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SİNAN SERTÖZ

Abstract. Let M be a complex manifold with tangent bundle T which can

be decomposed as T = A ⊕ B and let E be a subbundle of A. If E and B
are integrable, then the graded chern ring Chern∗(A/E) vanishes beyond the

corank of E in A. This slightly extends Bott’s vanishing theorem which is

the B = 0 case. Bott has also observed that not only the above mentioned
characteristic classes vanish but a connection can be chosen such that the

differential forms giving the classes themselves vanish. This is then applied to
a singular foliation F with singular set S. On M−S we can choose a connection
such that the differential form representing any α ∈ Cherni(T/F |M−S) with
i > rank T − rank F is zero. This connection can be extended to M which
then gives for α a differential form with compact support. The Poincare dual
of this form can be mapped into S to define a homology residue class first
observed by Baum and Bott. We summarize two methods including Baum

and Bott’s original method for the calculation of this residue.

Vanishing Theorem

A complex manifold M of complex dimension n is a topological manifold whose
transition functions are holomorphic. A holomorphic foliation L of rank k on a
complex manifold M of dimension n is a decomposition of M into disjoint connected
sets L = {Lα}α∈Λ with Λ some indexing set, satisfying the following condition: for
every point p ∈ M there exists an open neighbourhood U of p with holomorphic
coordinate map

x = (x1, ..., xn) : U −→ C
n

such that for every α ∈ Λ, either L ∩ U = ∅ or

L ∩ U = {q ∈ U
∣∣ xi(q) = tαi , k + 1 ≤ i ≤ n

where (tαk+1, ..., t
α
n) ∈ Cn−k depends on α and U . Each Lα is called a leaf of the

foliation. Any foliation of rank k is locally isomorphic to the trivial foliation which
is formed as the fibres of the map

pr : Cn −→ C
n−k

where Cn is considered as Ck ⊕ Cn−k and pr is the projection on the second com-
ponent. This local isomorphism is established through the local coordinate system
(U, x) which is described above in the definition of the foliation. Such coordinate
systems are called distinguished.

There is also a vector bundle approach to foliations. Let T be the holomorphic
tangent bundle of M , and let E be a subbundle of T with rank k. In the classical
terminology smooth subbundles of T are called smooth distributions. E is called
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integrable if at each point p in M there exists a complex submanifold whose holo-
morphic tangent space at p is Ep. Each such submanifold is part of a leaf of a
foliation on M . It is easy to see that in this case E is closed under the bracket op-
eration. Integrable and involutive bundles are related to each other by the classical
theorem f Frobenius.

Frobenius Theorem: A subbundle of the tangent bundle is integrable iff it is
involutive.

It is not true that every subbundle is of the tangent bundle is integrable. Nor is it
true that any subbundle can be deformed into one which is integrable. A necessary
condition is given by the vanishing of certain obstruction classes.

Theorem: Let T = A⊕B and E be a subbundle of A. If E and B are integrable,
then the graded chern ring chern∗(A/E) vanishes beyond the corank of E in A, i.e.

cherni(A/E) = 0 if i > rank A− rank E.

For a proof of this which exploits the existence of distinguished coordinates for
foliations see [1]. When B = 0 this is Bott’s vanishing theorem, [2]. In fact the
proof of the theorem says more than the statement. Let us first develop some
notation.

For any n× n matrix A define ci(A) by

det(I + tA) = 1 + tc1(A) + · · ·+ tncn(A)

where I is the n × n identity matrix. When A is the diagonal matrix dt =
diag(t1, ..., tn) then ci(dt) is called the i-th elementary symmetric polynomial on
t1, ..., tn For any homogeneous symmetric polynomial P ∈ C[t1, ..., tn] there exists
a polynomial Ps such that

P (t1, ..., tn) = Ps
(
c1(dt), ..., cn(dt)

)
.

Then for any matrix A define P (A) = Ps
(
c1(A), ..., cn(A)

)
. If B is an r × r ma-

trix with r < n then P (B) = Ps
(
c1(B), ..., cr(B), 0, ..., 0

)
. Now we return to the

vanishing theorem.
The proof of the theorem reveals that if E in T is integrable then using distin-

guished coordinates one can construct a connection D, called the basic connection,
on T/E such that the associated curvature matrix KD satisfies the following con-
dition: for any symmetric, homogeneous polynomial P ∈ C[t1, ..., tn], P (KD) = 0
if degP > rank T − rank E. For details on basic connections see [3].

Applications to Singular Holomorphic Foliations

A singular holomorphic foliation is defined as a coherent subsheaf of the tan-
gent sheaf which is closed under the bracket operation. The singular set S of the
foliation is the proper subvariety of M where the coherent subsheaf is not locally
free. Then on M − S there is a foliation whose leaves may intersect on S or may
avoid S. Assume that S is compact. For example when M is compact S is always
compact. Vanishing theorem applies here to define a residue on S. The funda-
mental observation which allows such an application is explained in the following
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set up: Let E be a subbundle of the holomorphic tangent bundle T such that for
some proper subvariety S of M , E|M − S is integrable. Then on M − S we have a
foliation and the vanishing theorem gives us some differential forms which vanish
on M − S. To be able to say something for all of M we localize our attention to a
neighbourhood of S. To be precise let Z be a connected component of S and let U
be an open neighbourhood of Z which deformation retracts to it. Let r : U → Z be
this retraction. By the vanishing theorem we can find a basic connection DU−Z for
T/E|U − Z. Let Σ be a compact set which contains Z in its interior and Σ ⊂ U .
Define any connection DΣ for T/E|Σ. Then glue these two connections together,
i.e. let f : U → R be a smooth function such that f |M − Σ = 0 and F |Z = 1 Now
define a connection D for T/E|U as

D = (1− f)DM−Z + fDΣ.

Then the curvature matrix KD of D satisfies

P (KD)|U − Σ = 0 if degP > rank T − rank E,

since E is integrable on U −Σ and D|U −Σ = DU−Σ|U −Σ is a basic connection.
We then have a closed differential form P (KD) on U with compact support which
uniquely defines a cohomology element [P (KD)] in H∗c (U ;C) cohomology with com-
pact supports. The Poincare duality isomorphism PD : H∗c (U ;C) → H∗(U ;C)
defines a homology cycle PD[P (KD)] on U and r∗PD[P (KD)] gives us a homology
cycle on Z, where r∗ : H∗(U ;C) → H∗(Z;C) is the isomorphism induced by the
deformation retraction r. We call r∗PD[P (KD)] the residue Resp(E;Z) at Z of the
singular foliation E.

In the general case where we have an integrable coherent subsheaf F of the tan-
gent sheaf T , T/F is not locally free and hence does not give rise to a vector bundle.
Then we must maneuver around to bring the situation to a set up similar to the
one above so that we can construct our global closed differential form with compact
support. The process of getting a residue out of it is then a mere technicality. We
mention two methods to build this global form.

A. Resolve T/F by locally free analytic sheaves. Notice that a global resolution
by locally free analytic sheaves is possible in the real category but not in the complex
case. Each locally free analytic sheaf of this resolution defines a connection and on
U − Z these connections can be used to define a connection on T/F|U − Z, which
is locally free there. We require that this connection be basic. Then we define
our global differential form using the curvature matrices of these connections of the
resolution. For details on this method see [3].

B. At every point x ∈ U−Z, the stalk Fx defines a k dimensional vector subspace
of Tx, hence gives a point in the Grassmann bundle π : G(k, T )→ U of k planes in
T . The closure U ′ of the image of U −Z in G(k, T ) is an analytic space [1]. On U ′

there is a natural vector bundle W which agrees with the pull back of T/F outside
π−1(Z). Hence the basic connection of T/F|U −Z carries onto W |U ′−π−1(Z) and
when U ′ is smooth, can be extended to a connection on W ′|U ′ to give a differential
form with compact support.For details on this construction see [1]. However this
form defines a different residue than the one described above in (A). The difference
between these two residues can be computed using a Grassmann graph construction
[1]. For details on the Grassmann graph technique in the algebraic category see [4].
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Meromorphic Vector Field Theorem

When the rank k of the singular foliation is 1 we have a relatively well understood
residue. The calculations of the residue in this case uses the Jacobian matrix rather
than the curvature matrix and is due to the Meromorphic Vector Field theorem [3,5].
We illustrate this theorem on a vector field of [6]. Let X1, X2, X3 be the Euclidean
coordinates on a local chart of P3, and define a vector field

V = (X2 −X2
1 )

∂

∂X1
+ (X3 −X1X2)

∂

∂X2
− (X1X3)

∂

∂X3
.

Origin is the only zero of this vector field which corresponds to the flow

exp(t

0 1 1
0 0 1
0 0 0

)

which in turn gives a singular holomorphic foliation of rank one with the origin the
only singularity. We define the Jacobian matrix A as

A =
( ∂fi
∂Xj

where f1 = X2 −X2
1 , f2 = X3 −X1X2, and f3 = X1X2.

By the Nullstellensatz there exist holomorphic functions bij and positive integers
ni, 1 ≤ i, j ≤ 3, such that

Xni
i =

3∑
j=1

bijfj .

We explicitly calculate these functions and find them as

X4
1 = X2

1f1 −X2f2 − f3

X2
2 = −X2

1f1 −X2f2 − f3

X3
3 = 0f1 +X3f2 − x2f3

Let

σ1(t1, t2, t3) = t1 + t2 + t3

σ2(t1, t2, t3) = t1t2 + t1t3 + t2t3

σ3(t1, t2, t3) = t1t2t3.

We will calculate the residue of V at the origin with respect to the polynomials
σ3, σ1σ2, σ

3
1 ; note that the degrees of these polynomials are greater than the rank

of TP3 minus the rank of the foliation.
a. σ3(A) = det(A) = 2X3

1 − X3 − X1X2. The residue is the coefficient of
(X1X2X3)−1 in the Laurent expansion of

(
σ3(A) det(B)

)
/(X4

1X
2
2X

2
3 ) where B =

(bij). The residue can be found to be 4.
b. σ1(A)σ2(A) = −20X3

1 − 4X1X2. And the residue, again the coefficient of
(X1X2X3)−1 in the Laurent expansion of

(
σ1(A)σ2(A) det(B)

)
/(X4

1X
2
2X

2
3 ), is 24.

c. σ1(A)3 = −64X3
1 . The coefficient of (X1X2X3)−1 in

(
σ1(A)3 det(B)

)
/(X4

1X
2
2X

2
3 )

is 64.
The relevance of these numbers to P3 is as follows: Let ω ∈ H∗(P3;C) be the

fundamental class of a hyperplane in P3. Then the total chern class of P3 is given
by c(P3) = (1 + ω)4, i.e. c1(P3) = 4ω, c2(P3) = 6ω2, c3(P3) = 4ω3. Letting ∩
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denote the cap product and ∪ the cup product we calculate the chern numbers of
P

3:

c3(P3) ∩ [P3] = 4(
c1(P3) ∪ c2(P3)

)
∩ [P3] = 24(

c1(P3)
)3 ∩ [P3] = 64

which are the residues calculated above in (a), (b) and (c) respectively. For a proof
of the Meromorphic Vector Field theorem see [5].
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