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1 Introduction

Let X ⊂ Pn+1 be a general smooth hypersurface of degreed ≥ 3, and assume
given a positive integerk satisfying the numerical conditions in main theorem be-
low. Then one can find a smooth projective varietyΩX of dimensionn − 2k, pa-
rameterizing a family ofk-planes inX, such that the essential motivic information
aboutX is encoded inΩX via the cylinder correspondence

P (X) := {(c, x) ∈ ΩX ×X | x ∈ Pk
c}.

Roughly speaking, and up to a normalizing constant,TP (X) ◦ P (X) defines a
projector on the motive ofΩX , where by motive, we mean in the sense of Chow
motives (with respect to rational equivalence, see [9], page 131). This enables us
to decompose the motive ofΩX in terms of a submotive ofX. Our main result is
the following:

Theorem 1.1(Main Theorem). (i) Let X ⊂ Pn+1 be given above, and assume
(k, n, d) satisfy the following:

k =
[
n + 1

d

]
and k(n + 2− k) + 1−

(
d + k

k

)
≥ 0.
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Then there is a motivic decomposition:

(ΩX , Id) = (ΩX , τ̃)⊕ (ΩX , Id− τ̃),

where(ΩX , τ̃ , 0) ' (X, π̃X
n ,−k) as virtual motives, and̃πn

X is a certain primitive
projector associated to the middle dimensional cohomology ofX.

(ii) Let σ =
(
TP (X) ◦ P (X)

)
∗ : CH•(ΩX) → CH•(ΩX). Then there is a

short exact sequence:

0 → (σ −m)CH•−k
hom(ΩX ;Q) → CH•−k

hom(ΩX ;Q) Φ∗→ CH•hom(X;Q) → 0,

whereΦ∗ = P (X)∗ andm is a nonzero integer defined in§4 below. Moreover

Φ∗ : σ
(
CH•−k

hom(ΩX ;Q)
) ∼→ CH•hom(X;Q),

is an isomorphism.

Remarks(i) Part (ii) of the above theorem generalizes the main theorem in [6],
where only the casek = 1 was considered.

(ii) In the Appendix, we apply our results to Chow-Künneth decompositions
in the sense of [9]. For any smooth projective varietyY , which admits a Chow-
Künneth decomposition in the sense of Murre, we letπY

i be the projector corre-
sponding to∆Y (2 dim Y−i, i), where

[
∆Y (2 dim Y−i, i)

] ∈ H2 dim Y−i(Y,Q)⊗
Hi(Y,Q) induces the identity map on singular cohomologyHi(Y,Q). Murre
states a series of conjectures (Conjectures I, II, III, IV in [9]). Our main inter-
est is his Conjecture II, which is a statement about the vanishing of a subset of
the projectors{πY

i } onCH•(Y ;Q). In this Appendix, we generalize this Conjec-
ture II to Bloch’s higher Chow groups ([2]), and under the reasonable assumption
that (conjecturally!) the projectorπΩX

n−2k can be chosen such thatπΩX

n−2k,∗ ◦ τ̃∗ =
τ̃∗ = τ̃∗ ◦ πΩX

n−2k,∗ on CH•(ΩX ;Q), together with a conjecture of Soulé on the
vanishing of certain higher Chow groups of a field, we show that this generalized
Conjecture II forΩX implies a corresponding (generalized) Conjecture II forX.
More precisely,

Theorem 1.2.Assume the notation and setting in the Main Theorem 1.1. Assume
given a Chow-K̈unneth decomposition ofΩX (in the sense of Murre) such that

πΩX

n−2k,∗ ◦ τ̃∗ = τ̃∗ = τ̃∗ ◦ πΩX

n−2k,∗,

onCH•(ΩX ,m;Q). Further, let us assume either thatm = 0, 1, 2 or a conjecture
of Souĺe (see Appendix) form ≥ 3. Then Murre’s (generalized) Conjecture II for
ΩX implies Murre’s (generalized) Conjecture II forX.
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2 Notation

(i) Throughout this paperX will be assumed to be a projective algebraic manifold
of dimensionn.

(ii) CHr(X) is the Chow group of algebraic cycles of codimensionr on X,
modulo rational equivalence. We putCH•(X;Q) := CH•(X)⊗Q. CH•alg(X) ⊂
CH•(X) is the subgroup of cycles algebraically equivalent to zero, and
CH•hom(X;Q) ⊂ CH•(X;Q) the subspace of nullhomologous cycles.

(iii) The diagonal class ofX is denoted by∆X ∈ CHn(X ×X).
(iv) The intersection pairing onCH•(X) is denoted by( • )X .
(v) Let Y be a projective algebraic manifold, andz ∈ CHr(X × Y ). Then

z∗ : CH•(X) → CHr−n+•(Y ) is given by

z∗(ξ) := Pr2,∗
(
(Pr∗1(ξ) • z)X×Y

)
,

andz∗ is given by(Tz)∗, whereTz ∈ CHr(Y ×X) is the transpose ofz.
(vi) If Z is also a projective algebraic manifold, with correspondencesz ∈

CH•(X × Y ) andw ∈ CH•(Y × Z), then:

w ◦ z := Pr13,∗
(
(Pr∗12(z) • Pr∗23(w))X×Y×Z

) ∈ CH•(X × Z).

(vii) By a general hypersurfaceX ⊂ Pn+1 of a given degree, we mean a
hypersurface corresponding to a point in a Zariski open subset of the universal
family of such hypersurfaces, governed by certain properties (e.g. nonsingularity
of X and ofΩX , etc.).

3 Review of some known results

First some notation:X ⊂ Pn+1 is a general hypersurface of degreed ≥ 3. We can
assume thatX = Pn+1 ∩Z, whereZ ⊂ Pn+2 is a general hypersurface of degree
d. Fix k ≥ 1 and for a varietyW , let ΩW (k) = {Pk ’s ⊂ W}. ΩW ⊂ ΩW (k) will
denote a given subvariety. We assume thatZ is covered byPk ’s, together with this
setting:

ΩX
j0
↪→ ΩZ

ρX ↑ ρ ↗ ↑ ρZ

P (X)
j1
↪→ X̃

j2
↪→ P (Z)

πX ↓ π ↙ ↓ πZ

X
j

↪→ Z

Figure 1
where: (i)π andπZ are generically finite to one andonto of degreeq say.
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(ii) ρX : P (X) → ΩX andρZ : P (Z) → ΩZ arePk-bundles.

(iii) X̃
def′n= π−1

Z (X) is smooth.

(iv) ρ̃
def′n= ρ|X̃\P (X) : X̃\P (X) → ΩZ\ΩX is aPk−1-bundle.

(v) dim X = dim X̃ = n, dim Z = dim P (Z) = n + 1, dim P (X) = n− k,
dim ΩX = n−2k, dim ΩZ = n−k+1, and that all varieties in the above diagram
are smooth.

Let HZ
def′n= Pn+1 ∩ Z be a general hyperplane section ofZ, and also set

HX = HZ ∩X.

(vi) µ = π−1(HX), µ̃ = µ∩{X̃\P (X)}, µZ = π−1
Z (HZ), µX = π−1

X (HX).

We will also identify{µ, µ̃, µZ , µX}with their respective cohomology classes.

Proposition 3.1([7]). This setting holds in the case where

k =
[
n + 1

d

]
and k(n + 2− k) + 1−

(
d + k

k

)
≥ 0.

¤

Unless otherwise specified, the above setting, together with the numerical con-
dition in Proposition 3.1 will be assumed throughout the remainder of this paper.

Proposition 3.2([7]). There is an isomorphism

{k−1⊕

`=0

CH•−`(ΩZ)
} ⊕

CH•−k(ΩX) ∼−→ CH•(X̃)

given by (k−1∑

`=0

µ` ◦ ρ∗
)

+ j1,∗ ◦ ρ∗X .

¤

We now recall the mapπ : X̃ → X. Thenπ∗ ◦ π∗ = ×q, and therefore
π∗ : CH•(X̃;Q) → CH•(X;Q) is surjective. Using the last proposition we note
thatπ∗ splits into2 parts:

(1) Φ∗ = π∗ ◦ j1,∗ ◦ ρ∗X = πX,∗ ◦ ρ∗X : CH•−k(ΩX ;Q) −→ CH•(X;Q) is
the cylinder homomorphism.
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(2) π∗ ◦ (
∑k−1

`=0 µ` ◦ ρ∗) :
⊕k−1

`=0 CH•−`(ΩZ ;Q) −→ CH•(X;Q).

We analyze (2): With the aid of the above diagram, we have:

π∗ ◦ (
k−1∑

`=0

µ` ◦ ρ∗) = π∗ ◦ (
k−1∑

`=0

µ` ◦ j∗2 ◦ ρ∗Z)

= π∗ ◦ j∗2 ◦ (
k−1∑

`=0

µ`
Z ◦ ρ∗Z) = j∗ ◦ πZ,∗ ◦ (

k−1∑

`=0

µ`
Z ◦ ρ∗Z).

It follows from analyzing (2) that the composite below is surjective:

CH•−k(ΩX ;Q) Φ∗−→CH•(X;Q) −→ CH•(X;Q)/j∗(CH•(Z;Q)).

To analyze the contribution ofj∗CH•(Z;Q), we consider a particular choice
of Z and the following.

Lemma 3.3([6]). Let X = V
(
F (z0, . . . , zn+1)

) ⊂ Pn+1 be a smooth hypersur-
face of degreed, and putZ := V (F +zd

n+2) ⊂ Pn+2. Letj : X ' V (zn+2)∩Z ⊂
Z be the inclusion,ν : Pn+2 → Pn+1 the projection from[0, . . . , 0, 1] ∈ Pn+2,
andi : X ↪→ Pn+1 the inclusion. Then with regard to the following (commutative
diagram)

X
j

↪→ Z

i ↘ ↓ ν

Pn+1

Figure 2
we have

dj∗ = i∗ ◦ ν∗. ¤
From now on our choice ofZ will be given as in Lemma 3.3, withX of course
still assumed general.

Corollary 3.4 ([7]). Φ∗ : CH•−k(ΩX ;Q) −→ CH•(X;Q)/Q ·H•
X is surjective.

Proof.

j∗CH•(Z;Q) = i∗ ◦ ν∗CH•(Z;Q) = i∗CH•(Pn+1;Q) = Q ·H•
X . ¤

One can also show that:

Corollary 3.5 ([7]). (i) Φ∗ : CH•−k
alg (ΩX) → CH•alg(X) is surjective.

(ii) Φ∗ : CH•−k
hom(ΩX ;Q) → CH•hom(X;Q) is surjective. ¤
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4 The kernel of the cylinder map

We would like to computekerΦ∗, whereΦ∗ is given in Corollary 3.4. This has
been done in the special case whenk = 1 in some earlier work ([6]). It is useful
to viewΦ∗ andΦ∗ in terms of the correspondences, viz.,Φ∗ = P (X)∗, andΦ∗ =(
TP (X)

)
∗. Now setσ = Φ∗ ◦ Φ∗ =

(
TP (X) ◦ P (X)

)
∗.

We wish to show thatσ satisfies a quadratic relation

σ ◦ (σ −m) ≡ 0,

where≡ means equality onCH•(ΩX ;Q) modulo contributions arising from
j∗CH•(Z;Q) via Φ∗, and wherem = (−1)kq is given by its corresponding mul-
tiplication. For this we consider an idea communicated to us by Kapil Paranjape.
Namely, the crucial ingredient we need is this:

Proposition 4.1([10]). Let c ∈ ΩX be given. Then

ρ∗
(
(P (X) • Pk

c )X̃

)
= (−1)kj0,∗(c),

where we have identifiedPk
c with j1,∗ ◦ ρ∗X(c).

Proof. Let G be the Grassmannian ofk-planes inPn+2, and letE complete the
fiber square below:

E → U(k + 1)

↓ ↓

ΩZ ↪→ G,

i.e. E is the pullback of the universal bundle overG to ΩZ . ThenP[E] = P (Z).
Now recallρZ : P (Z) → ΩZ . Thenρ∗Z(E) lives overP (Z) with tautological
bundleL∗Z ↪→ ρ∗Z(E). Pulling back toX̃, we defineQ∗k+1 = ρ∗Z(E)

∣∣
X̃

andL∗ =
L∗Z

∣∣
X̃

. DefineQ′,∗ by the s.e.s.:

0 → L∗ → Q∗
k+1 → Q′,∗ → 0,

which dualizes to:
0 → Q′ → Qk+1

ψ→ L → 0.

Let F = 0 be the defining equation forX ⊂ Z, and note thatF is linear (and
homogeneous). ThenF defines a sectionσF of Qk+1 over X̃ as follows: Let
v ∈ Ck+1 ⊂ Q∗k+1 live over a point inX̃. ThenF (v) ∈ C definesσF . It is
clearly obvious thatσF vanishes alongP (X) and thatψ(σF ) = 0. Note that
rank(Q′) = k and thatσF ∈ H0(X̃,Q′), henceck(Q′) = [P (X)]. By Whitney,

c(Qk+1) = c(Q′)c(L) = c(Q′)(1 + ξ),

whereξ = c1(L). Hence

c(Q′) = c(Qk+1)(1 + ξ)−1 = c(Qk+1)
(
1− ξ + ξ2 + · · ·+ (−1)nξn

)
.
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Therefore

[P (X)] = ck(Q′) = (−1)k
(
ξk − c1(Qk+1)ξk−1 + c2(Qk+1)ξk−2 + · · · ).

But by functoriality,
ci(Qk+1) = ρ∗

(
ci(E∗)

)
,

where we recallρ : X̃ → ΩZ . Observe that fori > 0 we can assume that the
support ofci(E∗) ∈ CHi(ΩZ) does not meet a givenc ∈ ΩX . Therefore for such
c ∈ ΩX ,

ρ∗
(
Pk

c • ci(Qk+1) • ξk−i
)
X̃

= 0, for i > 0.

Hence
ρ∗

(
(P (X) • Pk

c )X̃

)
= (−1)kj0,∗(c).

In short, the numerical intersection gives
(
P (X) • Pk

c

)
X̃

= (−1)k. ¤

Corollary 4.2. For anyξ ∈ CH•(ΩX), we have

ρX,∗ ◦ j∗1 ◦ j1,∗ ◦ ρ∗X(ξ) = (−1)kξ.

Proof. For a morphismf : V1 → V2 of smooth varieties, let{f} ⊂ V1 × V2

represent the graph off . Now put

W = {ρX} ◦ T{j1} ◦ {j1} ◦ T{ρX}.
Then

W∗ = ρX,∗ ◦ j∗1 ◦ j1,∗ ◦ ρ∗X ,

moreover an explicit calculation shows that inCHn−2k(ΩX × ΩX), W is a mul-
tiple of the diagonal class∆ΩX

. By Proposition 4.1, that multiple is precisely
(−1)k. ¤

For c ∈ ΩX put
ζ := π∗(Φ∗(c)) ∈ CHn−k(X̃),

and observe that
σ(c) = Φ∗ ◦ Φ∗(c) = ρX,∗ ◦ j∗1 (ζ).

By Propositions 3.2 and 4.1, we can write

ζ =
(k−1∑

`=0

µ` ◦ ρ∗(ζ`)
)

+ (−1)kj1,∗ ◦ ρ∗X
(
σ(c)

)

for someζ` ∈ CHn−k−`(ΩZ). But moduloj∗CHk+1(Z),

π∗

(k−1∑

`=0

µ` ◦ ρ∗(ζ`)
)
∼rat 0,
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and hence if we write≡ to mean equality moduloj∗CHk+1(Z;Q) we have

q · Φ∗(c) = π∗ ◦ π∗
(
Φ∗(c)

) ≡ (−1)kΦ∗(σ(c)),

and
Φ∗

(
[σ − (−1)kq](c)

) ≡ 0.

Thus by applyingΦ∗, we have

σ ◦ (
[σ −m](c)

)
= Φ∗ ◦ Φ∗

(
[σ −m](c)

)
= 0 modulo Φ∗ (j∗CHk+1(Z;Q)) .

Quite generally, using Corollary 4.2, one can apply the same arguments to ar-
bitrary dimension cycles. More specifically, onCH•hom(ΩX ;Q), as well as on

CH•(ΩX ;Q)/Φ∗
(
j∗CH•+k(Z;Q)

)
one can argue that

σ ◦ (
σ −m

)
= 0.

We deduce:

Theorem 4.3.There is a short exact sequence:

0 → (σ −m)CH•−k
hom(ΩX ;Q) → CH•−k

hom(ΩX ;Q) Φ∗→ CH•hom(X;Q) → 0.

Moreover
Φ∗ : σ

(
CH•−k

hom(ΩX ;Q)
) ∼→ CH•hom(X;Q).

¤

Next we want to analyze the contribution ofΦ∗
(
j∗CHk+•(Z;Q)

)
in

CH•(ΩX ;Q).
Let H(j)

X , j = 1, 2, 3, . . . be a general collection of hyperplane sections ofX.
Observe that

ρX : π−1
X

(
H

(1)
X ∩ · · · ∩H

(k)
X

) ≈−→ ΩX ,

is a birational morphism. We note in passing the following.

Proposition 4.4.LetHΩX = Φ∗
(
H

(1)
X ∩ · · · ∩H

(k+1)
X

)
∈ CH1(ΩX). ThenHΩX

is ample inΩX .

Proof. Let C ⊂ ΩX be any curve.

(C •HΩX
)ΩX

=
(
C • Φ∗(H(1)

X • · · · •H
(k+1)
X )

)
ΩX

=
(
Φ∗(C) •H

(1)
X • · · · •H

(k+1)
X

)
X

> 0

sinceΦ∗(C) is effective. The result now follows from Nakai’s criterion. ¤
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Proposition 4.5.Φ∗
(
H

(1)
X • · · · •H

(k+i)
X

)
= Hi

ΩX
∈ CHi(ΩX) for all i ≥ 0,

whereHΩX
is given in Proposition 4.4.

Proof. PutV (j)
X = H

(1)
X ∩ · · · ∩ H

(k)
X ∩ H

(k+j)
X , j = 1, . . . , i. It is obvious that

Hi
ΩX

=
{

ρX

(
π−1

X (V (1)
X ∩ · · · ∩ V

(i)
X )

)}
∈ CHi(ΩX), where{(· · ·)} means the

class in the Chow group of an intersection operation(· · ·) defined on the level of
subvarieties. We then have

Hi
ΩX

= Φ∗(V (1)
X ) • · · · • Φ∗(V (i)

X )

=
{

ρX

(
π−1

X (V (1)
X ∩ · · · ∩ V

(i)
X )

)}

=
{

ρX

(
π−1

X (H(1)
X ∩ · · · ∩H

(k)
X ∩H

(k+1)
X ∩ · · · ∩H

(k+i)
X )

)}

= ρX,∗ ◦ π∗X
(
H

(1)
X • · · · •H

(k+i)
X

)

= Φ∗
(
H

(1)
X • · · · •H

(k+i)
X

)
.

¤

Corollary 4.6. σ ◦ (σ −m) = 0 onCH•(ΩX ;Q)/Q ·H•
ΩX

. ¤

5 Applications to Chow Motives

We work with the aforementioned quadratic relation:

σ ◦ (σ −m) = 0 on CH•(ΩX ;Q)/Q ·H•
ΩX

,

whereσ = Φ∗ ◦ Φ∗. Equivalently, if we replaceσ by σ := m−1σ, then we arrive
at

σ ◦ (σ − 1) = 0 on CH•(ΩX ;Q)/Q ·H•
ΩX

.

Note that σ is the map induced by the correspondenceTP (X) ◦ P (X) ∈
CHn−2k(ΩX ×ΩX), and likewiseσ induced byτ := (m−1)

(
TP (X)

) ◦P (X) ∈
CHn−2k(ΩX ×ΩX ;Q). Furthermore

σ ◦ (σ − 1) = 0 ⇒ σ ◦ σ = σ.

We first show that the correspondence

τ ∈ CHn−2k(ΩX ×ΩX ;Q)

satisfies

τ ◦ (τ − 1) = 0 in CHn−2k(ΩX ×ΩX ;Q)
/n−k⊕

`=k

CHn−k−`(ΩX ;Q)⊗H`−k
ΩX

.
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To show this, observe that we can apply the Cartesian productΩX× to both
diagrams in figures 1 and 2. As a formal consequence of our previous results, we
arrive at the relation

(1× σ)
(
(1× σ)−m)

)
(∆ΩX

) = 0

in CHn−2k(ΩX ×ΩX ;Q)
/n−k⊕

`=k

CHn−k−`(ΩX ;Q)⊗H`−k
ΩX

.

But
(1× σ)

(
(1× σ)−m · 1)

)
(∆ΩX

)

is precisely

(
TP (X) ◦ P (X)

) ◦ ((
TP (X) ◦ P (X)

)−m∆ΩX

)

and the aforementioned quadratic relation forτ follows. (Here we use the fact that
if W is a smooth projective variety andΞ ⊂ W × W is a correspondence, then
(∆W × Ξ)∗(∆W ) = Ξ.) Later, we will need to modifyτ slightly in order to
obtain a quadratic relation onCHn−2k(ΩX ×ΩX ;Q). Towards this goal, we will
introduce in the next section a natural choice of Chow-Künneth decomposition for
X.

6 Chow-Künneth Decomposition

For this section only, we will assume thatX ⊂ Pn+1 is any given smooth hyper-
surface.

Let H•(X) be the singular cohomology ofX with Q-coefficients. We have
the Künneth decomposition

[∆X ] ∈ H2n(X ×X) =
⊕

p+q=2n

Hp(X)⊗Hq(X).

We construct a Chow-K̈unneth decomposition (in the sense of Murre [9]):

∆X =
⊕

p+q=2n

∆X(p, q) ∈ CHn(X ×X;Q),

where
[∆X(p, q)] ∈ Hp(X)⊗Hq(X),

is given as follows. Recall that fori 6= n:

Hi(X,Q) =
{

0 if i is odd,
Q · (Pn+1−m ∩X

)
= Q ·Hm

X if i = 2m for 0 ≤ m ≤ n.

Forp + q = 2n, we set

∆X(p, q) =

{
0 if p or q is odd,

1

(Hn
X)

X

(
H`

X ⊗Hn−`
X

)
if (p, q) = (2`, 2n− 2`) 6= (n, n),
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where we observe that(Hn
X)X = deg X. Then

∆X(n, n) = ∆X −
∑

(p,q) 6=(n,n)

∆X(p, q).

In CHn(X ×X;Q), put

πX
` =





(deg X)−1
(
H

n−`/2
X ×H

`/2
X

)
if ` 6= n is even,

0 if ` 6= n is odd,
∆X(n, n) if ` = n.

We haveπX
m ◦ πX

m = πX
m andπX

m ◦ πX
` = 0 for m 6= `. In summary:

Lemma 6.1.Let X ⊂ Pn+1 be a smooth hypersurface. The projectors{πX
` } de-

fined above give a Chow-Künneth decomposition:

∆X = πX
0 + · · ·+ πX

2n.

Remarks. Conjecture II by J. Murre ([9], page 149) states that onCHr(X;Q),
πX

`,∗ = 0 for ` < r and for` > 2r. For ` 6= n, we observe that for dimension rea-
sons alone together with the formula forπX

` above, thatπX
`,∗ = 0 onCHr(X;Q),

provided that̀ 6= 2r, which is outside the range of Murre’s Conjecture II. Thus
the only projector to consider isπX

n,∗. But ` = n < r implies thatCHr(X) = 0
for dimension reasons alone, henceπX

n,∗ = 0 for r < n. Thus Murre’s Conjec-
ture II in this case translates to saying thatπX

n,∗ = 0 on CHr(X;Q) if 2r < n.
However, an affirmative answer to a question of Hartshorne, [4, p142], implies
thatCHr

hom(X;Q) = 0 for r < n/2. This further implies Murre’s Conjecture II
for hypersurfaces (and more generally complete intersections), since forr < n/2,
πX

n,∗CHr(X;Q) ⊂ CHr
hom(X;Q) = 0. We will have more to say about this in the

Appendix.

7 Conclusion of the main theorem

Put

hX
n =

{
(deg X)−1

(
H

n/2
X ×H

n/2
X

)
if n is even,

0 if n is odd.

Put
π̃X

n = πX
n − hX

n ,

which we call a primitive projector. Observe that

πX
n ◦ hX

n = hX
n = hX

n ◦ πX
n

and hence

π̃X
n ◦ hX

n = hX
n ◦ π̃X

n = 0.

We now want to emphasize thatX is now assumed a general hypersurface
given as in the setting of Proposition 3.1, withZ given in Lemma 3.3. We need the
following result.
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Proposition 7.1.Φ∗ ◦ Φ∗ = ×m onCH•(X;Q)/Q ·H•
X .

Proof. We have

Φ∗ ◦ Φ∗ ◦ Φ∗ = Φ∗ ◦ σ = mΦ∗ on CH•(X;Q)/Q ·H•
X .

Now use the fact that

Φ∗ : CH•−k(ΩX ;Q) → CH•(X;Q)/Q ·H•
X ,

is onto. ¤

By first applyingX× to both diagrams in figures 1 and 2, and using the same
reasoning as in§5, we deduce:

Corollary 7.2.

P (X) ◦ TP (X)−m∆X = 0

in

CHn(X ×X;Q)
/ n⊕

`=0

CHn−`(X;Q)⊗H`
X .

Hence
π̃X

n ◦ P (X) ◦ TP (X) = mπ̃X
n in CHn(X ×X;Q).

¤

Now put
τ̃ = m−1

(
TP (X)

) ◦ π̃X
n ◦ P (X).

One easily checks that

τ̃ ◦ (τ̃ −∆ΩX ) = 0 in CHn−2k(ΩX ×ΩX ;Q),

and from this, together with Theorem 4.3, we arrive at the proof of Theorem 1.1
except the proof of the isomorphism of the related motives, which we now show.
For the proposition below, we adopt the terminology in [9].

Proposition 7.3.The motivesM = (ΩX , τ̃ , 0) and N = (X, π̃X
n ,−k) are iso-

morphic as virtual motives.

Proof. Define the morphisms

α =
1
m

TP (X) ∈ Corr−k(X,ΩX)

and
β = P (X) ∈ Corrk(ΩX , X).

Then by associativity of correspondences we observe that

π̃X
n ◦ β ◦ τ̃ ◦ α ◦ π̃X

n = π̃X
n ∈ Corr0(X, X)

and
τ̃ ◦ α ◦ π̃X

n ◦ β ◦ τ̃ = τ̃ ∈ Corr0(ΩX , ΩX),
which establishes the required isomorphism. ¤
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8 Appendix: Murre’s conjectures for higher Chow groups

In this section, we will assume the reader has some familiarity with Bloch’s higher
Chow groups ([2])CHr(W,m), where for our purposes,W is a projective alge-
braic manifold of dimensionn. Further, the reader can consult [9] for the defini-
tion of a Bloch-Beilinson filtrationF νCHr(W ;Q) on W . Generalizations of the
Bloch-Beilinson filtration to theCHr(W,m;Q) have been considered by others
(e.g. [1], [5], [11]). A generalization of a conjecture of Beilinson says that

Grν
F CHr(W,m;Q) ' Extν

MM
(
1, h2r−m−ν(W )(r)

)
,

whereMM is the conjectural category of mixed motives,1 = Spec(C) is the
trivial motive, andh•(−) is motivic cohomology. Implicit in the above formula is
an underlying (conjectural) Bloch-Beilinson filtration involvingr-steps:

CHr(W,m;Q) = F 0 ⊃ F 1 ⊃ · · · ⊃ F r ⊃ {0},
whose graded pieces factor through the Grothendieck motive. More explicitly, as-
sume given a Chow-K̈unneth decomposition (or we can work with the weaker
assumption of such a decomposition on the level of Grothendieck motives):

∆W =
⊕

p+q=2n

∆W (p, q),

then

Grν
F CHr(W,m;Q) = ∆W (2n− 2r + ν + m, 2r − ν −m)∗CHr(W,m;Q).

Again, from the above formula, and for reasons involving weights, one has
F 0 = F 1 if m ≥ 1. Recall

πW
`,∗ := ∆W (2n− `, `)∗.

Since we anticipate

∆W (2n− 2r + ν + m, 2r − ν −m)∗CHr(W,m;Q) = 0,

for ν < 0 (and ifm > 0, ν ≤ 0) and forν > r, this translates to

Generalized Murre Conjecture II. πW
`,∗ = 0 for ` > 2r −m (and` ≥ 2r −m if

m > 0), and for` < r −m.

We leave it as an exercise for the reader to generalize Murre’s remaining con-
jectures (I, III and IV) to the higher Chow group setting. Before we state our next
theorem, we need to recall a conjecture of Soulé:

Conjecture. (Souĺe, 1985; see [8]) LetF be a field. Then form ≥ 2r ≥ 2,
CHr(Spec(F ),m;Q) = 0. This is an open problem forr ≥ 2.

We now prove:
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Theorem 8.1.Assume the notation and setting in the Main Theorem 1.1. Assume
given a Chow-K̈unneth decomposition ofΩX (in the sense of Murre) such that

πΩX

n−2k,∗ ◦ τ̃∗ = τ̃∗ = τ̃∗ ◦ πΩX

n−2k,∗,

on CH•(ΩX ,m;Q). Further, let us assume either thatm = 0, 1, 2 or Souĺe’s
conjecture form ≥ 3. Then Murre’s (generalized) Conjecture II forW = ΩX

implies Murre’s (generalized) Conjecture II forW = X.

Proof. By the Main Theorem 1.1,

πΩX

n−2k,∗ = τ̃∗ +
(
πΩX

n−2k,∗ − τ̃∗
)
,

is a decomposition into idempotents. Thus

πΩX

n−2k,∗ = 0 ⇒ τ̃∗ = 0 ⇒ π̃X
n,∗ = 0.

We first consider the casem = 0. According to the remarks at the end of§6,
we need only consider the vanishing ofπ̃X

n,∗ on CHr(X;Q) whenn > 2r. Thus

it suffices to show thatπΩX

n−2k,∗ = 0 on CHr−k(ΩX ;Q) for n > 2r. But this
is immediate from Murre’s (generalized) Conjecture II forΩX , sincen − 2k >
2(r− k) precisely whenn > 2r. So now let us assume thatm > 0. Then we must
show thatπX

`,∗ = 0 on CHr(X, m;Q) in the ranges̀ < r −m and` ≥ 2r −m.
We first introduce

hX
` :=

{
0 if ` is odd,

H
n−`/2
X ×H

`/2
X if ` is even.

Note that

πX
` =





hX
` if ` 6= n,

π̃X
n + hX

n if ` = n.

Let ∆m ' Cm be the standard algebraicm-simplex as defined in [2]. Anyξ ∈
CHr(X, m;Q) arises from a cycle of codimensionr in X × ∆m. Consider the
productX ×X ×∆m. We compute for̀ even:

hX
`,∗(ξ) = Pr23,∗

(
Pr∗13(ξ) • Pr∗12(H

n−`/2
X ×H

`/2
X )

)

= Pr23,∗
{(

H
n−`/2
X • ξ

)⊗H
`/2
X

}

∈ Pr23,∗
{
CHn+r−`/2(X, m;Q)⊗H

`/2
X

}

∈ H
`/2
X • λ∗CHr−`/2(Spec(C),m;Q),

whereλ : X → Spec(C). Note thatCHn+r−`/2(X, m;Q) = 0 if n + r − `/2 >
n + m, which is precisely the situation when` < 2(r −m). Note thatr < m and
` < 2(r −m) ⇒ ` < 0, hencedim X = n ⇒ H

n−`/2
X = 0 for ` < 0 even, and

thereforehX
`,∗(ξ) = 0. On the other handr ≥ m and` < r−m ⇒ ` < 2(r−m).

ThusπX
`,∗ = 0 for ` < r−m. Next, if ` ≥ 2r−m is even, thenr− `/2 ≤ [m/2],

where[−] is the greatest integer function. Thus the vanishing ofhX
`,∗ for ` ≥ 2r−m
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is a consequence ofCH•≤[m/2](Spec(C),m;Q) = 0, that which is the case for
m = 1, 2, and more generally which is implied by our assumption of Soulé’s
conjecture. Thus the final step is to show the vanishing ofπ̃X

n,∗ in the case where
n < r −m andn ≥ 2r −m. But n < r −m ⇒ r > n + m ⇒ CHr(X, m) = 0
for dimension reasons. Thus we are reduced to the casen ≥ 2r−m. This is equiv-
alent to the statementn − 2k ≥ 2(r − k) −m and the vanishing ofπΩX

n−2k,∗ for
n − 2k ≥ 2(r − k) −m, which is precisely Murre’s (generalized) Conjecture II
for ΩX . ¤

AcknowledgementsThe authors are grateful to the referee for suggested improvements in
presentation.
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