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Abstract. Frobenius problem is to find the largest integer g which cannot
be expressed as a linear combination of some given natural numbers 1 < a1 <
· · · < an with nonnegative integer coefficients, where a1, . . . , an are relatively
prime. We consider this problem as the investigation of the lattice points of
the region {(x1, . . . , xn) ∈ Rn | x1, . . . , xn > 0}. It can then be shown that g
is the largest element of a finite set S, (lemma 1). Even though S is finite it
is constructed using an infinite set H. Our main result (theorem 4) is to show
that a finite subset E of H suffices to determine g. These methods also yield
an upper bound for g, (lemmas 2 and 3).

1. Introduction

The Diophantine problem of Frobenius consists of finding the largest integer N
which cannot be expressed as a linear combination of some given relatively prime
integers with nonnegative coefficients. To be more precise let 1 < a1 < · · · < an

be integers whose greatest common divisor is 1. For a given N ∈ N we look at the
existence of solutions of the equation N = a1y1 + · · ·+anyn with (y1, . . . , yn) ∈ Nn.
It is known that for all N sufficiently large a solution vector (y1, . . . , yn) ∈ Nn exists.
Following [4] and [3] we denote by g(a1, . . . , an) or simply by g the largest integer
N for which no such solution vector exists. In this paper we describe a procedure
for general n to find g+1 which consists of finding the maximal element of a certain
restricted set. Such maximality procedures are common in the literature, see [2],
[8] and [6]. The method we use is to find g from a finite set which is formed by
using an infinite set H, see lemma 1. Our main observation is theorem 4 where we
show that a finite subset E of H can be used for the same purpose. Our method
also gives an upper bound for g which is in some cases comparable to the bounds
given in [3]. For an extensive bibliography of the literature see Selmer’s paper [7].

2. Cut-off point for the General Case

2.1. Let W be the semigroup generated by a1, . . . , an with (a1, . . . , an) = ν. We
order the elements of W in increasing order

W = {i0 = 0, i1, i2, . . . }.
It is a folk theorem that all sufficiently large multiples of ν are elements of W .1 For
completeness we record two interesting proofs here.

Appeared in the Bulletin of the Technical University of İstanbul, vol: 39 (1986), 41-51.
In this retyping all the known typos are corrected. All the footnotes are added during this

retyping.
1We thank Richard A. Smith of Honolulu for sending in a correction in 2004.
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Theorem: For r sufficiently large we have

ir+l = ir + lν, l ∈ N.

Proof I: (Arf [A])
Let νl = (i1, . . . , il), l = 1, 2, . . . , Since νl divides νl−1 for all l > 1, there exists q
such that

νq = νq+1 = · · · = ν.

Write

ν = m1i1 + · · ·+ mqiq with m1, . . . ,mq ∈ Z

and let

m = max
∣∣ mh(

i1
ν
− 1)

∣∣
1 ≤ h ≤ q.

Now it is claimed that all the multiples of ν that are greater than

i = mi1 + · · ·+ miq

are in W .
First observe that i itself is a multiple of ν. Multiples for ν larger than i are of

the form i + lν for l ∈ N. We look at three cases.

I) l = 0, 1, . . . ,
i1
ν
− 1.

i + lν = (m + lm1)i1 + · · ·+ (m + lmq)iq = n1i1 + · · ·+ nqiq
where nh ∈ N since m ≥ |mhl|. Hence i + lν ∈ W .

II) l =
i1
ν

.
i + lν = i + i1 which is clearly in W .

III) l >
i1
ν

. Then l = s
i1
ν

+ t, 0 ≤ t < i1
ν ,

i + ν = i + si1 + tν, and this is also in W due to the considerations in I and II
above.

Proof II: Write

ν = m1a1 + · · ·+ mnan (∗)

and let

−N = sum of negative terms in (∗)
P = sum of positive terms in (∗)
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Note N ≥ 0, P > 0. We thus have ν = −N + P , where each of N and P are
non-negative linear combinations of a1, a2, . . . , an.

Let M = (a1 − 1)N.

Then M + ν = (a1 − 2)N + P

M + 2ν = (a1 − 3)N + 2P

· · ·
M + (a1 − 1)ν = 0 + (a1 − 1)P.

Thus each of M,M + ν, M + 2ν, . . . , M + (a1 − 1)ν are non-negative linear combi-
nations of a1, a2, . . . , an and therefore so is M + kν, for all integers k ≥ 0.

2.2. Upper Bound. We assume that the integers a1, . . . , an satisfy the conditions

(a1, . . . , an) = 1 and 1 < a1 < · · · < an.

Define the following sets:

H = {(x1, . . . , xn) ∈ Zn
∣∣ a1x1 + · · ·+ anxn = −1}

A = {(y1, . . . , yn) ∈ Nn
∣∣ ∀(x1, . . . , xn) ∈ H, ∃i s.t. yi + xi < 0}

and

S = {n ∈ N
∣∣ ∃(y1, . . . , yn) ∈ A s.t. n = a1y1 + · · ·+ anyn}

where Z is the set of integers and N is the set of non-negative integers.

Lemma 1:

g =
(
max
n∈S

n
)− 1.

Before giving a proof let us develop some notation which will be used throughout;

πN is the plane defined by a1x1 + · · · anxn = N , i.e.

πN =
{
(X1, . . . , Xn) ∈ Rn

∣∣ a1X1 + · · ·+ anXn = N
}
.

LN is the lattice on πN , LN = πN ∩ Zn, and

L+
N is the part that lies in the first quadrant, L+

N = LN ∩ Nn.

Proof of Lemma: It is clear that A ⊂ ⋃
N≥0 L+

N . In fact A∩L+
N 6= ∅ iff L+

N 6= ∅
and L+

N−1 = ∅; If L+
N−1 6= ∅ then let q ∈ L+

N−1 and p ∈ A ∩ L+
N . Then q − p ∈ H

and p+(q−p) ∈ Nn contradicting the fact that p ∈ A. Now g+1 ∈ S. If N > g+1
is also in S then L+

N−1 = ∅ contradicting the definition of g. Hence the lemma.

Remark: An alternate description of H can be given for any fixed point p ∈ LN

for any N ,

H = {q − p | q ∈ LN−1 }.
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This alternate description disposes of the unpleasant possibility of having two dif-
ferent points p, p′ ∈ L+

N such that p ∈ A but p′ 6∈ A; If p′ /∈ A then ∃q′ ∈ L+
N−1,

2 but
x = q′−p′+(p′−p) ∈ H and p+x ∈ L+

N−1 contrary to p ∈ A. In order to describe
a procedure of employing the lemma in calculating g, we give a decomposition of
H which will facilitate our work; Let

H = H1 ∪ · · · ∪Hn ∪H ′

where Hi = {(x1, . . . , xn) ∈ H | xi < 0 and xj ≥ 0 for j 6= i } for i = 1, . . . , n
and H ′ consists of those vectors of H which have at least two negative entries.

For i = 1, . . . , n, choose a vector (xi1, . . . , xin) ∈ Hi such that3

−xii = min{ |xi|
∣∣ (x1, . . . , xn) ∈ Hi }.

Let (y1, . . . , yn) ∈ A be such that

g + 1 = a1y1 + · · ·+ anyn.

Then in particular we have

y1 + x11 < 0
...

yn + xnn < 0

This proves the following

Lemma 2: With (x11, . . . , x1n), . . . , (xn1, . . . , xnn) chosen as above, we have

g ≤ a1(−x11 − 1) + · · ·+ an(−xnn − 1)− 1.

Example A: a1 = 137, a2 = 251, a3 = 256.

(x11, x12, x13) = (−11, 6, 0)

(x21, x22, x23) = (20,−15, 4)

(x31, x32, x33) = (6, 11,−14)

g + 1 ≤ 137(10) + 251(14) + 256(13) = 8212.

Erdös and Graham give the following bounds, see [3];

g ≤ (a1 − 1)(an − 1)− 1 = 34679

g ≤ a3a1 + a3
(a1, a2, a3)

(a1, a2)
= 35328

g ≤ 2an−1

[an

n

]
− an = 42414.

2i.e. L+
N−1 6= ∅ so pick any q′ there.

3Note that only the i-th entry is negative in Hi and xii is the largest of the negative entries,
hence |xii| = −xii is minimum.
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2.3. Sufficiency. We now aim towards our main result that a certain subset of
H suffices for the above computations. To be more specific we need the following
subset of H;

E =
{
(x1, . . . , xn) ∈ H

∣∣ |xi| < a1, i = 2, . . . , n
}
.

Similar to the decomposition of H we decompose E

E = E1 ∪ · · ·En ∪ E′

where E′ = E ∩H ′, Ei = E ∩Hi, i = 1, . . . , n.
The following lemma establishes the fact that the xii, defined through Hi, can

be defined using only Ei, i = 1, . . . , n.

Lemma 3:4

−xii = min
{ |xi|

∣∣ (x1, . . . , xn) ∈ Ei

}
, i = 1, . . . , n.

Proof: Assume that (xi1, . . . , xin) 6∈ Ei.5 We distinguish two cases according
to i = 1 or not.

Case 1: i = 1, (x11, . . . , x1n) 6∈ E1, then x1j ≥ a1 for some j > 1. Notice that
x11 + aj < 0 since

−1 = (a1, . . . , an)(x11, . . . , x1n)

= (a1, . . . , an)(x11 + aj , x12, . . . , x1j − a1, . . . , x1n)

and the LHS being negative, all the entries on the right hand side cannot be non-
negative. hence x11 + aj < 0. But then (x11 + aj , x12, . . . , x1j − a1, . . . , x1n) ∈ H1

and the minimality of x11 is contradicted. Therefore (x11, . . . , x1n) ∈ E1.
Case 2: 6

Subcase 2.1: xii ≤ −a1.7

Let (y1, . . . , yn) ∈ Ei with −yi = min{|xi|
∣∣ (x1, . . . , xn) ∈ Ei }. Then clearly

−a1 < yi ≤ xii < 0. Hence this subcase is not possible.
Subcase 2.2: xij ≥ a1 for some i 6= j, j = 2, . . . , n.
Let xir = Kra1 + ur where Kr ≥ 0, 0 ≤ ur < ai, i 6= r, r = 2, . . . , n. If we denote

u1 = xi1 + K2a2 + · · ·+ Ki−1ai−1 + Ki+1ai+1 + · · ·+ Knan

then

(u1, u2, . . . , ui−1, xii, ui+r, . . . , un) ∈ Ei.

This shows that the vector (x11, . . . , xnn) which is defined using H1, . . . , Hn can
instead be defined using only E1, . . . , En.8

4The claim is that −xii, which was chosen by the same minimality condition in Hi, can also
be found by restricting our attention to the smaller set Ei.

5We assume that (xi1, . . . , xin) is in Hi but not in Ei.
6Now we set i to a number larger than 1.
7i.e. |xii| ≥ a1, which is one reason why the definition of a vector belonging to Ei may be

violated.
8We have actually shown that even if the vector (xi1, . . . , xii, . . . , xin) is not in Ei, another

vector such as (u1, . . . , ui−1, xii, ui+1, . . . , un) which is constructed above can be shown to be in

Ei. Hence the number xii can be obtained from the set Ei.
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We have shown the sufficiency of E1, . . . , En in the above computations. To
show the sufficiency of E in computing g we define the following sets

AE =
{
(y1, . . . , yn) ∈ Nn

∣∣ ∀(x1, . . . , xn) ∈ E, ∃i s.t yi + xi < 0
}

and

SE =
{
n ∈ N ∣∣ n = y1a1 + · · ·+ ynan for some (y1, . . . , yn) ∈ AE

}
.

Our main observation is the following theorem.

Theorem 4:

g =
(
max
n∈SE

n
)− 1.

Proof: It suffices to show that A = AE . That A ⊆ AE is trivial. To show the
converse let (y1, . . . , yn) ∈ AE . Assume that (y1, . . . , yn) 6∈ A, then there exists
(x1, . . . , xn) ∈ H such that xi + yi ≥ 0, i = 1, . . . , n. Note that in the light of
lemma 3 if (y1, . . . , yn) ∈ AE then yi < −xii, i = 1, . . . , n and in particular for
i = 2, . . . , n, we have yi < a1. Hence if xr < 0 for r = 2, . . . , n then xr + yr ≥ 0
implies that |xr| < a1. Define a vector (u1, . . . , un) ∈ E as follows. If xi < 0 then
let ui = xi, i 6= 1. If xi ≥ 0 and i 6= 1 define ui as xi mod a1, i.e.

xi = kia1 + ui, ki ≥ 0, 0 ≤ ui < a1.

And for i = 1, u1 = x1 + ki1ai1 + · · · + kirair where xi1 , . . . , xir are those xi’s ,
i 6= 1, which are nonnegative. Then (u1, . . . , un) ∈ E and clearly ui + yi ≥ 0 for
i = 2, . . . , n. For i = 1, observe that x1 ≤ u1, and if y1 + x1 ≥ 0, then y1 + u1 ≥ 0.
But this contradicts the fact that (y1, . . . , yn) ∈ AE . Hence (y1, . . . , yn) ∈ A.

Example B: a1 = 137, a2 = 251, a3 = 256.
Start with the vector (10, 14, 13) = (−x11 − 1,−x22 − 1, x33 − 1), see example A.
The only vectors in E′ that gives a nonnegative entry when added to (10, 14, 13)
are (13,−2,−5), (−4,−7, 9) and (37,−10,−10). Thus we modify (10, 14, 13) so
that when added to (13,−2,−5) it gives a negative entry and its dot product with
(137, 251, 256) is maximal with this property. This gives us two candidates

U = (10, 1, 13), V = (10, 14, 4).

We modify these vectors with respect to (−4,−7, 9); U already gives negative entries
when added to (−4,−7, 9) so does not change whereas V gives rise to two other
candidates.

Z = (3, 14, 4), and W = (10, 6, 4).

These three vectors, U,Z, W now satisfy the required condition, i.e. they are in
AE , and

g + 1 = max
n∈SE

n = max
n∈S{U,Z,W}

n = max
n∈{3900,4949}

n = 4949.

Examples A and B are worked with the aid of a computer.9

Remark 1: A few words are in order to explain what we mean by “modification”

9A friend of us did these calculations for us on the computer but we did not trust the machine
and went over these calculations by hand. Then was the age of innocence!
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of a vector (c1, c2, c3) by (b1, b2, b3) where (b1, b2, b3) ∈ H and c1, c2, c3 ∈ N. This
particular process consists of carrying out the following algorithm and choosing all
vectors satisfying the stated conditions;
1) If there is an i such that ci + bi < 0, then (c1, c2, c3) remains unaltered.
2) If all ci + bi ≥ 0, then

a) choose (−b1 − 1, c2, c3) if b1 < 0 and c1 + b1 ≥ 0.
b) choose (c1,−b2 − 1, c3) if b2 < 0 and c2 + b2 ≥ 0.
c) choose (c1, c2,−b3 − 1) if b3 < 0 and c3 + b3 ≥ 0.

Remark 2: In order to obtain E it suffices to find a basis for the lattice

L =
{
(y1, . . . , yn) ∈ Zn

∣∣ a1y1 + · · ·+ anyn = 0
}
.

For this purpose the following method seems appropriate; Let

1 =
n∑

i=1

m0iai, d1 =
n∑

i=2

m1iai,

· · · · · ·

dn−2 =
n∑

i=n−1

mn−2 iai, dn−1 = an

be the greatest common divisors of the sets

{a1, . . . , an}, {a2, . . . , an}, . . . , {an−1, an}, {an}
respectively, where mij ∈ Z. Using this data, define the vectors

A1 = (d1,−a1m12,−a1m13, . . . ,−a1m1n−1,−a1m1n)

A2 = (0,
d2

d1
,−a2

d1
m23, . . . ,−a2

d1
m2n−1,−a2

d1
m2n)

· · · · · ·

An−1 = (0, . . . , 0,
dn−1

dn−2
,−an−1

dn−2
).

These vectors constitute a basis for L. This construction does not produce
unique Ai’s, however a canonical procedure for choosing mij ’s can be given.

It is comforting to see that our method agrees with the classical result in case
n = 2.

Corollary 5: When n = 2, g + 1 = a1a2 − a1 − a2 + 1.
Proof: In this case

E1 = {(x11, x12)}, E2 = {(x21, x22)}, E′ = ∅.
And according to our method (−x11 − 1,−x22 − 1) ∈ AE will give the maximal
value, i.e.

g + 1 = a1(−x11 − 1) + a2(−x22 − 1)
= −a1x11 − a1 − a2x22 − a2

= −a1x11 − a1 − a2(x12 − a1)− a2

= −(a1x11 + a2x12)− a1 + a1a2 − a2

= 1− a1 + a1a2 − a2 as required.
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Our method can also be used to find g in the special case of (m,m + 1, . . . ,m +
n− 1), see [5].

Corollary 6: Let ai = m + i− 1, i = 1, . . . , n; n < m. Then

g + 1 = m
{m− 1

n− 1
}

where for r ∈ R, {r} = k ∈ Z such that k − 1 < r ≤ k (Note that when r 6∈ Z then
{r} = [r] + 1, and when r ∈ Z then {r} = r).

Proof: We have

(1,−1, 0, . . . , 0) ∈ E2, . . . , (0, . . . , 0, 1,−1) ∈ En,

therefore x22 = · · · = xnn = −1. If (y1, . . . , yn) ∈ AE then 0 ≤ yi < −xii,
i = 1, . . . , n. Hence

y2 = · · · = yn = 0.

We now know that g+1 is a multiple of a1. The semigroup generated by a2, . . . , an

consists of the intervals
⋃

[k(m+1), k(m+n− 1)]. To find x11 we find the smallest
multiple of m that comes close to the end of one of these intervals within a unit,
i.e. find the smallest k such that

k(m + n− 1)− (k + 1)m ≥ −1.

This gives k ≥ m− 1
n− 1

.

Then x11 = −{m− 1
n− 1

+ 1
}

and y1 =
{m− 1

n− 1
}

as required.

Acknowledgments We thank professors C. Arf and T.C. Brown for valuable
discussions.
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