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1 Introduction

The linear Diophantine equation we are interested in is of the form

x1a1 + · · ·+ xnan = N, (1.1)

where n > 1 is a fixed positive integer and for which we have a fixed set of
integers 0 < a1 < · · · < an satisfying (a1, ..., an) = 1. For any nonnegative
integer N we say that a solution exists if there exist nonnegative integers
x1, ..., xn satisfying equation (1.1). It is well known that for all sufficiently
large N the equation has solutions. In fact for n = 2 the largest N for which
no solution exists can be explicitly written as a1a2 − a1 − a2. However no
such formula exists for n ≥ 3 as shown by Curtis in [2]. Several ingenious
algorithms exist in the literature for calculating this bound which is known as
the conductor. For example the reader may refer to [1, 8, 9, 10, 13] for several
algorithms for calculating the conductor. The literature on this subject is
vast and for different aspects of the problem we can mention for example
[3, 4, 11, 12, 15].
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162
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We are interested in calculating how many solutions equation (1.1) has. In
particular we want to find a formula, or an algorithm, which is fast in giving
the answer. If we denote the number of solutions corresponding to N by
f(N), considering that the ai’s are fixed once and for all, then it is known
that f(x) = P (x)+∆(x) where P (x) is a polynomial in x of degree n−1 with
leading coefficient 1/[(a1 · · · an) · (n − 1)!], and ∆(x) is a periodic function
with period a1 · · · an.

In this article we apply an elementary approach to the problem of calculating
∆. We will utilise a roots of unity argument in constructing the desired peri-
odic function. We will write the general form of f(x) for arbitrary n, however
this involves complicated sums of roots of unity. Therefore we demonstrate
the merit of this approach by explicitly working out the n = 2 case to obtain
a computable expression for f(x). This problem was attacked in [5, 6, 14]
from different points of view, but ∆ was not explicitly written.

Apparently the problem of finding the conductor, together with its solution in
the n = 2 case, first appeared in [16]. Later Frobenius, noting the ubiquity
of the concept, raised the general question. Several related questions are
also raised in [7]. In fact the problem may look deceptively specialized but
nonetheless appears at most unexpected places in mathematics. Arf rings,
Gorenstein rings, Weierstrass gaps are examples from geometry where the
phenomena surfaces predominantly, and unexpectedly.

Acknowledgements: I thankfully acknowledge several useful discussions
with S. Stepanov. His ideas and comments both helped me to overcome
difficulties at several stages and to enjoy at a higher level the workings of
arithmetic.

2 The General Case

We first set up our notation which we will use throughout. By the set of
natural numbers we will mean N = {0, 1, 2, · · ·}. We fix a positive integer n
and a set of n integers

0 < a1 < a2 < · · · < an,
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which we assume to be relatively prime;

(a1, a2, ..., an) = 1. (2.2)

Towards the end of the arguments we will assume further that these integers
are mutually coprime but that will serve the purpose of achieving a more
elegant formulation. We will nevertheless mention how to proceed in the
general case of (2.2).

For any N ∈ N we define the counting function

f(N) = #{ (x1, x2, ..., xn) ∈ Nn | a1x1 + a2x2 + · · ·+ anxn = N }. (2.3)

As a notation we will sometimes use

f(a1, ..., an; N) := f(N) (2.4)

to emphasize dependence on ai’s. The problem we address is to find a com-
putable expression for f .

We start by considering the complex valued function

φ(z) =
n∏

i=1

(1− zai)−1. (2.5)

φ is a meromorphic function whose only poles are eki
ai

for i = 1, ..., n and
ki = 0, ..., ai−1, where we define for any integers 0 ≤ k < a the symbol ek

a as

ek
a = exp(2π

√−1 k/a).

We will write ea for e1
a, the primitive a-th root of unity.

The poles of φ are located on the unit circle, |z| = 1. The one at z = 1 is a
pole of order n. However φ is analytic at the origin and has a power series
expansion of the form

φ(z) =
∞∑

m=0

f(m)zm, for |z| < 1. (2.6)



4 Sinan Sertöz

This expansion for φ implies that for any integer N ∈ N we have

f(N) = Resz=0

(
φ(z)

zN+1

)

=
1

2π
√−1

∫

|z|=ε

φ(z)

zN+1
dz,

for any 0 < ε < 1.

We therefore proceed to find the coefficient of zN as given in equation (2.6),
using equation (2.5). For this the following facts will be useful. We omit the
proofs which are straightforward.

Fact 2.1 For any positive integer a ∈ N we have the factorization

1− ta =
a−1∏

l=0

(1− el
a t).

As a consequence of this we can rewrite equation (2.5) as

φ(z) =
n∏

j=0

aj−1∏

l=1

(1− el
aj

z).

From this point on we explicitly assume that

(ai, aj) = 1 for i 6= j. (2.7)

This assumption has the advantage of simplifying the partial fractions ex-
pansion of the above expression of φ:

φ(z) =
n∑

i=1

Ki

(1− z)i
+

n∑

j=1

aj−1∑

l=1

αj,l

(1− el
aj

z)
, (2.8)

where Ki and αj,l for i, j = 1, ..., n and l = 1, ..., aj−1 are complex constants
which can be determined by the theory of partial fractions. In particular to
determine the Ki’s we will use the following
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Fact 2.2 For i = 1, ..., n and for all |z| < 1 we have

1

(1− z)i
=

∞∑

m=0

ki,m zm (2.9)

where

ki,m =
(i + m− 1)!

(i− 1)!m!
=

(
i + m− 1

m

)
(2.10)

with the usual understanding that 0! is replaced by 1.

Note that ki,m = (m + 1)(m + 2) · · · (m + i− 1)/(i− 1)! and we can view it
as a polynomial in m of degree i− 1.

On the other hand since |el
aj

z| < 1 we have

1

1− el
aj

z
=

∞∑

m=0

eml
aj

zm. (2.11)

Note here that the coefficients of z are periodic with period aj. Putting
equations (2.8), (2.9) and (2.11) together we obtain

φ(z) =
∞∑

m=0




n∑

i=1

Ki ki,m +
n∑

j=1

aj−1∑

l=1

αj,le
ml
aj


 zm.

The coefficient of zN is the value we are after:

f(N) =
n∑

i=1

KN ki,N +
n∑

j=1

aj−1∑

l=1

αj,le
Nl
aj

. (2.12)

For notational convenience we introduce the following vectors:

~K := (K1, ..., Kn) ∈ Cn

~kN := (k1,N , ..., kn,N) ∈ Cn

~αj := (αj,1, ..., αj,aj−1) ∈ Caj−1

~ωj := (eaj
, e2

aj
, ..., eaj−1

aj
) ∈ Caj−1

~ωN
j := (eN

aj
, e2N

aj
, ..., e(aj−1)N

aj
) ∈ Caj−1
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where j = 1, ..., n and N ∈ N. Note that for each aj and for any integers
N,M ∈ N

~ωN
j = ~ω

Nmod aj

j .

With this notation we can write

Theorem 2.3 (General Formula)

f(N) = ~K · ~kN +
n∑

j=1

~αj · ~ωN
j

where · denotes the usual inner product.

Observe that ~K · ~kN is a polynomial in N of degree n − 1. Each ~αj · ~ωN
j is

periodic of period aj. Since (a1, ..., an) = 1, the total term
∑n

j=1 ~αj · ~ωN
j is

periodic with period a1a2 · · · an.

Calculating ~K and ~αj.

Using elementary means we can obtain the entries of ~K = (K1, ..., Kn) and
~αj. For example we can multiply both sides of equation (2.8) by (1 − z)n,
take the i-th derivative of both sides and evaluate at z = 0 to obtain

Ki =
1

(n− i)!

(
(1− z)n

∏n
j=1(1− zaj)

)(n−i)

z=0

, for i = 1, ..., n (2.13)

where the superscript denotes the order of the derivative and the subscript
denotes the point of evaluation. Similarly multiplying both sides of (2.8) by
1− el

aj
z and evaluating at z = e−l

aj
we obtain

αj,l =
n∏

i=1, i 6=j

(1− e−lai
aj

)−1
aj∏

s=1, s 6=l

(1− es−l
aj

)−1

=
n∏

i=1, i 6=j

(1− e−lai
aj

)−1
aj∏

k=1

(1− ek
aj

)−1

=
n∏

i=1, i 6=j

(1− e−lai
aj

)−1 · 1

a
. (2.14)
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The main difficulty of the simplification process lies in finding a expression
for (2.14) amenable to summing over the given indices. We will find such an
expression for n = 2. For large n a computable form for (2.13) is complicated
but still seems possible.

Remark: If the ai’s are not mutually coprime then the partial fraction
expansion of f will involve terms of the form 1/(1 − ek

a)
r, and the determi-

nation of the coefficient with which it appears will be similar to determining
the Ki’s. Clearly this will entail an enormous amount of bookkeeping.

The n = 3 Case: In [5, 6, 14] the polynomial part of f for n = 3 is deter-
mined by different approaches. Here we give the result from our approach
for completeness. Certainly for the polynomial part we need to determine
K1, K2 and K3, which are found as:

K1 =
σ2

1 + σ2 − 6σ1 + 6

12σ3

K2 =
σ1 − 3

2σ3

K1 =
1

σ3

where the σi’s are the elementary symmetric polynomials of a1, a2, a3 defined
as usual as σ1 = a1 + a2 + a3, σ2 = a1a2 + a1a3 + a2a3 and σ3 = a1a2a3.

3 The n = 2 Case

In the n = 2 case it is well known that for any integer N ∈ N we have
f(N) = || N/(a1a2) || + f(N − || N/(a1a2) || · a1a2), where || · || denotes the
greatest integer function. In fact f(N) = 1 for all a1a2−a1−a2 < N < a1a2,
so it suffices to find f for 0 ≤ N ≤ a1a2 − a1 − a2. For this we define some
auxiliary functions:

Definition 3.1 εa|n =

{
1 if a|n
0 if a 6 |n
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Definition 3.2 ra,b,n is defined for some positive integers a, b > 0 with
(a, b) = 1 and n ≥ 0, as the unique solution of the equation bx+n ≡ 0 mod a,
with 0 ≤ x ≤ a− 1.

With these definitions we state the main result of this work:

Theorem 3.3 For two positive integers a, b with (a, b) = 1, if we define for
any N ∈ N the function

f(N) = #{ (x, y) ∈ N2 | ax + by = N }

then we have

f(N) =
N + bra,b,N + arb,a,N

ab
+ εa|N + εb|N − 1.

Before we prove the theorem we state two elementary lemmas whose proofs
are briefly indicated.

Lemma 3.4 For any two integers a > 0 and N ≥ 0, we have

a−1∑

k=1

ekN
a = aεa|N − 1.

Proof: The proof is straightforward once it is observed that either eN
a = 1

or eN
a = er for some positive integer r dividing a. 2

Lemma 3.5 If (a, b) = 1, then for any integer 1 ≤ k ≤ a− 1, we have

ta−1 + ta−2 + · · ·+ t + 1

t− ekb
a

=
a−2∑

i=0

Ckb,a(i)t
a−2−i (3.15)

where

Cm,a(i) = 1 + em
a + e2m

a + · · ·+ eim
a .
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Proof: Observe that

Ckb,a(i + 1)− ekb
a Ckb,a(i) = 1,

for i = 0, ..., a − 3. Also observe that ekb
a Ckb,a(a − 2) = eb

ak + e2bk
a + · · · +

e(a−1)bk
a = −1 as shown by lemma 3.4. Now multiply both sides of (3.15) by

t− ebk
a and simplify. 2

We can now proceed with the proof of the theorem.

Proof of theorem 3.3: From equation(2.12) we write

f(N) = K1k1,N + K2k2,N +
a−1∑

k=1

α1,ke
kN
a +

b−1∑

k=1

α2,ke
kN
b . (3.16)

From equations (2.10), (2.13) and (2.14) we have

K1 =
a + b− 2

2ab
(3.17)

K2 =
1

ab
(3.18)

k1,N = 1 (3.19)

k2,N = N + 1 (3.20)

α1,k =
1

1− e−kb
a

1

a

α2,k =
1

1− e−ka
b

1

b
.

Therefore it remains to evaluate the sum
a−1∑

k=1

α1,ke
kN
a =

1

a

a−1∑

k=1

ekN
a

1− e−kb
a

=
1

a

a−1∑

k=1

ekN
a

(
1− 1

1− ekb
a

)

=
1

a

a−1∑

k=1

ekN
a − 1

a

a−1∑

k=1

ekN
a

1− ekb
a

=
1

a
(aεa|N − 1)− 1

a

a−1∑

k=1

ekN
a

1− ekb
a

(3.21)
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where we have written the last line from lemma 3.4. We now proceed to
evaluate the sum of roots of unity that appears in the above sum:

a−1∑

k=1

ekN
a

1− ekb
a

=
a−1∑

k=1

ekN
a · 1

1− ekb
a

=
a−1∑

k=1

ekN
a · (1− eb

a) · · · ̂(1− ekb
a ) · · · (1− e(a−1)b

a )

(1− eb
a) · · · (1− ekb

a ) · · · (1− e
(a−1)b
a )

=
a−1∑

k=1

ekN
a · 1

a
·

a−1∏

j=1, j 6=k

(1− ejb
a )

=
1

a

a−1∑

k=1

ekN
a ·

(
ta−1 + ta−2 + · · ·+ t + 1

t− ekb
a

∣∣∣∣∣
t=1

)

=
1

a

a−1∑

k=1

ekN
a ·

a−2∑

i=0

Ckb,a(i) (3.22)

where we write the last line from (3.15). We now calculate this last sum. For
this first observe that

Ckb,a(0) = 1

Ckb,a(1) = 1 + ekb
a

Ckb,a(2) = 1 + ekb
a + e2kb

a

...
...

...

Ckb,a(a− 2) = 1 + ekb
a + e2kb

a + · · ·+ ejkb
a + · · ·+ e(a−2)kb

a

a−2∑

i=0

Ckb,a(i) = (a− 1) + (a− 2)ekb
a + · · ·+ (a− 1− j)ejkb

a + · · ·+ e(a−2)kb
a

=
a−2∑

j=0

(a− 1− j)ejkb
a .

Now we multiply this with ekN
a and sum over k:

a−1∑

k=1

ekN
a ·

a−2∑

i=0

Ckb,a(i) =
a−1∑

k=1

a−2∑

j=0

(a− 1− j)ek(N+jb)
a
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=
a−2∑

j=0

(a− 1− j)
a−1∑

k=1

ek(N+jb)
a

=
a−2∑

j=0

(a− 1− j)(aεa|(N+jb) − 1), (3.23)

where the last equation follows from lemma 3.4. Note that since 0 ≤ j ≤ a−1
and (a, b) = 1, there is only one value of j which satisfies N + jb ≡ 0 mod a.
In definition 3.2 we denoted this unique solution by ra,b,N . Hence we have

aεa|(N+jb) − 1 =

{
−1 if j 6= ra,b,N

a− 1 if j = ra,b,N
. (3.24)

Putting this in (3.23) we have

a−1∑

k=1

ekN
a ·

a−2∑

i=0

Ckb,a(i) = a(a− 1− ra,b,N)−
a−2∑

j=0

(a− 1− j)

= a
(

a− 1

2
− ra,b,N

)
.

Inserting this into (3.22) gives

a−1∑

k=1

ekN
a

1− ekb
a

=
(

a− 1

2
− ra,b,N

)
.

Further inserting this into (3.21) gives

a−1∑

k=1

α1,ke
kN
a = εa|N − a + 1

2a
+

ra,b,N

a
. (3.25)

Similarly we find

b−1∑

k=1

α2,ke
kN
b = εb|N − b + 1

2b
+

rb,a,N

b
. (3.26)

Finally we substitute equations (3.25), (3.26), (3.17), (3.18), (3.19) and (3.20)
into equation (3.16) and obtain

f(N) =
N + bra,b,N + arb,a,N

ab
+ εa|N + εb|N − 1.
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as claimed. 2

Remark: The fraction
N + bra,b,N + arb,a,N

ab
is always an integer; a|(N +

bra,b,N) by definition, so a|(N + bra,b,N + arb,a,N). Similarly b|(N + bra,b,N +
arb,a,N). But (a, b) = 1, so ab|(N + bra,b,N + arb,a,N).

Remark: That we have obtained a computable formula can be checked
easily; for example a simple Maple V program can calculate immediately
that

f(1234567, 12345678; 123456789012345) = 8.

Recall equation (2.4) for notation.
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