Pieri-Type Intersection Formulas and Primary Obstructions for Decomposing 2-forms

Sinan Sertöz (Ankara)

Abstract. We study the homological intersection behaviour for the Chern cells of the universal bundle of $G(d, Q^n)$, the space of $[d]$-planes in the smooth quadric Q_n in \mathbb{P}^{n+1} over the field of complex numbers. For this purpose we define some auxiliary cells in terms of which the intersection properties of the Chern cells can be described. This is then applied to obtain some new necessary conditions for the global decomposability of a 2-form of constant rank.

1. Introduction. In this article we study from a purely projective geometric point of view the obstructions to globally decomposing a 2-form. It was shown by Dibağ that the vanishing of certain Chern classes is necessary for such a decomposition, [3]. We construct new classes whose nonvanishing implies the nonvanishing of the Chern classes. Moreover some vanishing patterns of these new classes imply the vanishing of the Chern class obstructions. This is achieved by studying the intersection structure of the integral homology generated by the Chern cells. Our methods are purely geometric and reveal the required products up to a nonzero multiplicative constant. However this suffices for our purposes since we eventually check for vanishing of obstructions. In the case of maximal planes these coefficients can be explicitly calculated. This is done by Hiller and Boe in [7] where the authors consider the case of type B maximal isotropic Grassmannians. Type D (which is a consequence of the result in type B) appeared in [9]. The results of [7] are further reproved by Pragacz and Ratajski in [11] by using divided differences. Recently similar calculations in type B are done by Sottile, [14].

AMS Subject classification: 14M15, (14M17, 14N10)
In the non-maximal case these calculations are due to Pragacz and Ratajski, see [12]. However to adopt these general formulas for our cases would lead to complicated combinatorial formulas. By checking only nonvanishing conditions we are able here to present a purely geometrical argument which suffices for our results.

We denote by \(G(d, Q_n) \) the space of complex projective \([d] \)-planes lying in the smooth quadric hypersurface \(Q_n \) of \(\mathbb{P}^{n+1} \). Diba˘ g has shown that \(G(d, Q_n) \) represents \(A_{d+1}^{(n+2)} \), the space of normalized 2-forms in \(\mathbb{R}^{n+2} \) of rank \(2(d+1) \), on which the Stiefel bundle \(V_{n+2,2(d+1)} \) induces a principal \(U(d+1) \)-bundle, see [2, 3].

In general if \(\omega \) is a 2-form of constant rank \(2(d+1) \) on a trivial \(\mathbb{R}^{n+2} \) bundle \(E \) over some base space \(B \), then it can be represented by a map \(\omega_1 : B \to A_{d+1}^{(n+2)} \). Lifting this map to \(V_{n+2,2(d+1)} \) is equivalent to decomposing the 2-form \(\omega \) globally as \(\omega = y_1 \wedge y_{d+2} + \cdots + y_{d+1} \wedge y_{2(d+1)} \) for some 1-forms on \(E \). Then the images \(\omega_1^*(c_i) \in H^{2i}(B; \mathbb{Z}) \) of the Chern classes \(c_i \in H^{2i}(A_{d+1}^{(n+2)}; \mathbb{Z}) \), \(i = 0, \ldots, d+1 \), of the principal \(U(d+1) \)-bundle \(V_{n+2,2(d+1)} \) necessarily vanish.

If \(E \) is not trivial then the above geometry is analyzed on a certain subbundle \(S_\omega \) of \(E \), depending on \(\omega \), and its triviality is another necessary condition for the decomposability of \(\omega \), [3].

We define some cohomology classes \(\text{PD} \Omega_i \in H^{\ell-i}(A_{d+1}^{(n+2)}; \mathbb{Z}) \), where \(\ell = \dim A_{d+1}^{(n+2)} \) and \(i = 0, \ldots, d+1 \), and show that if \(\omega_1^*(\text{PD} \Omega_s) = 0 \) for some \(0 \leq s \leq d+1 \), and \(\omega_1^*(\text{PD} \Omega_{s+i}) \neq 0 \) for \(i = 1, \ldots, d+1 - s \), then \(\omega_1^*(c_i) = 0 \) for \(i = 1, \ldots, d+1 - s \). Moreover if \(\omega_1^*(\text{PD} \Omega_s) \neq 0 \) for some \(s \), then \(\omega_1^*(c_i) \neq 0 \) for all \(i = 1, \ldots, d+1 - s \), see Theorem 3 and Corollary 4. When \(n = 2d \), a trivial line bundle splits off the universal bundle on each irreducible component, \(V_0 \) and \(V_1 \), of \(G(d, Q_n) \) forcing \(c_{d+1} \) to vanish. In this case \(s > 0 \) if it exists. These results occupy the last section after we establish in Section 3 the intersection properties of Chern cells.

For background on intersection problems we refer to [1, 5, 6]. For recent applications one can refer to [10, 12, 13, 14]. For the existence and the decomposability of 2-forms see [2, 3, 8]. And finally for 2-forms on spheres see [2, 4]

It is my pleasure to thank İ. Diba˘ g for his constant support and encouragement, and for saving me from an error in an early version of this manuscript.
2. Preliminaries. In this section we summarize some constructions which help us to understand the geometry of the space of d-planes lying in a smooth quadric Q_n. First we define a set of points which we propose to call the skeleton points and use in describing flags and Schubert cells. We refer to [13, pp 203-207] for further details and here briefly describe the main lines for completeness.

For two points $p = (p_1, \ldots, p_N)$ and $q = (q_1, \ldots, q_N)$ in \mathbb{C}^N we say that p and q are f-orthogonal if $p \cdot q = p_1q_1 + \cdots + p_Nq_N = 0$, and m-orthogonal if $p \cdot \overline{q} = p_1\overline{q}_1 + \cdots + p_N\overline{q}_N = 0$, where the overbar denotes complex conjugation. When p and q are used as homogeneous coordinates of the corresponding points in the projective space the same terminology prevails.

Assume $n = 2m$. The skeleton points of Q_{2m} is a set of $2m + 2$ points in \mathbb{P}^{2m+1} chosen as follows:

(i) choose p_0 in Q_{2m} arbitrarily. This means that p is f-orthogonal to itself.

(ii) Once p_0, \ldots, p_{k-1} are chosen, where $1 \leq k \leq m$, choose p_k as any point of Q_{2m} which is both f-orthogonal and m-orthogonal to the join $p_0 \vee \cdots \vee p_k$ but not in the join itself. The set of points in \mathbb{P}^{2m+1} satisfying these conditions is a $2(m - k)$ dimensional subspace so a choice is always possible.

(iii) After having chosen p_0, \ldots, p_m the remaining $m + 1$ points are chosen as the complex conjugates of these where indexing is done as follows:

$$p_{m+i} = \overline{p_{m+1-i}}, \quad i = 1, \ldots, m + 1.$$

Here again the overbar denotes complex conjugation.

These points p_0, \ldots, p_{2m+1} all lie in Q_{2m} and their join is the whole space \mathbb{P}^{2m+1}. The particular way we choose and index them enables us to build a link between geometry and algebra. This can be seen in the following construction.

For any subset L of the set $I_{2m+1} = \{0, 1, \ldots, 2m + 1\}$ define S_L as the intersection of Q_{2m} with the join of those skeleton points whose index is in L:

$$S_L = Q_n \cap \left(\bigvee_{j \in L} p_j \right).$$

The link between geometry and algebra comes into play at this stage; the dimension of this space S_L is determined by the indexing set L. For this define a particular subset of L which affects the dimension of S_L.

$$J(L) = \{ i \in I_m \mid i \in L \text{ and } 2m + 1 - i \in L \}.$$
In other words $J(L)$ contains the indices of only those skeleton points among p_0, \ldots, p_m whose complex conjugates also lie in S_L.

In [13, Lemma 1.3] we proved that
\[
\dim \mathbb{C} S_L = \begin{cases}
\#L - 2 & \text{if } J(L) \neq \emptyset \\
\#L - 1 & \text{if } J(L) = \emptyset.
\end{cases}
\]

Now we are ready to construct two dual flags for Q_{2m}. The first one is called the A-flag and consists of a nested sequence of subvarieties of Q_{2m}
\[
A_0 \subseteq \cdots \subseteq A_{m-1} \subseteq A_m, A_{m+1} \subseteq \cdots \subseteq A_{2m} = Q_{2m}
\]
such that $A_i - A_{i-1}$ is an open cell of dimension i, and each A_i is chosen as follows
\begin{enumerate}
 \item[(i)] $A_i = S\{0,1,\ldots,i\}$ for $i = 0, \ldots, m-1$
 \item[(ii)] $A_{m_0} = S\{0,1,\ldots,m\}$ and $A_{m_1} = S\{0,1,\ldots,m-1,m+1\}$
 \item[(iii)] $A_{m+i} = S\{0,1,\ldots,m+i\}$ for $i = 1, \ldots, m$.
\end{enumerate}
Note that $\dim A_i = i$ for $i = 0, \ldots, 2m$, where the indices m_0 and m_1 are considered to be different as indices but both equal to m as values.

The second flag is the dual flag for the A-flag and is called the B-flag.
It also consists of a nested sequence of subvarieties of Q_{2m}
\[
B_0 \subseteq \cdots \subseteq B_{m-1} \subseteq B_{m_0}, B_{m_1} \subseteq B_{m+1} \subseteq \cdots \subseteq B_{2m} = Q_{2m}
\]
where each B_i is chosen as follows
\begin{enumerate}
 \item[(i)] $B_i = S\{2m+1,2m+2,\ldots,2m+i\}$ for $i = 0, \ldots, m-1$
 \item[(ii)] $B_{m_0} = S\{2m+1,2m+2,\ldots,m+2,m\}$ and $B_{m_1} = S\{2m+1,2m+2,\ldots,m+1\}$ if m is even,
 $B_{m_0} = S\{2m+1,2m+2,\ldots,m+1\}$ and $B_{m_1} = S\{2m+1,2m+2,\ldots,m\}$ if m is odd
 \item[(iii)] $B_{m+i} = S\{2m+1,2m+2,\ldots,m-i\}$ for $i = 1, \ldots, m$.
\end{enumerate}
Note again that $\dim B_i = i$ for $i = 0, \ldots, 2m$.

For the corresponding constructions in the $n = 2m+1$ case we refer the reader to [13, pp 205-207].

To conclude this section we summarize the construction of Schubert cells on $G(d, Q_{2m})$, the space of d-planes in Q_{2m}. In the notation of [3] $G(d, Q_{2m})$ is $A^{(n+2)}_{d+1}$. A Schubert symbol for $G(d, Q_{2m})$ is a finite sequence of integers $a = (a_0, \ldots, a_d)$, $d \leq m$, satisfying the conditions
\begin{enumerate}
 \item[(i)] $0 \leq a_0 < \cdots < a_d \leq 2m$
 \item[(ii)] $a_i + a_j \neq 2m$ for $i < j$.
\end{enumerate}
This conditions is to avoid assigning different
Pieri-Type Intersection Formulas

Schubert symbols to the same cell. See [3, p 506]. Here again m_0 and m_1 are used as two different entities but both having the value m, so if one of them appears in the sequence a the other does not according to (ii).

The Schubert cell corresponding to the Schubert symbol a is a subvariety of $G(d, Q_{2m})$ defined as

$$\Omega_{a_0 \cdots a_d} = \{ P \in G(d, Q_{2m}) \mid \dim \mathbb{C}(P \cap A_{a_i}) \geq i \}.$$

Here A_{a_i} denotes the corresponding member of the A-flag. It turns out that

$$\dim \mathbb{C} \Omega_{a_0 \cdots a_d} = a_0 + \cdots + a_d - d(d + 1) + e$$

where

$$e = \# \{(a_i, a_j) \mid i < j \text{ and } a_i + a_j < n \}.$$

For further details on the intersection properties of these cells we refer to [3, 13].

3. Intersecting Chern Cells. Following Diba˘ g the i-th Chern cell Ω_i of the principal $U(d+1)$-bundle $V_{n+2,d+1}(A_{d+1}^{2n}; U(d+1))$ is defined in terms of Schubert cells on $G(d, Q_n)$ as

$$\Omega_i = \Omega_{0 \cdots (\widehat{d-i+1}) \cdots d+1}, \quad 0 \leq i \leq d+1$$

when $n \geq 2d+3$. (Here $(d-i+1)$ means “omit $d-i+1$”). The restriction on n ensures that the condition $a_i + a_j \neq n$ for $i < j$ holds in the Schubert symbols corresponding to the Chern cells, which is important to avoid redundant representations.

It turns out that the homology duals of the Chern cells play a crucial part in the intersection behaviour of the Chern classes. These are defined as follows;

$$\Delta_j = \Omega_{n-d-1 \cdots (\widehat{d-j+1}) \cdots n}, \quad 0 \leq j \leq d+1.$$

Note that Δ_j is the ‘dual’ of Ω_j, i.e $\Omega_j^\vee = \Delta_j$ in the notation of [3]. A direct calculation shows that $\dim \mathbb{C} \Omega_i = \operatorname{codim} \mathbb{C} \Delta_i = i$, for $0 \leq i \leq d+1$.

The intersection properties of the Chern cells can now be described fully in terms of the dual cells: the i-th Chern cell non trivially intersects a cell if
and only if this cell is the \(j \)-th dual Chern cell with \(j \) not bigger than \(i \), and in that case the intersection is precisely a multiple of the \((i - j)\)-th Chern cell. We can now formulate this in the following theorem;

Theorem 1. Let \(\Omega_i \) and \(\Delta_j \) be as defined above and let \(\Omega \) be any Schubert cell of \(G(d, Q_n) \) with \(n \geq 2d + 3 \). Then

\[
\Omega_i \cdot \Omega \neq 0 \text{ if and only if } \Omega = \Delta_j \text{ with } 0 \leq j \leq i \leq d + 1.
\]

And moreover in that case we have

\[
\Omega_i \cdot \Delta_j = \alpha \Omega_{i-j}, \quad 0 \leq j \leq i \leq d + 1,
\]

where \(\alpha \) is a nonzero integer.

Remark. P. Pragacz has communicated these coefficients as powers of 2. In fact Hiller and Boe have shown in [7] that for the maximal plane case, i.e. the \(n = 2d \) case, these coefficients are indeed powers of 2, see also [11, 14]. We will deal with the \(2d \leq n < 2d + 3 \) cases in the next section. However we are only interested in the obstruction theoretical properties of these intersections so it only matters for us if the coefficients are zero or not. By appealing to some general facts about Schubert cycles and Bruhat order it is possible to give a shorter proof of this theorem but we prefer this approach which is elementary and exhibits the inner workings of geometry.

Proof of Theorem 1. We will give the proof for the \(n = 2m \) case which reflects the main geometric ideas involved. The \(n = 2m + 1 \) case is similar and is omitted. First we note that \(\Omega_0 \) is a point and hence non trivially intersects only \(\Delta_0 \), with \(\alpha = 1 \). Next let \(1 \leq i \leq d \): Suppose \(\Omega_i \) intersects non trivially a Schubert cell \(\Omega \) whose Schubert symbol is \(a = (a_0, \ldots, a_d) \). Let \(P \) be a \(d \)-plane in \(G(d, Q_n) \) which lies in the intersection \(\Omega_i \cdot \Omega \). Then \(P \) must satisfy simultaneously the Schubert conditions dictated by the two symbols \((0, \ldots, (d - i + 1), \ldots, d + 1)\) and \((a_0, \ldots, a_d)\) of \(\Omega_i \) and \(\Omega \) respectively.

Using the A-flag of \(G(d, Q_n) \) the first symbol \((0, \ldots, (d - i + 1), \ldots, d + 1)\) implies that the \(d \)-plane \(P \) contains the join \(p_{0} \vee \cdots \vee p_{d-i} \) and itself lies in the join \(p_{0} \vee \cdots \vee p_{d+1} \). Here we used the description of the spaces \(A_i \) of the A-flag. Next we use the dual B-flag to interpret the second symbol. The \(a_0 \) of \(a \) now requires that \(P \) intersects the space \(B_{a_0} \), but \(\dim \mathbb{C} B_{a_0} = a_0 \).
The \(d\)-dimensional plane \(q\) lies in the \(d+1\) dimensional join \(p_0 \vee \cdots \vee p_{d+1}\). Then this join must have at least a point common with \(B_{a_0}\), which forces \((d + 1) + a_0 \geq n\) or equivalently \(a_0 \geq n - d - 1\). Combining this with the general properties of Schubert symbols we have

\[
 n - d - 1 \leq a_0 < \cdots < a_d \leq n.
\]

This means that we have to choose \(d + 1\) integers from the interval \([n - d - 1, n]\). But there are already only \(d + 2\) integers in this interval so we choose all the integers from this interval except one;

\[
 (a_0, ..., a_d) = (n - d - 1, ..., (n - d - 1 + j), ..., n), \quad 0 \leq j \leq d + 1.
\]

This is precisely the definition of \(\Delta_j\) and thus the first part of the theorem is proved. That \(j\) must not exceed \(i\) will follow from the proof of the second part of the theorem.

To prove the second part of the theorem we assume that the intersection of \(\Omega_i\) with \(\Delta_j\) is nonempty. We may again assume that \(i > 0\). Assume that \(P\) is a \(d\)-plane lying in the nonempty intersection \(\Omega_i \cdot \Delta_j\). We know from the above analysis that \(P\) must contain the join \(p_0 \vee \cdots \vee p_{d-i}\) and must lie in the \(d + 1\) dimensional space defined by the join \(p_0 \vee \cdots \vee p_{d+1}\). These conditions are imposed on \(P\) because it belongs to \(\Omega_i\). Now we inspect what further conditions will be imposed on \(P\) by forcing it to belong to \(\Delta_j\) as well.

The Schubert symbol of \(\Delta_j\) is

\[
 (a_0, ..., a_d) = (n - d - 1, ..., (n - d - 1 + j), ..., n) \quad 1 \leq j \leq d + 1.
\]

Using the B-flag the number \(a_0\) imposes that

\[
 \dim_{\mathbb{C}} P \cap (p_{2m+2} \vee \cdots \vee p_{d+1}) \geq 0.
\]

But since \(P\) lies only in \(p_0 \vee \cdots \vee p_{d+1}\) the condition imposed by \(a_0\) holds if and only if \(P\) contains the point \(p_{d+1}\).

Through the same vein we argue that since the integers \(a_0, ..., a_{j-1}\) are consecutive the condition

\[
 \dim_{\mathbb{C}} P \cap (p_{2m+2} \vee \cdots \vee p_{d+2-j}) \geq j - 1
\]

can hold if and only if \(P\) contains the join \(p_{d+1} \vee \cdots \vee p_{d+2-j}\). The other integers in the Schubert symbol \(a\) do not impose any further conditions on \(P\).
In view of these arguments we find out that if the d-plane P lies in the nonempty intersection $\Omega_i \cdot \Delta_j$ then it must contain the following list of skeleton points:

$$p_0, \ldots, p_{d+1} \text{ and } p_{d+2-j}, \ldots, p_{d+1}.$$

The first part of the list is derived from the fact that $P \in \Omega_i$ and the second part from the fact that $P \in Q_{2m}$. But there are altogether $d + 1 - (i - j)$ skeleton points in this list and hence their join, which necessarily belongs to P, has dimension $d - (i - j)$. Since P is a d plane we must have $i - j \geq 0$ or $i \geq j$.

We thus find the description for all $P \in \Omega_i \cdot \Delta_j$; each such P must live in the join $p_0 \vee \cdots \vee p_{d+1}$ and must contain a $d + 1 - (i - j)$-dimensional subspace of this join. This is the description of Ω_{i-j}.

This then completes the proof of the theorem.

\[\square \]

4. The Unstable Cases. The cases when $2d \leq n \leq 2d + 2$ are called the unstable cases (the terminology belongs to Dibağ, see [3]). The theorem of the previous section holds verbatim in the unstable cases if we provide the correct definitions of the Δ_j’s. In the following subsections we describe the necessary modifications in the definitions to make the theorem hold.

4.1. The $n = 2d + 2$ case. In this case the Chern cycles are defined as

$$\Omega_i = \Omega_{0\cdots(m-i)\cdots m_0} + \Omega_{0\cdots(m-i)\cdots m_1}, \quad 0 \leq i \leq m.$$

Here note that $m = d + 1$. For these Chern cycles we define the following dual Chern cycles

$$\Delta_j = \Omega_{m_0\cdots(m+j)\cdots n} + \Omega_{m_1\cdots(m+j)\cdots n}, \quad 1 \leq j \leq m.$$

Our theorem of the previous section now holds verbatim with these definitions.

4.2. The $n = 2d + 1$ Case. The Chern cycles for $i = 0, \ldots, d + 1$ are defined as

$$\Omega_i = 2\Omega_{0\cdots(d+1-i)\cdots d,d+1}.$$

Define the required ‘duals’ as

$$\Delta_j = \Omega_{d+1-j,d+1\cdots(d+j)\cdots 2d+1}, \quad j = 0, \ldots, d + 1.$$
4.3. The \(n = 2d \) Case. This is the maximal plane case. There are two disjoint, irreducible families of \(d \)-planes in \(Q_n \). Call these families \(V_0 \) and \(V_1 \). The Schubert cells of \(G(d, Q_n) \) are evenly divided among these families. It suffices to consider \(V_0 \) only. The \(V_1 \) case is obtained simply by reversing the marking of \(d \) in the following definitions.

First assume that \(d \) is even. \(\Omega_0 \) is defined as
\[
\Omega_0 = 2\Omega_0 \cdots d_0.
\]
The nontrivial Chern cycles are defined as
\[
\Omega_i = 2\Omega_0 \cdots \hat{(d-i)} \cdots d_1, d_{i+1}, \quad i = 1, \ldots, d.
\]
And finally define \(\Omega_{d+1} = 0 \). The ‘duals’ are then defined as
\[
\Delta_0 = \Omega_{d0 \cdots 2d}
\]
\[
\Delta_j = \Omega_{d-j,d_1 \cdots \hat{(d+j)} \cdots 2d}, \quad j = 1, \ldots, d
\]
\[
\Delta_{d+1} = 0.
\]
When \(d \) is odd, to obtain the symbolism in \(V_0 \) reverse the indexing of \(d \) in the definition of Chern cycles but leave the indexing of the ‘duals’ the same.

With these definitions Theorem 1 holds. Because of the significance of the maximal plane case we quote this result separately as a corollary to Theorem 1.

Corollary 2. In the \(n = 2d \) case we also have
\[
\Omega_i \cdot \Delta_j = \alpha\Omega_{i-j}
\]
for \(0 \leq j \leq i \leq d \) where \(\alpha \) is a nonzero integer.

Proof. We give the proof when \(d \) is even. The odd case is similar. Let \(\Lambda \) be a \(d \)-plane in the intersection of \(\Omega_i \cdot \Delta_j \). Assume that a fixed set of skeleton points \(p_0, \ldots, p_{2d+1} \) is fixed. We interpret the Schubert conditions of \(\Omega_i \) with respect to the A-flag and those of \(\Delta_j \) with respect to the B-flag. Then \(\Lambda \) lives in \(p_0 \lor \cdots \lor p_{d+i+1} \), must have a point \(p \) in \(p_{d+j+1} \lor \cdots \lor p_{d+i+1} \). Therefore the
complex conjugate of this join, which is $p_{d-i} \join \cdots \join p_{d-j}$ can contribute only $i - j - 1$ dimension to Λ, i.e. $\dim (\Lambda \cap (p_0 \join \cdots \join p_{d-j})) = d - j - 1$. Since by the Schubert conditions of Ω_i the join $p_0 \join \cdots \join p_{d-i-1}$ belongs to Λ, it follows that Λ also contains $p_{d-j+1} \join \cdots \join p_{d-1}$ and p_{d+1}. These conditions thoroughly describes any Λ in the intersection. To prove the corollary we translate these descriptions to Schubert conditions. For this purpose define a new set of skeleton points q_0, \ldots, q_{2d+1} as follows:

\begin{itemize}
 \item $q_t = p_t$ where $t = 0, \ldots, d - i - 1$.
 \item $q_{d-i+t} = p_{d-j+1+t}$ where $t = 0, \ldots, j - 2$.
 \item $q_{d-(i-j)-1} = p_{d+1}$.
 \item $q_{d-(i-j)+t} = p_{d-i+t}$ where $t = 0, \ldots, (i - j) - 1$.
 \item $q_d = p_{d+j}$. (This is to respect the V_0, V_1 formalism of maximal planes in a quadric.)
 \item $q_{d+t} = \overline{q_{d-t+1}}$ where $t = 1, \ldots, d + 1$.
\end{itemize}

Defining an A-flag with respect to this set of skeleton points, the above description of Λ becomes equivalent to the description of Ω_{i-j} as claimed. □

5. Obstruction Classes. We first define the Chern classes as

$$c_i = \Omega_i^* = PD \Omega_i^i = PD \Delta_i \in H^i(A^{(n+2)}_{d+1}; \mathbb{Z})$$

where * denotes the cell dual, PD denotes Poincaré duality and i denotes homology duality, see [3]. Since boundary operations are zero, the cycles and cocycles constitute the homology and cohomology respectively.

A necessary condition for the decomposability of a 2-form ω of constant rank $2(d + 1)$ on a trivial \mathbb{R}^{n+2} bundle E, with $n > 2d$, on some base space B is the vanishing in $H^{2(d+1)}(B; \mathbb{Z})$ of $\omega_i^*(c_i)$, $0 \leq i \leq d + 1$, where $c_i \in H^{2(d+1)}(A^{(n+2)}_{d+1}; \mathbb{Z})$ is the Chern class of the principal $U(d+1)$-bundle of Stiefel manifold of orthonormal $2(d + 1)$-frames in \mathbb{R}^{n+2} with the projection
onto $A^{(n+2)}_{d+1}$ being given by $(y_1,\ldots,y_{2(d+1)}) \mapsto y_1 \wedge y_{d+1} \cdots + y_{d+1} \wedge y_{2(d+1)}$
and where $\omega_1 : B \to A^{(n+2)}_{d+1}$ represents ω_1 [3].

In this section as an application of our intersection theorem we intend to describe the vanishing of $\omega_1^* (c_i)$ in terms of the vanishing of $\omega_1^* (PD \Omega_i)$.
Intersection of homology cells being Poincaré dual to cup product in cohomology we have the following relations which follow from Theorem 1:

$$PD \Omega_{i-j} = PD (\Omega_i \cdot \Delta_j)$$
$$= (PD \Omega_i) \cup (PD \Delta_j)$$
$$= (PD \Omega_i) \cup c_j, \quad 0 \leq j \leq i \leq d + 1.$$

We now quote our application to obstruction of decomposability:

Theorem 3. If $\omega_1^* (PD \Omega_s) \neq 0$ for some fixed s with $0 \leq s \leq d + 1$, then $\omega_1^* (c_i) \neq 0$ for all $i = 0, \ldots, d + 1 - s$.

Proof. This follows from the equation

$$\omega_1^* (PD \Omega_s) = \omega_1^* (PD \Omega_{s+i}) \cup \omega_1^* (c_i).$$

The left hand side being nonzero, each term on the right hand side has to be nonzero. □

In particular $\omega_1^* (PD \Omega_0)$ is an obstruction to the vanishing of every $\omega_1^* (c_i)$. We conclude with the following remark which we record as a corollary.

Corollary 4. If $\omega_1^* (PD \Omega_s) = 0$ and $\omega_1^* (PD \Omega_{s+i}) \neq 0$ for $i = 1, \ldots, d + 1 - s$, then $\omega_1^* (c_i) = 0$ for $i = 1, \ldots, d + 1 - s$. In particular if $\omega_1^* (PD \Omega_i)$ vanishes for $i = 0$ only, then $\omega_1^* (c_i) = 0$ for all $i = 1, \ldots, d + 1$. □

References

Pieri-Type Intersection Formulas

Sinan Sertöz
Bilkent University
Department of Mathematics
TR-06533 Ankara, Turkey

e-mail: sertoz@fen.bilkent.edu.tr
Web: http://www.fen.bilkent.edu.tr/~sertoz