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1 Introduction

Let X c P"*! be a general smooth hypersurface of degiee 3, and assume
given a positive integek satisfying the numerical conditions in main theorem be-
low. Then one can find a smooth projective vari€ty of dimensionn — 2k, pa-
rameterizing a family ok-planes inX, such that the essential motivic information
aboutX is encoded in2x via the cylinder correspondence

P(X):={(c,x) € 2x x X |z € PF}.

Roughly speaking, and up to a normalizing constamt(X) o P(X) defines a
projector on the motive of2x, where by motive, we mean in the sense of Chow
motives (with respect to rational equivalence, see [9], page 131). This enables us
to decompose the motive 6fx in terms of a submotive ak'. Our main result is

the following:

Theorem 1.1(Main Theorem). (i) Let X c P"*! be given above, and assume
(k, n, d) satisfy the following:

k= [";1} and k(n+2—k)+1—<d—]:k> > 0.
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Engineering Research Council of Canada. The second author is partially supported by
TUBITAK-BDP funds and Bilkent University research development funds
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Then there is a motivic decomposition:
(_Qx,ld) = (Qx,’f‘) o) (Qx,Id — 7~'),

where(2x, 7,0) ~ (X, 7X, —k) as virtual motives, an@?. is a certain primitive
projector associated to the middle dimensional cohomology .of
(i) Let o = (TP(X) o P(X)), : CH*(f2x) — CH®(f2x). Then there is a

short exact sequence:

0 — (0 —m)CH},*(2x;Q) — CH},* (2x; Q) 25 CHy, (X5Q) — 0,

hom hom

where®, = P(X). andm is a nonzero integer defined §d below. Moreover
3. ;0 (CH A (92x;Q)) = CHY,,,(X; Q).

is an isomorphism.

Remarkq(i) Part (ii) of the above theorem generalizes the main theorem in [6],
where only the cask = 1 was considered.

(i) In the Appendix, we apply our results to ChowiiKneth decompositions
in the sense of [9]. For any smooth projective vari®gtywhich admits a Chow-
Kiinneth decomposition in the sense of Murre, werfétbe the projector corre-
sponding tody (2dim Y —i,4), where[Ay (2dim Y —i,i)| € H24mY (Y, Q)®
H*(Y,Q) induces the identity map on singular cohomology(Y, Q). Murre
states a series of conjectures (Conjectures |, I, lll, IV in [9]). Our main inter-
est is his Conjecture II, which is a statement about the vanishing of a subset of
the projectord 7} } on CH*(Y; Q). In this Appendix, we generalize this Conjec-
ture Il to Bloch’s higher Chow groups ([2]), and under the reasonable assumption
that (conjecturally!) the projectar{’*,, can be chosen such th;aff%* OT, =
Ty = T4 O wff%* on CH®(2x;Q), together with a conjecture of S@ubn the
vanishing of certain higher Chow groups of a field, we show that this generalized
Conjecture |l for{2x implies a corresponding (generalized) Conjecture |l Xar
More precisely,

Theorem 1.2.Assume the notation and setting in the Main Theorem 1.1. Assume
given a Chow-Kinneth decomposition ¢y (in the sense of Murre) such that

onCH®(2x,m; Q). Further, let us assume either that= 0, 1, 2 or a conjecture
of Soué (see Appendix) far > 3. Then Murre’s (generalized) Conjecture I for
2x implies Murre’s (generalized) Conjecture Il fof.
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2 Notation

() Throughout this papek will be assumed to be a projective algebraic manifold
of dimensionn.

(i) CH"(X) is the Chow group of algebraic cycles of codimensioon X,
modulo rational equivalence. We put*®(X; Q) := CH*(X) ® Q. CHg,(X) C
CH*(X) is the subgroup of cycles algebraically equivalent to zero, and
CH},,(X; Q) c CH*(X;Q) the subspace of nullhomologous cycles.

(iii) The diagonal class oK is denoted byl x € CH" (X x X).

(iv) The intersection pairing o&H* (X)) is denoted by e ) x.

(v) Let Y be a projective algebraic manifold, ande CH"(X x Y). Then
2, : CH*(X) — CH"~"**(Y) is given by

2:(8) = Pra ((Pri(§) @ 2)xxv ),

andz* is given by("z),, where™z ¢ CH" (Y x X) is the transpose of.
(vi) If Z is also a projective algebraic manifold, with correspondences
CH*(X xY)andw € CH*(Y x Z), then:

wo z :=Pryz ., ((Priy(z) @ Pris(w)) xxyxz) € CH*(X x Z).

(vii) By a general hypersurfac& c P"*! of a given degree, we mean a
hypersurface corresponding to a point in a Zariski open subset of the universal
family of such hypersurfaces, governed by certain properties (e.g. nonsingularity
of X and of{2x, etc.).

3 Review of some known results

First some notationX c P"*! is a general hypersurface of degree 3. We can
assume thak = P"*t!' N Z, whereZ C P"*2 is a general hypersurface of degree
d. Fix k > 1 and for a varietyV/, let 2y (k) = {P*'s ¢ W}. 2y C Q2w (k) will
denote a given subvariety. We assume tha covered byP*’s, together with this
setting:

QX — QZ

Figure 1
where: (i)m andrz are generically finite to one anhto of degree; say.
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i) px : P(X) — 2x andpy : P(Z) — §25 areP*-bundles.
(i) p P

~de_f'n

(i) X “=" 7, (X) is smooth.

ef’n

(V) 5 “E" pl g\ prx) : X\P(X) — 27\ is aP*~'-bundle.

(V) dim X = dim X = n,dim Z = dim P(Z) = n+ 1,dim P(X) = n — k,
dim 2x = n—2k,dim 2 = n—k+1, and that all varieties in the above diagram
are smooth.

Let HZde:f'n
Hx =H;NnX.

P+l N Z be a general hyperplane section &f and also set

Vi) p =7 (Hx), i = pn{X\P(X)}, pz = 7' (Hz), px = 7x' (Hx).

We will also identify{, i, 1z, x } with their respective cohomology classes.

Proposition 3.1([7]). This setting holds in the case where

g [”21} and k(n+2—l<;)+1—<d+k> > 0.

k
]

Unless otherwise specified, the above setting, together with the numerical con-
dition in Proposition 3.1 will be assumed throughout the remainder of this paper.

Proposition 3.2([7]). There is an isomorphism
k—1 _
{@ CH"%M} P cn**(02x) = CHY(X)
£=0
given by
k—1
(Z pto p*) + 1, 0 P
=0

O

We now recall the mapr : X — X.Thenn, o = xgq, and therefore
m : CH*(X;Q) — CH®*(X;Q) is surjective. Using the last proposition we note
thatr, splits into2 parts:

(1) @, =m0 j1w 0 Pk = Txw 0 pi : CHF(2x;Q) — CH*(X;Q) is
the cylinder homomorphism.
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(2) w0 (3420 1 0 p*) : @y CH ™ “(22:Q) — CH*(X;Q).

We analyze (2)With the aid of the above diagram, we have:

k—1 k—1
meo (Y plop)=mo(d uojsopy)
£=0 =0

k—1 k—1
=mojso(Y nyopy) =i omz.o(d uyopy).
=0 =0

It follows from analyzing (2) that the composite below is surjective:
CH**(2x;Q)-"CH*(X; Q) — CH*(X;Q)/j*(CH(Z;Q)).

To analyze the contribution gf*CH®(Z; Q), we consider a particular choice
of Z and the following.

Lemma 3.3([6]). Let X = V(F(zo,...,2n41)) C P""! be a smooth hypersur-
face of degred, and putZ := V(F+2z¢,,) C P""2. Letj : X ~ V(z,42)NZ C

Z be the inclusiony : P"*2 — Pn*! the projection fromo,...,0,1] € P*+2,
andi : X — P"*! the inclusion. Then with regard to the following (commutative
diagram)

x <L z

i\ v
]Pm+1

Figure 2
we have
dj* =i* ov,. d

From now on our choice of will be given as in Lemma 3.3, witlX' of course
still assumed general.

Corollary 3.4 ([7]). &, : CH* % (2x;Q) — CH®(X;Q)/Q - H% is surjective.
Proof.

j*CH*(Z;Q) = i* o v,CH*(Z;Q) = *"CH*(P"*;,Q) = Q- H%. O
One can also show that:

Corollary 3.5 ([7]). (i) &, : CH?,.*(2x) — CH?

alg a1g(X) is surjective.

(i) &, : CHS_"(2x;Q) — CH},,.(X; Q) is surjective. O

hom
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4 The kernel of the cylinder map

We would like to computéer @,., whered, is given in Corollary 3.4. This has
been done in the special case wlier:- 1 in some earlier work ([6]). It is useful
to view @, and®* in terms of the correspondences, vig,,= P(X)., and®* =
(TP(X)),.Now setr = ¢* o &, = (TP(X) 0o P(X)),.

We wish to show that satisfies a quadratic relation

co(oc—m)=0,

where = means equality orCH®*(£2x; Q) modulo contributions arising from
j*CH*(Z;Q) via ®*, and wheren = (—1)*¢ is given by its corresponding mul-
tiplication. For this we consider an idea communicated to us by Kapil Paranjape.
Namely, the crucial ingredient we need is this:

Proposition 4.1([10]). Letc € 2x be given. Then
P ((P(X) o PE) 5) = (=1)"jo.(c),

where we have identifig®f with j; . o p% (c).

Proof. Let G be the Grassmannian &fplanes inP"*2, and letE' complete the
fiber square below:

E — Uk+1)
1 1
QZ;) Gv

i.e. E is the pullback of the universal bundle ov@rto 2. ThenP[E] = P(Z).
Now recallpz : P(Z) — {2z. Thenp(E) lives over P(Z) with tautological
bundleL}, — p%(E). Pulling back toX, we defineQ;  , = p*Z(E)|X andL* =
Ly| ;. DefineQ* by the s.e.s..
0— L* —>Q’t+1 —>Q/’* — 0,
which dualizes to:
0—’Ql—>Qk+1iL—>0.

Let FF = 0 be the defining equation foak C Z, and note that" is linear (and
homogeneous). TheR' defines a sectioar of Q. over X as follows: Let
v € CH1 C Q;,, live over a point inX. ThenF(v) € C definesop. It is
clearly obvious thaty vanishes along?(X) and thaty(cr) = 0. Note that
rank Q') = k and thaiv € H°(X, Q’), hencec (Q') = [P(X)]. By Whitney,

(Qrr1) = c(Q)e(L) = c(Q) (1 +),

where¢ = ¢;(L). Hence

Q) =c(Qr1)1+6) 7 =c(Qrs1) (1 =€+ + -+ (-1)"¢M).
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Therefore

[P(X)] = er(Q) = (—1)F(€F — c1(Qus1)EF " + ea(Qrp1)EM 2 +-++).
But by functoriality,
¢i(Qrr1) = p*(ci(EY)),

where we recalp : X — §27. Observe that foi > 0 we can assume that the
support ofc;(E*) € CH'({2) does not meet a givenc {2x. Therefore for such
[AS Qx,

pe(PE 0 c;(Qry1) @ EF77) . =0, fori > 0.
Hence
P ((P(X) ¢ PE) 3) = (1) o (c).

In short, the numerical intersection giveB(X) e P¥) . = (—1). O

Corollary 4.2. For any¢ € CH®*({2x), we have
px.» 01 0 Jrw 0 px(§) = (—1)*¢E.

Proof. For a morphismf : V; — V;, of smooth varieties, leff} C V4 x V;
represent the graph ¢gf Now put

W ={px}o™{ji}o{s}o {px}.
Then
Wi = px«0ji ©j1,x° Pk,

moreover an explicit calculation shows that@ﬂﬂ"‘%((zx x 2x), Wisamul-
tiple of the diagonal class\,, . By Proposition 4.1, that multiple is precisely
(—1)*. O

Forc € 2x put )
¢ :=7(P.(c)) € CH" *(X),

and observe that
o(c) = " 0 Py(c) = px.« 041 (C)-
By Propositions 3.2 and 4.1, we can write

k—1
¢= (o (@) + (100 i (010)
=0
for some¢, € CH"*~*(£2,). But moduloj*CHj,1, (Z),

k—1
T (Z pto P*(Cz)> ~rat 0,

£=0
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and hence if we write= to mean equality modulg*CHy1(Z; Q) we have
g Bo(c) =m0 7 (2.(c)) = (-1)*Du(0(c)),
and
@, ([0 — (~1)"q)(c)) = 0.
Thus by applyingp*, we have
oo ([o —m](c)) = D" o P, ([o —m](c)) = 0 modulo &* (j*CHy41(Z;Q)).

Quite generally, using Corollary 4.2, one can apply the same arguments to ar-
bitrary dimension cycles. More specifically, &H;, .. (2x;Q), as well as on

CH*(2x;Q)/®* (j*CH‘““(Z; Q)) one can argue that
oo (oc—m)=0.
We deduce:

Theorem 4.3.There is a short exact sequence:

00— (0’ — m)CH.ik(Qx; Q) — CH.ik(QXﬂ@) & CHl.lom(X; Q) — 0.

hom hom

Moreover

hom

Py 0 (CH.ik(QX; Q)) = CHl.lom(X; Q)
]

Next we want to analyze the contribution df* (j*CH’”'(Z;Q)) in
CH®(£2x; Q).

Let H)(g), j=1,2,3,... be a general collection of hyperplane sectiongof
Observe that

1% Z’iT;(l (H&”ﬂﬂHﬁf)) i)QX7

is a birational morphism. We note in passing the following.

Proposition 4.4.LetH,, = &* (Hg(l) Nn---nN HE?H)) € CH'(2x). ThenH,
is ample inf2x.
Proof. Let C' C {2x be any curve.

(CeHg, )ay = (C’ 043*(H)((1) e---® Hg(k'H)))

(€)oY aeee HE)
>0

x

X

sinced, (C) is effective. The result now follows from Nakai’s criterion. O
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Proposition 4.5. 5" (H§g> .....H)((’f“)) — Hi, € CH'(2x) forall i > 0,
whereH,, is given in Proposition 4.4,

Proof. PutV)((j) = H&l) N---N Hgf) N H)(fﬂ),j =1,...,4. Itis obvious that
Hj, = {pX (w}l(V)((l) N---N V)(f)))} € CH'(2x), where{(- - -)} means the
class in the Chow group of an intersection operation) defined on the level of
subvarieties. We then have

Hp, =" (Vy)) e 00" (Vy))
= {px (W;}I(V)?) NN V)((i)))}
= {px (w}l(Hﬁ(” nNe-nHP nHF N 0 H§c+i>)>}
= px%OTx (Hg) o -0 Hﬁf*“)

o (B e o).

Corollary 4.6. 0 o (¢ —m) = 0onCH®*(£2x;Q)/Q - Hg, . O

5 Applications to Chow Motives

We work with the aforementioned quadratic relation:
ogo(c—m)=0 onCH*(2x;Q)/Q- Hp,

wheres = &* o &,. Equivalently, if we replace by ¢ := m~'o, then we arrive
at

go(c—1)=0 onCH*(2x;Q)/Q- H.:ZX'
Note thatos is the map induced by the correspondentB(X) o P(X) €
CH"?*(02x x 2x), and likewiser induced byr := (m~!)(TP(X)) o P(X) €
CH" ?*(2x x 2x;Q). Furthermore

go(cg—1)=0=gog=0.

We first show that the correspondence
e CH" 2 (2x x 2x:Q)

satisfies

n—k
To(r—1)=0in CH" ?*(2x x QX;Q)/@ CH" *(2x;Q) @ H; F.
=k
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To show this, observe that we can apply the Cartesian pra@uct to both
diagrams in figures 1 and 2. As a formal consequence of our previous results, we
arrive at the relation

(1x a)((l X o) —m))(AQX) =0

—k

in CH" 2 (2x x Qx; Q)/@ CH" ™" “(0x;Q) @ HGF.
l=k

But
(I1x0)((1xo)=m-1))(Aay)

is precisely
("P(X)oP(X))o (("P(X)oP(X)) —mAgny)

and the aforementioned quadratic relation#fdollows. (Here we use the fact that
if W is a smooth projective variety ariel C W x W is a correspondence, then
(Aw x £).(Aw) = Z.) Later, we will need to modifyr slightly in order to
obtain a quadratic relation th”*%(QX x {2x; Q). Towards this goal, we will
introduce in the next section a natural choice of ChoiniKeth decomposition for
X.

6 Chow-Kiinneth Decomposition

For this section only, we will assume th&t c P**! is any given smooth hyper-
surface.

Let H*(X) be the singular cohomology of with Q-coefficients. We have
the Kiinneth decomposition

[Ax]e (X x X)= P H"(X)® HI(X).
p+q=2n
We construct a Chow-#hneth decomposition (in the sense of Murre [9]):
Ax = P Ax(p.q) € CH'(X x X;Q),
p+q=2n

where
[Ax(p.q)] € H*(X) ® H*(X),

is given as follows. Recall that far# n:
i _Jo if 7is odd
H'(X,Q) = {Q- (Prti=mnNX)=Q-Hy ifi=2mfor0<m<n.
Forp 4 g = 2n, we set
0 if porgisodd

Ax(p,q) = { (Hg) (H ® HY™") if (p,q) = (20,20 — 20) # (n,n),
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where we observe thatl ), = deg X. Then

Ax(nn)=Ax — Y Ax(pq).
(p,@)#(n,n)

In CH"(X x X;Q), put

o[ taegx) (372 x B if £ nis even
T =30 if £ #nisodd
Ax(n,n) if £ =n.

m m m

We haverX o X = 7X andrX o mX = 0 for m # £. In summary:

Lemma 6.1.Let X C P"*! be a smooth hypersurface. The projectors* } de-
fined above give a Chowikineth decomposition:

AX:W§+~~~+7|'§§L.

Remarks Conjecture Il by J. Murre ([9], page 149) states that@" (X; Q),
wjf* = 0 for ¢ < r and for?¢ > 2r. For¢ # n, we observe that for dimension rea-
sons alone together with the formula fof above, thatr\, = 0 on CH"(X;Q),
provided that’ # 2r, which is outside the range of Murre’s Conjecture Il. Thus
the only projector to consider vsff* But/ = n < r implies thatCH" (X) = 0

for dimension reasons alone, hencé* = 0 for r < n. Thus Murre’s Conjec-
ture Il in this case translates to saying th?;ﬁ* = 0onCH"(X;Q) if 2r < n.
However, an affirmative answer to a question of Hartshorne, [4, p142], implies
that CHy ., (X; Q) = 0 for r < n/2. This further implies Murre’s Conjecture |
for hypersurfaces (and more generally complete intersections), sincefor/2,

m CH"(X;Q) C CHj,,,,(X;Q) = 0. We will have more to say about this in the
Appendix.

7 Conclusion of the main theorem

Put
px_ [ (degx)! (H;g/2 X H;’(’/Q) if n is even
" 0 if n is odd
Put
7X =X —h,

which we call a primitive projector. Observe that

X X _ 11X _ 11X X
Th oh’n _hn _hn omy,

and hence
FXohX =hX 07X =0.

We now want to emphasize thaf is now assumed a general hypersurface
given as in the setting of Proposition 3.1, withgiven in Lemma 3.3. We need the
following result.
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Proposition 7.1.9, o * = xm onCH®*(X;Q)/Q - H%.
Proof. We have
P, 09* 0P, =P, 00 =mP,on CH*(X;Q)/Q- HY.
Now use the fact that
. : CH* ¥ (02x;Q) — CH*(X;Q)/Q- H,
is onto. O

By first applying X x to both diagrams in figures 1 and 2, and using the same
reasoning as if5, we deduce:

Corollary 7.2.
P(X)oTP(X)—-mAx =0
in .
CH"(X x X; @)/@ CH" “(X;Q) ® H%.
£=0
Hence

X o P(X) o TP(X) = m#X in CH"(X x X;Q).

Now put
F=m ' (TP(X)) o7, o P(X).
One easily checks that
Fo(f—Aq,)=0in CH" ?*(2x x 2x;Q),

and from this, together with Theorem 4.3, we arrive at the proof of Theorem 1.1
except the proof of the isomorphism of the related motives, which we now show.
For the proposition below, we adopt the terminology in [9].
Proposition 7.3.The motivesM/ = (2x,7,0) and N = (X,#X,—k) are iso-
morphic as virtual motives.
Proof. Define the morphisms

1

o=— TP(X) € Corr™*(X, 2x)

and
B = P(X) € Cort"(2x, X).
Then by associativity of correspondences we observe that

iXofoFoaory =aX € Corr’ (X, X)

and
FoaoiXofoF=7¢ Corr’(2x,2x),
which establishes the required isomorphism. O
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8 Appendix: Murre’s conjectures for higher Chow groups

In this section, we will assume the reader has some familiarity with Bloch’s higher
Chow groups ([2])CH" (W, m), where for our purpose$y is a projective alge-
braic manifold of dimensiom. Further, the reader can consult [9] for the defini-
tion of a Bloch-Beilinson filtrationF” CH" (W; Q) on . Generalizations of the
Bloch-Beilinson filtration to theCH" (W, m; Q) have been considered by others
(e.g. [1], [5], [11]). A generalization of a conjecture of Beilinson says that

GriCH" (W, m; Q) ~ Ext’{, \( (1, fLQT*m*V(I/V)(r))7

where MM is the conjectural category of mixed motivds= Spec(C) is the
trivial motive, andh® (—) is motivic cohomology. Implicit in the above formula is
an underlying (conjectural) Bloch-Beilinson filtration involvingsteps:

CH" (W,m;Q)=F°>F'>..- 2> F" {0},

whose graded pieces factor through the Grothendieck motive. More explicitly, as-
sume given a Chow-#nneth decomposition (or we can work with the weaker
assumption of such a decomposition on the level of Grothendieck motives):

Aw = B Awp,a)

p+q=2n

then
Gr,CH" (W, m;Q) = Aw(2n — 2r + v+ m,2r —v — m),CH" (W, m; Q).

Again, from the above formula, and for reasons involving weights, one has
FO = F'if m > 1. Recall

TrXV* = Aw(2n —£,0)..
Since we anticipate
Aw(2n —2r4+v+m,2r —v —m),CH (W, m;Q) =0,

forv < 0 (and ifm > 0, v < 0) and forv > r, this translates to

Generalized Murre Conjecture 1. w}fi =0forl>2r —m (and¢ > 2r — mif
m > 0),and forl < r —m.

We leave it as an exercise for the reader to generalize Murre’s remaining con-
jectures (I, 1l and 1V) to the higher Chow group setting. Before we state our next
theorem, we need to recall a conjecture of $oul

Conjecture. (Souk, 1985; see [8]) Lef be a field. Then form > 2r > 2,
CH" (Spec(F'), m; Q) = 0. This is an open problem for > 2.

We now prove:
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Theorem 8.1.Assume the notation and setting in the Main Theorem 1.1. Assume
given a Chow-Kinneth decomposition @?x (in the sense of Murre) such that

71'

on CH®(2x,m; Q). Further, let us assume either that = 0, 1, 2 or Souk’s
conjecture form > 3. Then Murre’s (generalized) Conjecture Il foV = 2
implies Murre’s (generalized) Conjecture Il fov = X.

Proof. By the Main Theorem 1.1,

2x

_ = N2x ~
7rn—2k,>k =T + (Trn—2k,* - T*)’

is a decomposition into idempotents. Thus
T e =0 F=0= 7Y, =0

We first consider the case = 0. According to the remarks at the end &8,
we need only consider the vanishingf, on CH" (X; Q) whenn > 2r. Thus

it suffices to show thatrff%* = 0 on CH" *(2x;Q) for n > 2r. But this
is immediate from Murre’s (generalized) Conjecture Il 12k, sincen — 2k >
2(r — k) precisely whem > 2r. So now let us assume that > 0. Then we must
show thatyrgf* = 0onCH"(X,m;Q) in the range€ < r —m and? > 2r —m.
We first introduce

BX 0 if £is odd,
CT O\ HY P < HY? if vis even,
Note that
hX if ¢ £ n,
X L hX if 0 =n.

Let A™ ~ C™ be the standard algebraie-simplex as defined in [2]. An§ €
CH" (X, m;Q) arises from a cycle of codimensionin X x A™. Consider the
productX x X x A™. We compute fo¥ even:

hp . (§) = Pros . (Priz(€) Pryy(Hy 7 x Hﬁc/z))
= Pros {(Hy ? &) @ HY?}
€ Prog {CH"™ "~ 2(X, m; Q) @ HY?}
c H§(/2 e \*CH"/2(Spec(C), m; Q),

where) : X — Spec(C). Note thatCH"*"~/2(X,m; Q) = 0if n+r — £/2 >
n 4+ m, which is precisely the situation whén< 2(r — m). Note that- < m and
¢ <2(r—m)=+¢<0,hencedim X =n = H}}’m = 0 for £ < 0 even, and
thereforen;', (¢) = 0. On the other hand > m and? < r —m = £ < 2(r —m).
Thusm), = 0for £ < r —m.Next, if ¢ > 2r —m is even, them — (/2 < [m/2],

where[—] is the greatest integer function. Thus the vanishinlgggffor £>2r—m
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is a consequence @H*<"/2/(Spec(C), m; Q) = 0, that which is the case for
m = 1, 2, and more generally which is implied by our assumption of &sul
conjecture. Thus the final step is to show the vanishin@fléj in the case where
n<r—mandn>2r—m.Butn <r—-m=r>n+m= CH (X,m)=0
for dimension reasons. Thus we are reduced to thercas@r —m. This is equiv-
alent to the statememt — 2k > 2(r — k) — m and the vanishing of %, _ for

n—2Fk,*

n — 2k > 2(r — k) — m, which is precisely Murre’s (generalized) Conjécture Il
for 2x. O

AcknowledgementsThe authors are grateful to the referee for suggested improvements in
presentation.
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