal form (3). In order to show that it is an invariant, it is necessary
to study the transformation from one diagonal form to an equivalent one.
Witt’s computations for this are similar to Arf’s computations for the invari-
ance of Arf(V ) in characteristic 2. It seems to me that Arf had modelled his
invariance proof for Arf(V ) after Witt’s invariance proof for S(V ).30

8 Witt equivalence

For any type of mathematical structures, the quest for invariants is motivated
by the hope to be able to characterize the structures by their invariants (up
to isomorphisms), and thus to obtain a classification of the structures under
investigation. Arf was concerned with quadratic spaces V in characteristic 2
and in particular with regular spaces. We now know three invariants:

29Quite generally we write A ∼ B if A,B are central simple K-algebras which determine
the same element in the Brauer group Br(K).

30We follow a suggestion of the referee and remark that the Hasse algebra S(V ) in
characteristic 6= 2 is not an invariant of the class of V in the Witt ring WQ(K) – contrary
to the situation in characteristic 2 with the Clifford algebra C(V ) (see the next section).
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1. the dimension dim(V ),

2. The Clifford algebra C(V ) in the Brauer group Br(K),

3. the Arf invariant Arf(V ) in the additive group K/℘(K) .

For arbitrary fields we cannot expect that these three invariants character-
ize V up to isomorphisms. But Arf wished to show that for special fields K
this is indeed possible. Although, as we shall explain, his main result cannot
be upheld in its full generality, it turns out that the theorem is valid, e.g.,
over global and local fields K in characteristic 2. In order to approach this
problem, Arf follows Witt who had discovered the “Witt ring” by introducing
a certain equivalence relation.

Recall that a quadratic space V is called “isotropic” if there exists a non-
zero vector x ∈ V with q(x) = 0. The prototype of an isotropic regular space
is the hyperbolic plane H already introduced in section 6. The Arf invariant
of H is Arf(H) = 0, and the Clifford algebra is C(H) ∼ 1, which means that
C(H) splits. Arf proves the following

Kernel Theorem: (i) If the regular quadratic space V is isotropic
then V is isomorphic to the orthogonal sum H ⊥ W where W is
uniquely determined (up to isomorphisms) by V .31

(ii) Consequently, every regular quadratic space V can be decom-
posed into an orthogonal sum of a number of spaces isomorphic
to H and a space V ∗ which is anisotropic, and V ∗ is uniquely
determined by V (up to isomorphisms).

The space V ∗ is called the anisotropic kernel of V . Its quadratic form is
called the kernel form32 of V .

As a consequence of this result Arf proves for regular quadratic spaces
V,W ′,W ′′ the general

Cancellation Theorem: If V ⊥ W ∼= V ⊥ W ′ then W ∼= W ′ .

In characteristic 6= 2 this famous cancellation theorem was contained in
Witt’s paper. Arf has observed that it holds also in characteristic 2 for
regular spaces.

31Arf proves this under the weaker assumption that V is semi-regular in the sense as
defined in section 4. Accordingly, in the cancellation theorem below the spaces W ′,W ′′

may be semi-regular – but V is to be regular there.
32In German: Grundform.
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The kernel theorem is essentially a special case of the cancellation theo-
rem. For, the existence of a decomposition V ∼= H ⊥ W is easily seen; the
main task is to show the uniqueness of W . In characteristic 6= 2 Witt had
proved the cancellation theorem first and then deduced from it the kernel
theorem. It appears that Arf did not succeed to do the same in character-
istic 2, but he could do the cancellation theorem in the special case of the
hyperbolic plane. And that afterwards he had an idea how to deduce from
it the general case. This idea is quite nice and since it is short let us present
it here in order that it will not be forgotten.

Arf’s proof of the cancellation theorem: We may assume that V is of
dimension 2. (Otherwise decompose V into an orthogonal sum of binary
regular spaces and use induction.) From V ⊥ W ∼= V ⊥ W ′ it follows

V ⊥ V ⊥ W ∼= V ⊥ V ⊥ W ′.

Since V ⊥ V is isotropic, the kernel theorem shows V ⊥ V ∼= H ⊥ V ′ with
V ′ of dimension 2. Now we compute

Arf(V ⊥ V ) = Arf(V ) + Arf(V ) = 0 (in characteristic 2)

=Arf(H + V ′) = Arf(H) + Arf(V ′) = Arf(V ′)

hence Arf(V ′) = 0. This implies V ′ ∼= H (see page 16.) It follows

V ⊥ V ⊥ W ∼= H ⊥ H ⊥ W,

and similarly for W ′ in place of W . Applying twice the kernel theorem we
conclude W ∼= W ′. 33

The anisotropic kernel V ∗ is a new invariant of the regular quadratic
space. The original space V is obtained from V ∗ by adding an orthogonal
sum of a number of hyperbolic planes, as many as the dimension of V requires.
We note that

C(V ) ∼ C(V ∗) and Arf(V ) ≡ Arf(V ∗) mod ℘(K) . (22)

since C(H) ∼ 1 and Arf(H) ≡ 0 mod ℘(K). We conclude:

In order to classify the regular quadratic spaces it is sufficient to
classify the anisotropic spaces.

33We have already mentioned that in later years Witt has provided new and more
general proofs of the cancellation theorem. In view of this it seems that Arf’s proof is
now considered to be superseded by more powerful methods. We refer to the first chapter
of Witt’s “Collected Papers” [Wit98], in particular to the remarks by Sigrid Böge on
pages 32-34.
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It is useful to work with the following

Definition of Witt equivalence: Two regular quadratic spaces
V , W (or quadratic forms) are Witt equivalent if they have iso-
morphic anisotropic kernels. Notation: V ∼ W .

This is indeed an equivalence relation. It blends with the orthogonal sum,
i.e., if V1 ∼ W1 and V2 ∼ W2 then V1 ⊥ V2 ∼ W1 ⊥ W2.

34 The Witt classes of
regular quadratic spaces with the operation ⊥ form a group which we denote
by WQ(K). We have V ⊥ V ∼ 0, i.e., the elements of this group are of
order 2.

9 Arf’s Theorems

Now we are able to state the main result of Arf’s paper. For an algebraic func-
tion field or power series field K over a perfect base field of characteristic 2
he wished to prove that the above three invariants completely characterize
the regular quadratic spaces. The relevant property of these fields was, in
his opinion, the following which concerns the Brauer group of K:

(Q): The quaternion algebras over K form a group within the
Brauer group Br(K). In other words: If A and B are any quater-
nion algebras over K then A ⊗ B ∼ C where C is a quaternion
algebra again.

It is not difficult to show that in characteristic 2 function fields and power
series fields over a perfect base field have the property (Q). But it seems that
Hasse had not seen it immediately and so he asked Arf about it, who replied
in a letter of March 29, 1940:

Wenn A und B normale einfache Algebren vom Grade 2 sind, so ist
A⊗B höchstens vom Index 4 . Da aber [K

1
2 : K] = 2 so enthalten

A und B Teilkörper die zu K
1
2 isomorph sind. A und B enthalten

34If V and W are semi-regular but not regular then V ⊥ W need not be semi-regular.
Arf considers also this situation but then the relation V ⊥ V ∼ 0 does not hold generally.
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also Elemente u, v mit u2 = v2 ∈ K die nicht zu K gehören. Es
gilt daher

(u− v)2 = 0 ohne, dass u− v = 0 gilt.

A⊗ B enthält also ein nilpotentes Element. Der Index von A⊗ B
ist daher höchstens 2.

If A and B are central 35 simple algebras of degree 2 then the index
of A ⊗ B is at most 4. But since [K

1
2 : K] = 2, both A and B

contain subfields which are isomorphic to K
1
2 . Hence A and B

contain elements u and v respectively with u2 = v2 ∈ K, and u,
v do not belong to K. Hence we have

(u− v)2 = 0 but not u− v = 0 .

Thus A⊗B contains a nilpotent element. Therefore the index of
A⊗B is at most 2.

This settled Hasse’s question but at the same time it showed that property
(Q) holds for all fields with [K

1
2 : K] = 2.

Arf stated his main results in the form of two theorems. As indicated ear-
lier, there is an error in the proof of his first theorem and in fact there do exist
counterexamples. Hence his first theorem has to be corrected. Nevertheless
let us first state it as it appears in Arf’s paper.

Arf’s Theorem 1:36 (to be corrected) Assume that the field
K of characteristic 2 satisfies property (Q). Then any regular
quadratic space V of dimension > 4 is isotropic. Consequently,
its anisotropic kernel V ∗ is of dimension ≤ 4.37

Arf’s Theorem 2: Assume that the field K of characteristic 2
has the property that every regular quadratic space of dimen-
sion > 4 is isotropic. Then every regular quadratic space over

35Arf used the terminology “normal” but nowadays it is usually said “central” to indicate
that the center of the algebra equals the base field. – The K-dimension of a central simple
K-algebra A is a square n2. The number n is called the “degree” of A. The “index” of A
is defined to be the degree of the division algebra D ∼ A.

36In Arf’s paper [Arf41] this is Theorem 11, and our next Theorem 2 is numbered as
Theorem 12 there.

37Arf also considered quadratic spaces V which are semi-regular but not regular. For
those he claimed that the regular part of V ∗ is of dimension ≤ 2.
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K is uniquely determined, up to isomorphism, by its dimension,
its Clifford algebra and its Arf invariant.

Certainly, Arf regarded his second theorem as the highlight of his paper.
He had been able to accomplish his aim, namely to characterize quadratic
forms by their invariants. His first theorem was to give a sufficient criterion,
in terms of the Brauer group, for the field K which implies the characteriza-
tion.

It can be easily verified that the condition (Q) is necessary for the validity
of the assertion in Arf’s first theorem. But Arf was wrong to believe that
it is also sufficient. In order to find the correct condition, necessary and
sufficient, we first remark that condition (Q) is well known to be equivalent
to the following condition:

(S) Any two non-split quaternion algebras A,B over K admit a
common quadratic splitting field.

If two non-split quaternion algebras have a common quadratic splitting
field then they are called “linked”. If every two non-split quaternion algebras
over K are linked, i.e., if K satisfies condition (S), then K is called “linked”.

Every non-split quaternion algebra in characteristic 2 has two kinds of
quadratic splitting fields: separable and inseparable ones. If the quaternion
algebras A, B have a common inseparable quadratic splitting field then there
is also a common separable quadratic splitting field. This seems to have first
been observed by Draxl [Dra75]. A short and easy proof can be found in
Lam’s paper [Lam02].38 See also section 13.4 below.

But now comes the surprise: the converse does not hold. If A, B have a
common separable quadratic splitting field then they do not necessarily have
a common inseparable quadratic splitting field. This has been observed by
[Lam02].39 In view of this the following condition appears stronger than (S):

(Sins) Any two non-split quaternion algebras A,B over K admit
a common inseparable quadratic splitting field.

38Perhaps it is not without interest to note that the formulas for quaternion algebras
which have been used in [Lam02] are special cases for p = 2 of formulas which have been
stated 1936 by Teichmüller for p-algebras in characteristic p [Tei36a].

39Lam cites [Tit93] and [Knu93] but his example is simpler and easier to verify.
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FieldsK with this property may be called “inseparably linked”. R. Aravire
and B. Jacob [AJ95, AJ96] have shown that the iterated power series field
K = F2((X))((Y )) is linked; but it can be shown that there exist anisotropic
regular quadratic spaces dimension > 4 which implies by Baeza’s theorem
below that K is not inseparably linked. We conclude that condition (Sins) is
properly stronger than (S), hence also properly stronger than Arf’s condition
(Q) which is equivalent to (S).

It turns out that the proper correction of Arf’s first theorem consists of
replacing his condition (Q) by the stronger condition (Sins). This has been
shown by Baeza [Bae82]:

Baeza’s Theorem: (i) If K satisfies condition (Sins) then every
regular quadratic form over K of dimension > 4 is isotropic.
(ii) Conversely, if every regular quadratic form over K of dimen-
sion > 4 is isotropic then (Sins) holds.

Quite generally, the so-called u-invariant u(K) of a field K is defined to be
the smallest number u such that every regular quadratic form of dimension
> u is isotropic. Thus Baeza’s theorem can be formulated as follows:

If K is inseparably linked then u(K) ≤ 4, and conversely.

If we observe that Arf’s first (incorrect) theorem can be formulated as:
“If K is linked then u(K) ≤ 4,” then we see that Arf’s essential difference
to Baeza’s theorem consists in the absence of the inseparability condition.
Apparently Arf was not aware of the fact that there is a difference of the
linkage behavior of quaternions according to separability or inseparability.
In fact, this question was first raised in 1974 only, by Draxl [Dra75].

If K is a function field of one variable over a perfect field of constants
then there is only one inseparable quadratic field over K, namely K

1
2 . Hence

K is inseparably linked and Baeza’s theorem is applicable. In fact, in this
case this is almost trivial; see our appendix.

The classical fact that [K
1
2 : K] = 2 for a function field K over a perfact

base field, was also observed by Albert in his paper [Alb38] which we have
cited above already. On this basis Albert had already proved that quadratic
forms of 5 variables over such function fields are isotropic, i.e., that u(K) ≤ 4.

Apparently Arf did not know Albert’s paper. When O.F.G. Schilling re-
viewed Arf’s paper in the “Mathematical Reviews” he wrote: “The author
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is unaware of the work of A.A.Albert”. We observe that Schilling did say
this as a statement, not as a guess. Schilling had been a student of Emmy
Noether in Göttingen and after Noether’s emigration got his Ph.D. with Hel-
mut Hasse in Marburg. Later he went to the USA.40 At the time when he
wrote this review he held a position at the University of Chicago with Al-
bert. He had kept contact to Hasse by mail, and on these occasions he had
asked for information about the results in Hasse’s Göttingen mathematical
circle. It seems likely that he had been informed by Hasse or by someone
else from Göttingen about Arf and his results; this enabled him to state that
Arf “was not aware” of Albert’s work, and that he did not add “apparently”
or something like this. Certainly Schilling himself knew Albert’s papers.

Arf’s (erroneous) proof of theorem 1 is not easy or straightforward but
it is well arranged. It seems to me that Arf’s style in his paper was much
influenced by the suggestions and the advice of his academic teacher Hasse.
For, I have found in Arf’s paper a footnote which Hasse, being the editor of
Crelle’s Journal, had placed at the end of the introduction:

Anmerkung des Herausgebers: Im Einverständnis mit dem Verfasser
habe ich dessen ursprüngliches Ms. überarbeitet.

Note by the editor: With the consent of the author I have revised
his original manuscript.

We see that Hasse did with Arf’s manuscript what he always did as an editor
of Crelle’s Journal, namely checking manuscripts carefully. As Rohrbach
reports in [Roh98]:

With his [Hasse’s]characteristic conscientiousness, he meticulously
read and checked the manuscripts word by word and formula by
formula. Thus he very often was able to give all kinds of sugges-
tions to the authors, concerning contents as well as form . . .

So he did with Arf’s paper. In the Hasse-Arf correspondence we read several
times that Arf responds to changes suggested by Hasse, both approvingly
and critically. Finally on February 8, 1941 Arf returned the final version to
Hasse and wrote:

40He first stayed at the Institute for Advanced Study in Princeton where he had been
accepted on the recommendation of Hasse who had written a letter to Hermann Weyl.
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Mit gleicher Post schicke ich Ihnen die Korrekturbogen und das Ma-
nuskript der Arbeit über quadratische Formen zurück. Die Änderun-
gen an drei Stellen die Sie vorgenommen haben scheinen mir unrich-
tig. Meine Gründe habe ich am Rand des Manuskripts geschrieben.

At the same time I am returning the galley proofs and the manu-
script on quadratic forms. At three instances your proposed changes
seem not to be correct. I have explained my reasons at the margin
of the manuscript.41

The paper appeared in the same year 1941.

It seems curious that Hasse had not detected Arf’s error although he was
quite interested in the subject and had closely examined Arf’s paper. This
is even more curious since the error is of the same kind which many years
ago, in 1927, Emmy Noether had committed in a similar situation and there
resulted a close correspondence between Hasse and Emmy Noether about it.
This correspondence finally led to their renowned theorem about cyclicity
of algebras over number fields. It appears that in 1940 Hasse had forgotten
that incident.

The situation back in 1927 had been as follows:42 Emmy Noether, in a
letter to Richard Brauer of March 28, 1927, wrote to him that every minimal
splitting field of a division algebra can be embedded into the algebra. Brauer
knew that this was not the case and provided her with a counterexample.
But this example seemed unnecessarily complicated to Emmy Noether; so
she wrote to Hasse, in a postcard of October 4, 1927 asking whether he
could construct easy counterexamples for quaternions. Hasse did so: He con-
structed fields of arbitrary high degree (over Q) which were splitting fields
of the classical quaternions but no proper subfield had this splitting prop-
erty. Thus Noether as well as Hasse learned that one has to distinguish
between minimal splitting fields and splitting fields of minimal degree; the
latter indeed can be embedded into the algebra.

Now, in Arf’s proof in the year 1940, a situation ocurred which was quite
similar to the earlier one in 1927. On page 164, in the second paragraph of
the proof of his “Satz 11 ”, Arf considered two quaternion algebras A1, A2

(i.e., Clifford algebras of binary quadratic spaces V1, V2). He took separable
quadratic extensions K1, K2 of K which were splitting fields of A1 and A2

respectively, and he assumed K1 6= K2. Then A1 ⊗ A2 is split by the field

41The manuscript is not preserved. I do not know which changes Hasse had proposed.
42I have told this story in detail in [Roq05].
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compositum K1K2 which has degree 4 over K. In view of his hypothesis
(Q) Arf knew that A1 ⊗ A2 is similar to some quaternion algebra, hence it
admits a splitting field of degree 2. And now he argued that “necessarily”
such splitting field can be found within K1K2. But this is not necessarily
the case. In other words: K1K2 may be a minimal splitting field of A1 ⊗A2

although it is not a splitting field of minimal degree.

Although Hasse’s example of 1927 had referred to quaternions over Q we
have here in characteristic 2 a similar situation. Why had Hasse not seen
this error? We will never know. We know that in 1940 it was wartime and
Hasse had been drafted to the Navy. He worked at a Navy research institute
in Berlin and could attend to his activities as an editor of Crelle’s Journal in
the evenings and on weekends only. So it seems that he did not check Arf’s
paper as thoroughly as he was used to in earlier times with other papers for
Crelle’s Journal.

10 An assessment of Arf’s paper

Arf’s paper [Arf41] is the first in which quadratic forms over arbitrary fields
of characteristic 2 are systematically studied. It is true that there was al-
ready some work before Arf which was concerned with quadratic forms in
characteristic 2, e.g., Dickson in [Dic01] and Albert [Alb38] – but these dis-
cussed only special base fields: finite fields and function fields of one variable,
respectively. Due to Arf’s general Ansatz he has opened the door to an ex-
tensive expansion of the theory of quadratic forms, not only over fields but
also over arbitrary (commutative) rings.

Arf used the structural language, “modern” at his time, which had been
introduced by Witt into the theory of quadratic forms. Thus he spoke of
quadratic “spaces” instead of “quadratic forms”. Arf was able to extend a
good part of Witt’s seminal results in [Wit37a] to the case of characteris-
tic 2. He showed the possibility of quasi-diagonalization, he extended Witt’s
important cancelling theorem (Kürzungssatz ) to characteristic 2, he inves-
tigated the role of Clifford algebras for quadratic forms, and he defined his
“Arf invariant” in characteristic 2 as a substitute for the discriminant in
characteristic 0.

Arf’s theorems were meant to find conditions for fields K of characteris-
tic 2 which guarantee that all regular quadratic spaces over K are character-
ized (up to isomorphism) by their three invariants:
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Dimension,
Clifford algebra,
Arf invariant.

His condition of linkage concerns the structure of the group of quaternion
algebras inside the Brauer group over K. Although the proof of his first
theorem contained an error and the theorem had to be modified, his paper
still keeps its importance.

The error occurred due to the pathological and unforeseen behavior of
quaternion algebras in characteristic 2, which nobody of the time was aware
of. In fact, it took many years until this was discovered and cleared up, and
thus Arf’s first theorem could be corrected [Bae82].

Due to Arf’s number theoretical background his main interest was di-
rected to global and local fields K. In a letter to Hasse dated March 29,
1940 (from which we have already cited on page 24) he had explained that
any two quaternion algebras over K have a common inseparable quadratic
splitting field, namely K

1
2 . From this he concluded that K is linked; this

is true but it does not lead to the conclusion of Arf’s first theorem, namely
u(K) ≤ 4. But in fact, what he showed in his letter is that K is inseparably
linked and this, due to Baeza’a theorem, is sufficient for u(K) ≤ 4.

It seems not impossible that Arf’s first version of proof worked for local
and global fields of characteristic 2, and that he used correctly this insepa-
rable linkage which he had shown to Hasse. In any case, as will be put into
evidence in our appendix, Arf had all the ingredients of such proof at his
disposal.

But since Arf did not realize the difference between linked and separably
linked quaternions, in his attempt to generalize his argument, he started with
the linkage condition (S) (or rather its equivalent condition (Q)), and since he
could not prove that this implies inseparable linkage (which we know today
is not true), he tried to use separable quadratic splitting fields. And so, since
he was convinced of his theorem due to his experience with global fields, he
stumbled into his error. And even Hasse, Witt, Albert and O.F.G. Schilling
(among others) did not detect his error.

There are many examples in the history of mathematics which show that
if people, even respected and competent mathematicians, are convinced of
the validity of a theorem then they are apt to accept any decent looking proof,
even at the cost of overlooking some little detail which then may necessitate
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a correction of the theorem.43

11 Perfect base fields

IfK is perfect of characteristic 2 then there exists only one quaternion algebra
over K (up to isomorphisms), namely the split one. The linkage conditions
(S) and also (Sins) are trivially satisfied. Therefore, in the characterization
of regular quadratic spaces the Clifford algebra can be omitted (since there
is only one). Hence for a perfect base field, every regular quadratic space V
is characterized by its dimension and its Arf invariant.

But this result does not need Arf’s two theorems for its proof. If the
field K is perfect then every element in K is a square and hence the set of
values q(V ) = K for every quadratic space V over K. It follows that the
orthogonal sum of any two spaces is isotropic, hence every non-vanishing
anisotropic regular quadratic space is of dimension 2 and is characterized by
its Arf invariant. An arbitrary regular quadratic space V is the orthogonal
sum of its kernel V ∗ and a number of copies of H, as many as the dimension
of V requires.

In the special case when K is finite then ℘(K) is an additive subgroup of
index 2 in K and hence there is essentially one anisotropic quadratic space.
Its quadratic form is q(x, y) = x2 +xy+ by2 where b /∈ ℘(K). If K = F2 then
b = 1.

In the literature Arf’s Theorem is often reduced to this case. For instance,
in the “Wikipedia”44 we read under the heading “Arf invariant” the following:

In mathematics, the Arf invariant of a nonsingular quadratic
form over the 2-element field F2 is the element of F2 which oc-
curs most often among the values of the form. Two nonsingular
quadratic forms over F2 are isomorphic if and only if they have
the same Arf invariant. The invariant was essentially known to
Dickson (1901) and rediscovered by Cahit Arf (1941).45

43One of those examples is Grunwald’s theorem in class field theory (1933), which was
accepted by Artin, R. Brauer, Hasse and Albert (among others) until Wang presented a
counterexample (1948). See, e.g., section 5 of [Roq05].

44English version, August 20, 2009. – In the version of June 14, 2011 the text of the
Wikipedia article is amended, now mentioning some of Arf’s main results.

45It seems that the author tacitly assumes that both these quadratic forms have the
same number of variables.
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Certainly, this is all true. But does it give an idea about the main dis-
coveries of Arf in connection with his invariant? In Arf’s paper the field F2

is not mentioned at all, nor are finite fields. In a small remark, covering four
lines only, Arf mentions how his theory applies easily and almost trivially in
the case of perfect fields of characteristic 2. The main motivation and the
main results of the theory of Arf invariants are concerned with fields which
are not finite, not even perfect. Arf studied the role of central simple alge-
bras in the theory of quadratic forms in characteristic 2. This aspect is not
even scratched in this article of Wikipedia. Moreover, the definition of Arf
invariant as given in this article is valid only for the base F2 and does not
apply to other fields of characteristic 2.46

The cited Wikipedia text seems to be written exclusively in view of the
application of Arf’s theory in topology. For, several of those applications
are mentioned in the article. And indeed in topology one has to compute
cohomology and other functors with coefficients modulo 2 which means that
the base field is F2. An overview of the application of Arf invariants in
topology is given by Turgut Önder in the appendix of the Collected Papers
of Cahit Arf [Arf90]. But, as said above, this is not representative of Arf’s
work which is meant to exhibit the role of central simple algebras in the
theory of quadratic forms in characteristic 2.

By the way, in the 1901 book of Dickson on linear groups [Dic01] which
is mentioned in the Wikipedia article, also the case of an arbitrary finite
base field of characteristic 2 is treated, not only F2. The fact that Arf did
not cite this book may have one of two reasons: either he knew Dickson’s
book and found it is of no relevance for his investigation (which would be
understandable), or he did not know it (which is more probable in view of
his particular character trait which we have mentioned in section 6).

In any case, the statement that Arf has ”‘rediscovered”’ what Dickson
had known is misleading. Arf discussed a quite different theorem, and in a
very special case this implies the statement of Dickson.

12 Epilog

After my conference talk I was asked about Arf’s biography for the years
after his paper on quadratic forms. I will not repeat here what is said in

46It is a good exercise to identify this defintion with Arf’s definition when the base field
is F2.
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his biographies contained in [Arf90, Ser08]. Let me only mention that he
became a prominent member of the Turkish scientific community (which is
documented by the fact that his portrait decorates an official banknote) – but
he also was a dedicated teacher. Many younger mathematicians in Turkey
had been introduced by him into mathematics, he had encouraged them and
showed them understandingly the way into our science. He is widely remem-
bered in the mathematical community of Turkey. Robert Langlands, in his
article about his impressions in Turkey, remembers warmly his discussions
with Arf [Lan04]. In particular Arf had directed Langlands’ attention to
a paper by Hasse on the local decomposition of the ε-factors; these factors
appear in the functional equation of Artin’s L-series. As Langlands says
(English translation):

“I had rapid advance in my research having read Hasse‘s pa-
per. . . ” and: “. . . thanks to Cahit bey, I solved this problem during
my stay in Ankara and proved the existence of the local ε-factor.”

I was also asked to report more extensively on the correspondence between
Arf and Hasse, in particular the letters after 1941. I plan to do this some
time in the future. Let me only mention that these letters, although they
do not discuss any more mathematics proper, show a growing friendship
between the two. Hasse visited Turkey several times between 1957 and 1975.
The last two preserved letters, dated March 1975, concern the proposal to
have an international colloquium on the structure of absolute Galois groups.
This colloquium was planned by Arf jointly with M. Ikeda (who had earlier
got a position in Turkey on the recommendation of Hasse). This conference
took place in September 1975 in Silivri, a small village on the beach of the
Marmara sea. I had the chance to participate in this conference and was able
to observe the close friendly relationship between the two mathematicians,
Arf and Hasse.

13 Appendix: Proofs

The aim of this section47 is to put into evidence that the proof of Baeza’s
theorem, i.e., the correction of Arf’s first theorem, can be done solely with
the arguments which can be found in Arf’s paper. Thus Arf could well have
proved Baeza’s theorem, avoiding his error, if only he would have recognized
the difference between linkage of separable and inseparable type.

47This section has been written jointly with Falko Lorenz.
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We also add a simple proof of Arf’s second theorem, as well as of Draxl’s
lemma.

We believe that our proofs, based on Arf’s paper, are simpler than any
of those which can be found in the literature.

13.1 Baeza’s Theorem (i)

K denotes a field of characteristic 2. We use the following notation:

Let V be a regular quadratic space of dimension 2 over K. There is a
K-basis u, v of V with

q(u) = a , q(v) = b , β(u, v) = 1 (a, b ∈ K) . (23)

Here, q : V → K denotes the quadratic form of V and β is the correspond-
ing bilinear form. Let A = C(V ) be the Clifford algebra of V . This is a
quaternion algebra over K with basis 1, u, v, w and the relations

u2 = a , v2 = b , uv + vu = 1 , w = uv . (24)

We identify the quadratic space V with the subspace of A generated by u
and v, and then q(x) = x2 for all x ∈ V . If x2 /∈ K2 then K(x) is an
inseparable quadratic subfield of A.

Lemma 1. Let y ∈ A . Then y2 ∈ K if and only if y ∈ V +K.

If A does not split then this lemma gives a complete description of the
inseparable quadratic subfields L = K(y) ⊂ A : then y = x+ c with suitable
x ∈ V , c ∈ K.

The statement of Lemma 1 can be found in Arf’s paper [Arf41] on page 161.
Arf does not formulate the statement in the form of a lemma, he just per-
forms the computations which we give in the proof below and uses them in
his text.48

Proof of Lemma 1:

We represent y ∈ A in the form

y = x+ z with x ∈ V, z = c0 + c1w ∈ K(w), c0, c1 ∈ K (25)

48Arf’s notation is different from our’s.
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and compute

y2 = x2 + z2 + xz + zx

= x2 + z2 + c1(xw + wx)

= x2 + z2 + c1x (26)

where we have used that xw + wx = x for x ∈ V , which is a consequence
of the relations (24). Now, x2 = q(x) ∈ K, z2 ∈ K(w) and c1x ∈ V . Since
V ∩K(w) = 0 we conclude that y2 ∈ K if and only if c1x = 0 and z2 ∈ K,
hence c1 = 0 since K(w)|K is separable.
2

In the following we regard K as a 1-dimensional quadratic space with the
quadratic form q(c) = c2 for c ∈ K. The sum V + K ⊂ A is direct and can
be regarded as the orthogonal sum V ⊥ K of quadratic spaces.

Lemma 2. Let V, V ′ be regular quadratic spaces of dimension 2 and A,A′

their Clifford algebras. Assume that A and A′ do not split. Then A,A′ have
a common inseparable quadratic splitting field if and only if V ⊥ V ′ ⊥ K is
isotropic.

Proof:

Let K(y) ⊂ A and K(y′) ⊂ A′ be isomorphic inseparable quadratic sub-
fields of A and A′ respectively. We choose the generators y, y′ in such a way
that they correspond to each other in the isomorphism K(y) ∼= K(y′), so
that y2 = y′ 2. By Lemma 1 we have y = x + c with 0 6= x ∈ V and c ∈ K.
Similarly y′ = x′ + c′ with 0 6= x′ ∈ V ′ and c′ ∈ K. We conclude

x2 + c2 = x′ 2 + c′ 2 .

Putting d = c+ c′ we obtain

x2 + x′ 2 + d2 = 0 (27)

which shows that the quadratic space V ⊥ V ′ ⊥ K is isotropic.

Conversely, assume V ⊥ V ′ ⊥ K is isotropic. There is a nontrivial
relation of the form (27) with x ∈ V , x′ ∈ V ′, d ∈ K . It follows

x2 = (x′ + d)2 . (28)

Let, say, x 6= 0. Since A does not split we have x2 /∈ K2. Hence K(x) is a
quadratic inseparable subfield of A. From (28) follows that K(x′ + d) ⊂ A′
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is isomorphic to K(x).
2

Proof of Baeza’s theorem, part (i) (see page 27) :

We assume that every two non-split quaternion algebras over K have a
common inseparable quadratic splitting field. We claim that every regular
quadratic space of dimension > 4 is isotropic. Write this space in the form

V ⊥ V ′ ⊥ W

where V and V ′ are of dimension 2 and W of dimension > 0. We may assume
that V and V ′ do not split.

Let y ∈ W and assume first that q(y) = 1. Then the subspace Ky ⊂ W is
isomorphic to K as a quadratic space. Since the Clifford algebras C(V ) and
C(V ′) have a common inseparable quadratic splitting field (by assumption)
we infer from Lemma 2 that V ⊥ V ′ ⊥ Ky is isotropic. Hence V ⊥ V ′ ⊥ W
is isotropic too.

But W may not contain a vector y with q(y) = 1. In this case we
use the method of scaling (see page 13). If 0 6= c ∈ K then the scaled
quadratic space V (c) ⊥ V ′ (c) ⊥ W (c) is isotropic if and only if V ⊥ V ′ ⊥ W
is isotropic. Now choose y ∈ W with q(y) 6= 0 and take the scaling factor
c = q(y)−1. Then c · q(y) = 1. From what has been shown above it follows
that V (c) ⊥ V ′ (c) ⊥ W (c) is isotropic, hence so is V ⊥ V ′ ⊥ W .
2

13.2 Arf’s second theorem

We assume that every regular quadratic space of dimension > 4 over K is
isotropic. We claim that every regular quadratic space over K is uniquely
determined (up to isomorphism) by its dimension, the Brauer class of its
Clifford algebra and its Arf invariant.

Proof :

Recall that WQ(K) denotes the (additive) group of Witt classes of regular
quadratic spaces over K; see section 8. The Witt class of the space V is
represented by its anisotropic kernel V ∗. The whole space V arises from V ∗

by adding a number of hyperbolic planes H, as many as the dimension of V
requires.
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Hence our claim reduces to the claim that the Witt class of V , i.e., the
anisotropic space V ∗, is uniquely determined by its Brauer class of C(V ) and
the Arf invariant Arf(V ).

We recall that

C(V ∗) ∼ C(V ) and Arf(V ∗) = Arf(V ) .

The Clifford algebra yields a homomorphism V 7→ C(V ) of WQ(K) into
the Brauer group Br(K). And the Arf invariant yields a homomorphism
V 7→ Arf(V ) of WQ(K) into the additive group K/℘(K). We have to show:

If C(V ) ∼ 1 in Br(K) and Arf(V ) = 0 then V ∼ 0 in WQ(K).

We have dimV ∗ ≤ 4 by hypothesis. Since V ∗ is regular we have dimV ∗ =
0, 2 or 4. The case dimV ∗ = 2 is not possible since Arf(V ∗) = 0 implies
V ∗ = H, the hyperbolic plane, hence V ∗ would not be anisotropic.

Suppose dimV ∗ = 4 and write V ∗ = V1 ⊥ V2 as the orthogonal sum of
two binary spaces. Since C(V ∗) ∼ 1 we have C(V1) ∼ C(V2). Since both
algebras have the same dimension they are isomorphic: C(V1) = C(V2). Also,
since Arf(V ∗) = 0 we have Arf(V1) = Arf(V2). We have seen in section 6 that
a binary regular space is uniquely determined by its Clifford algebra and its
Arf invariant. It follows V1 = V2 hence V ∗ = V1 ⊥ V1 ∼ 0, so again V ∗ would
not be anisotropic.

2

13.3 Baeza’s theorem (ii)

The following lemma is the separable analogue to Lemma 1. The situation
is the same as in Lemma 1.

Lemma 3. Let y ∈ A . Then ℘(y) ∈ K if and only if y ∈ V +K + w.

If A does not split then this lemma gives a complete description of the
separable quadratic subfields L = K(y) ⊂ A : then y = x + c + w with
suitable x ∈ V , c ∈ K.

The statement of Lemma 3 can also be found in Arf’s paper [Arf41] on
page 165. Arf does not formulate this statement in the form of a lemma, he
just performs the computations which we give in the proof below and uses
them in his text.49

49Our notation differs from Arf’s notation.
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Proof of Lemma 3:

We represent y ∈ A in the form as before in (25) and compute:

℘(y) = y2 − y = x2 − x+ z2 − z + c1x

= x2 + (c1 − 1)x+ ℘(z) (29)

where we have used that xz + zx = c1x. We conclude that ℘(y) ∈ K if and
only if c1 = 1 and so z = c0 + w, hence y ∈ V +K + w.

Changing notation, we write c = c0 and hence y = x+ c+ w. Observing
that ℘(c+ w) = ℘(c) + ℘(w) we have shown that

℘(y) = ℘(x+ c+ w) ≡ x2 + ℘(w) mod ℘(K) . (30)

We will have occasion to use this formula later.
2

In the following Lemma we consider K(w + w′) ⊂ A⊗ A′ as a quadratic
space with respect to its norm function N : K(w + w′) → K. Explicitly we
have

N(c0 + c1(w + w′)) = c20 + c0c1 + c21℘(w + w′) . (31)

The sum V + V ′ +K(w+w′) ⊂ A⊗A′ is direct and can be regarded as the
orthogonal sum V ⊥ V ′ ⊥ K(w + w′) of quadratic spaces.

Lemma 4. Let V, V ′ be regular quadratic spaces of dimension 2 and A,A′

their Clifford algebras. Assume that A and A′ do not split. Then A,A′ have a
common separable quadratic splitting field if and only if V ⊥ V ′ ⊥ K(w+w′)
is isotropic.

Proof:

Let L ⊂ A and L′ ⊂ A′ be isomorphic separable quadratic subfields of
A and A′ respectively. We may write L = K(y) and L′ = K(y′) where y, y′

correspond under the isomorphism L ∼= L′ and hence ℘(y) = ℘(y′) ∈ K. By
Lemma 3 we have y = x + c + w and y′ = x′ + c′ + w′ with suitable x ∈ V ,
x′ ∈ V ′, c, c′ ∈ K. From (30) we obtain:

x2 + ℘(w) ≡ x′ 2 + ℘(w′) mod ℘(K)

x2 + x′ 2 ≡ ℘(w) + ℘(w′) mod ℘(K) (32)

x2 + x′ 2 = ℘(d) + ℘(w + w′) with d ∈ K . (33)

hence
x2 + x′ 2 + ℘(d+ w + w′) = 0 .
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Here, ℘(d+w+w′) = N(d+w+w′); see (31). It follows that the quadratic
space V ⊥ V ′ ⊥ K(w + w′) is isotropic.

Conversely, assume that V ⊥ V ′ ⊥ K(w + w′) is isotropic. We have
to show that there exists a common separable quadratic splitting field of A
and A′. There exists a nontrivial relation of the form

x2 + x′ 2 +N(z) = 0 with x ∈ V, x′ ∈ V ′, z ∈ K(w + w′) .

We write z = c0 + c1(w + w′) and use formula (31) for the norm. It follows

x2 + x′ 2 + c20 + c0c1 + c21℘(w + w′) = 0 (34)

Suppose first that c1 6= 0. After dividing by c21 on both sides in (34) and
changing notation we may assume c1 = 1. Hence

x2 + x′ 2 + ℘(c0 + w + w′) = 0

which gives
x2 + ℘(w) ≡ x′ 2 + ℘(w′) mod ℘(K)

and using (30):
℘(x+ w) ≡ ℘(x′ + w′) mod ℘(K) .

It follows that the quadratic Artin-Schreier extensions K(x + w) ⊂ A and
K(x′ + w′) ⊂ A′ are isomorphic.

If c1 = 0 then (34) shows that V ⊥ V ′ ⊥ K is isotropic. From Lemma 2
we infer that A and A′ have a common inseparable splitting field. We have
already mentioned Draxl’s lemma which says that then there is also a com-
mon separable splitting field. For a simple proof of Draxl’s lemma see the
next section 13.4.

2

Proof of Baeza’s theorem part (ii) (see page 27) :

We assume that every regular quadratic space of dimension> 4 is isotropic.
We claim that every two non-split quaternions A, A′ over K have a common
inseparable quadratic splitting field.

We write A = C(V ) as the Clifford algebra of a 2-dimensional regu-
lar quadratic space V as in (23), (24), and similarly A′ = C(V ′). As
above we consider the separable quadratic extension K(w + w′) ⊂ A ⊗ A′

as a quadratic space with respect to the norm. The 6-dimensional space
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V ⊥ V ′ ⊥ K(w + w′) is isotropic (by assumption) and hence Lemma 4 shows
that A and A′ have a common separable quadratic splitting field L. But we
are looking for a common inseparable quadratic splitting field; this will be
established as follows.

The common separable quadratic splitting field L can be embedded into
A and into A′; this yields isomorphic separable quadratic subfields in A and
in A′. After changing notation we now identify these two fields, so that A,A′

appear as crossed products of the same separable quadratic field L. Writing
L = K(w) with ℘(w) = c ∈ K we have A = (a, c ] and A′ = (a′, c ] with
certain a, a′ ∈ K. We refer to our discussion on page 17. As explained
there, A,A′ appear now as the Clifford algebras of the quadratic spaces L(a)

and L(a′) respectively, which are scaled quadratic spaces of the space L with
respect to the norm.

Now, by hypothesis the 6-dimensional space

L(a) ⊥ L(a′) ⊥ L

is isotropic. Thus there is a nontrivial relation of the form

aN(z) + a′N(z′) +N(y) = 0 with z, z′, y ∈ L . (35)

If y 6= 0 then after dividing by N(y) and changing notation we obtain

aN(z) + a′N(z′) + 1 = 0 with z, z′ ∈ K(w) .

This shows that L(a) ⊥ L(a′) ⊥ K is isotropic. Applying Lemma 2 we see
that there exists a common inseparable quadratic splitting field of A and A′.

If y = 0 then from (35) we infer that L(a) ⊥ L(a′) is isotropic, hence
L(a) ⊥ L(a′) ⊥ K is isotropic too and again Lemma 2 applies. 2

13.4 Draxl’s Lemma

Lemma 5 (Draxl). Let A and A′ be two nonsplitting quaternion algebras
over K. If A,A′ have a common inseparable quadratic splitting field then
they also have a common separable quadratic splitting field.

Proof :

We represent A = C(V ) as the Clifford algebra of a binary quadratic
space V , so that

A = V +K(w) with V = Ku+Kv, uv + vu = 1, w = uv (36)
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as explained in section 6. Similarly for A′:

A′ = V ′ +K(w′) with V ′ = Ku′ +Kv′, u′v′ + v′u′ = 1, w′ = u′v′. (37)

Let L ⊂ A and L′ ⊂ A′ be isomorphic inseparable quadratic subfields of
A and A′ respectively. We may write L = K(t) and L′ = K(t′) where t, t′

correspond to each other under the isomorphism L ∼= L′, hence t2 = t′ 2 ∈ K .

Choose s ∈ V + K which does not commute with t; then 0 6= ts + st =
d ∈ K. Dividing s by d we may assume ts + st = 1. Thus Kt + Ks is also
a quadratic space with the Clifford algebra A. Changing notation, we write
again u, v in place of t, s now have the situation (36) with u being the chosen
generator of the field L = K(u) ⊂ A.

We do the same with L′ and A′, and now (after changing notation) we
have the situation (37) with u′ being the chosen generator of L′ = K(u′)
which corresponds to u. Thus

u2 = u′ 2 ∈ K.

We have to find isomorphic separable quadratic subfields K(y) ⊂ A and
K(y′) ⊂ A′. To this end we put according to Lemma 3:

y = cu+ v + w and y′ = cu′ + w′

where the coefficient c ∈ K will be determined below. Using (30) we compute
(congruences are mod ℘(K)):

℘(y) ≡ (cu+ v)2 + ℘(w)

≡ c2a+ b+ c+ ℘(w) ;

℘(y′) ≡ c2a+ ℘(w′) .

We see that

℘(y) ≡ ℘(y′) ⇐⇒ c ≡ b+ ℘(w) + ℘(w′) .

If c is chosen that way then the separable quadratic Artin-Schreier fields
K(y) ⊂ A and K(y′) ⊂ A′ are isomorphic.
2
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[Ser08] A.S. Sertöz. A Scientific Biography of Cahit Arf (1910-1997). unpublished
manuscript, 2008.

[Tei36a] O. Teichmüller. p-Algebren. Deutsche Math., 1:362–388, 1936.

[Tei36b] O. Teichmüller. Verschränkte Produkte mit Normalringen. Deutsche Math.,
1:92–102, 1936.

[Tit93] J. Tits. Sur les produits de deux algèbres de quaternions. Bull. Soc. Math.
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