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1 Introduction

The classification theory of algebraic threefolds had an exciting decade
in the eighties and culminated in the major contributor Shigefumi
Mori winning a Fields medal with [18] and [21]. The origins of the
major ideas go back to the works of Hironaka [5] in the sixties. The
road to the final accomplishment of the classification program is
paved with the most prominent names of algebraic geometry. A list
of the contributors suffices to awe a newcomer and the same applies
to the beauty and delicacy of the theory.
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My aim in this manuscript is to expose the grand classification
scheme of threefolds with as little machinery as possible. In par-
ticular I make no attempt to motivate the subject by testing new
ideas on surfaces, which the reader should do systematically. Also
I omit a tremendous amount of information on several aspects of
the theory in order to reach the destination; the description of the
Minimal Model Program. In particular I made no mention of the log
version of the program but I hope that after this paper the reader
will be well equipped to read these from other sources.

Miles Reid wrote [25] “. . . you learn to get around your own village
before you set about memorising the entire motorway network”. Ex-
pounding on this allegory this exposition can be considered as an
address, a description of a route from your own village to the cap-
ital where the MMP resides. Many beautiful scenic spots are only
briefly observed and numerous chances for exciting excursions along
the highway are carefully avoided in order to arrive on schedule.
Having once surveyed the main route of the highway the reader, the
venturer, can go back and take the first exit of his or her choice.
That at least is what I intend to do . . .

The plan of this survey is as follows: In the following Section 2
I give a long and tedious proof of the existence of rational curves
contracted by a proper birational map following [13]. This is per-
haps the most elementary part of the theory and I want a beginning
graduate student to build up confidence by observing that a funda-
mental observation can be proved totally within his or her existing
vocabulary. This is the only place where a formal proof is given.
In Section 3 the reader will find a collection of new concepts which
play a part in the theory. The list of definitions is short enough to
make the manuscript readable but long enough to equip the reader
with tools to appreciate what is to come. In Section 4 the reader is
brought into contact with the necessity of admitting singularities to
the program. Section 5 gives a brief description of these singularities
après Reid. Again we exercise great will power in avoiding a deeper
understanding of the singularity machinery of higher dimensional
geometry. Section 6 describes the existence and finiteness of the flip
map which is a way of avoiding singularities worse than those we
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are ready to handle. And finally in Section 7 a full statement of the
classification theorem is given with its implications on the structure
of the cone of curves.

Any article written on this topic carries a long list of references be-
cause the achievements in higher dimensional geometry result from
a truly international collaboration. After each section I give some
references to lead the graduate student into the literature. This has
the effect of mostly choosing those articles which are either expos-
itory in nature or include abundant motivation and explanation to
ease the student’s way into the topic. It is inevitable that I have
failed to mention numerous researchers whose work merits mention
by any standards. This I hope will be forgiven given my explicit aim
of paving a graduate student’s way into the subject.

The final version of this manuscript owes its merit and accuracy to
the careful reading and correcting of Miles Reid. All the inaccuracies
owe their survival to my unenviable dexterity in concealing them. I
am also grateful to Reid for coming to Ankara and lecturing on these
topics. In preparing this note, among other sources, I occasionally
made use of his Bilkent lecture notes but I hereby acquit him of any
responsibility thereof . . .

2 Contracting Curves

In this section a variety means a smooth projective variety over C of
dimension two or more. We agree to say that a variety Y is ‘sim-
pler’ than another variety X when there is a regular birational map
f :X −→ Y between them. We interpret this by imagining that
more than one point of X is mapped to a certain point of Y so f−1

cannot be defined set theoretically, so X has ‘more’ in it than Y . In
this section we will justify this notion by showing that X contains at
least one rational curve which is mapped to a point in Y . Moreover
it will be observed that the canonical divisor KX of X has negative
intersection with this rational curve and we will later investigate the
sufficiency of this necessary condition.



294 Sinan Sertöz

We first compare the intersection numbers [C] ·KX and [f(C)] ·KY

for an irreducible curve C in X, where KX and KY are the canonical
divisors of X and Y respectively and we use [ ] to denote equivalence
class. Let s be a meromorphic section of the canonical sheaf ωY of
Y . Then the zero set (s) of s defines a divisor which is linearly
equivalent to KY . Pulling this section back by f defines a section of
f ∗ωY . This then defines a section of ωX under the natural map

f ∗ωY −→ ωX .

To describe this map locally let (U, x = (x1, . . . , xn)) be a local
coordinate chart on X and (V, y = (y1, . . . , yn)) a coordinate chart
on Y with f(U) ⊂ V . Then in these coordinates s(y) = h(y)dy1 ∧
· · ·∧dyn for some meromorphic function h on V . f ∗s = h(f(x))dy1∧

· · · ∧ dyn and the induced section on ωX |U is h(f(x)) det

∣∣∣∣∣ ∂fi∂xj

∣∣∣∣∣ dx1 ∧

· · · ∧ dxn, where we take f(x) = (f1(x), . . . , fn(x)). Since this is a
section of ωX |U , its zero set defines a divisor equivalent to KX and
we have

KX |U = (h(f(x)) det

∣∣∣∣∣ ∂fi∂xj

∣∣∣∣∣)
= (h(f(x))) + (det

∣∣∣∣∣ ∂fi∂xj

∣∣∣∣∣).
Here we note that (h(f(x)) is the pullback of the divisor KY |V . On
the other hand the above determinant, which is the Jacobian of the
map f , vanishes where f is not a local isomorphism. Call this set
E. Setting E =

⋃
Ei, where the Ei are irreducible codimension one

components, we have

KX |U = f ∗KY |V +
∑

aiEi ∩ U.

Here the ai denote the order of vanishing of the Jacobian and hence
are nonnegative. Pasting this local data together we have

KX = f ∗KY +
∑

aiEi.

Intersecting both sides of this equality with the irreducible curve C
we have

[C] ·KX = [f(C)] ·KY +
∑

ai [C] · Ei.
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Assume that C 6⊂ E. Then C is not one of the Ei so [C] · Ei
is nonnegative. Moreover f(C) is a nontrivial curve in Y so that
[f(C)] is not identically equal to zero. We then have

[C] ·KX − [f(C)] ·KY =
∑

ai [C] · Ei

=

{
0 if C ∩ E = ∅
> 0 if C ∩ E 6= ∅

We record this for future reference:

Lemma 1 Let f :X −→ Y be a regular birational surjective map
between smooth projective varieties of dimension n ≥ 2 and C an
irreducible curve in X not mapped to a point by f . Then

[C] ·KX = [f(C)] ·KY if C ∩ E = ∅,

[C] ·KX > [f(C)] ·KY if C ∩ E 6= ∅,

where E is the set consisting of points where f is not a local isomor-
phism.

Next we analyze the geometry around a point y0 ∈ Y where f−1 is
not defined. First assume that Y is a smooth projective variety of
dimension n ≥ 3. Assume further that Y lies in the projective space
P
N . Consider the space G of all hyperplanes in PN passing through
y0. G is isomorphic to a copy of PN−1. Let G1 be the subset of G
consisting of hyperplanes not containing B − {y0}, where B is the
subset of Y where f−1 is not defined. If B = {y0} then G1 is all of
G, otherwise it is a proper open subset of G. Further let G2 be the
subset of G consisting of those hyperplanes which intersect Y in a
smooth locus. This involves the nonvanishing of certain Jacobians.
Since Y is smooth these Jacobians do not vanish identically. Hence
G2 is an open subset of G. Then G1∩G2 is nonempty since any two
nonempty open sets intersect in Zariski topology. Hence there is a
hyperplane H in PN which intersects Y through y0 in a smooth locus.
Note that codim B ≥ 2 since f−1 is a rational map from a projective
variety. Consequently codim B ∩H ≥ 2 since H does not contain B
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unless B = {y0}. By induction we can construct a smooth surface
S in Y such that S ∩ B = {y0}. Moreover by a similar argument
there exist hypersurfaces H0 and H1 such that C0 = Y ∩ H0 is a
smooth curve in S passing through y0 and C1 = Y ∩H1 is another
smooth curve in S not passing through y0. Since they are both
hyperplane sections C0 and C1 represent the same divisor class in S.
If dimY = 2, then we only construct C0 and C1 and set S = Y .

We now restrict f−1 to S to obtain the rational map

f−1:S ---> X.

Observe that f−1 is an isomorphism on S−{y0} into X. Any rational
map on a surface can be resolved by a finite sequence of blowups.
Let

σ:S ′ −→ S

be a composite of these blowups such that the composite

f ′ = f−1 ◦ σ:S ′ −→ X

is a regular map. Denote the exceptional divisor σ−1{y0} of σ by
D =

⋃
Di, where as usual the Di are rational curves.

Our plan at this point involves three stages: (i) Pull the curves C0

and C1 back to S ′ by σ−1. (ii) Send their preimages to X by f ′. (iii)
Intersect these by canonical classes using Lemma 1 with the setup
f :X −→ Y . This plan is carried out below.

(i): Since y0 ∈ C0, the pullback of C0 under σ−1 meets the excep-
tional divisor D but y0 6∈ C1 so its pullback is disjoint from D. As
equivalence classes of divisors we can write

σ∗[C0] = [C ′0] +
∑

ai[Di], ai ≥ 0,

σ∗[C1] = [C ′1],

where C ′j is the monoidal transform of Cj under σ, i.e. the closure
in S ′ of σ−1(Cj − {y0}), j = 0, 1. Note at this point that since
[C0] = [C1] in S we have

[C ′0] +
∑

ai[Di] = [C ′1].
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(ii): Sending both sides of the above equation by f ′ we have

[f ′(C ′0)] +
∑

ai[f
′(Di)] = [f ′(C ′1)]. (1)

Note that f ◦ f ′(C ′0) = C0 so f ′(C ′0) 6⊂ E, but since y0 ∈ C0 the
intersection f ′(C ′0)∩E is not empty. On the other hand f ′(C ′1)∩E =
∅.

(iii): We can now apply Lemma 1 to the above class of divisors in
X. Intersecting both sides of equation (1) by KX we have

[f ′(C ′0)] ·KX +
∑

ai[f
′(Di)] ·KX = [f ′(C ′1)] ·KX . (2)

The key point is to relate this equality with its image under the map
f :X −→ Y using Lemma 1:

[f ′(C ′0)] ·KX > [f ◦ f ′(C ′0)] ·KY (Lemma 1)

= [f ◦ f−1 ◦ σ(C ′0)] ·KY

= [C0] ·KY

= [C1] ·KY

= [f ◦ f−1 ◦ σ(C ′1)] ·KY

= [f ◦ f ′(C ′1)] ·KY

= [f ′(C ′1)] ·KX (Lemma 1).

Together with equation (2) this implies that∑
ai[f

′(Di)] ·KX < 0.

This means that at least one of the f ′(Di), say f ′(Di0), is not a point
and hence is a rational curve, since the Di are all rational curves,
and

f ′(Di0) ·KX < 0.

Note also that f(f ′(Di0)) = σ(Di0) = y0, so f ′(Di0) ⊂ E.

We have thus proved the following theorem:

Theorem 2 Let X and Y be smooth projective varieties and

f :X −→ Y
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a regular birational map. Let E be the subset of X where f is not
a local isomorphism. Then there exists a rational curve in E whose
intersection with the canonical divisor of X is strictly negative.

The converse of this theorem would start a classification program.
Suppose that X contains a curve C which has negative intersection
with the canonical divisor. If we knew that we could find a regular
birational map f :X −→ Y onto some variety Y such that the curve
C is collapsed to a point by f , then we could take Y as a ‘simpler’
representative of the birational equivalence class of X. We also need
to know when there are no more curves to collapse. To formalize the
results we need to distinguish certain concepts as definition, as we
will do in the following section.

References: [3], [13].

3 Curves and Divisors

We are interested in smooth projective threefolds but the following
definitions make sense when X is only a normal projective variety.
This will be useful later when we discover that we need to work with
some singular threefolds too.

Definition 3

Div(X) := Free Abelian group of Cartier divisors on X.
Z1(X) := Free Abelian group of Weil divisors on X.
Z1(X) := Free Abelian group of one cycles on X.
Pic(X) := Group of line bundles on X, also known as the Picard

group.

When L is a line bundle and C is an irreducible curve in X we can
define an intersection number D · C, or C ·D, as the degree of the
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pullback bundle f ∗(L) on C̃ where f : C̃ −→ C is a normalization of
C. We then extend this to a product on Pic(X)×Z1(X) by linearity.

There is a natural morphism from Div(X) into Pic(X), sending D
to its associated line bundle O(D). When X is projective this map
is surjective. This allows us to define a product on Div(X)×Z1(X)
by letting D · C be O(D) · C for a Cartier divisor D.

Later we will be dealing with varieties X for which the canonical
divisor KX does not exist but mKX is Cartier for some positive
integer m. For an irreducible curve C in X we will then define KX ·C
as 1

m
(mKX · C). This makes it necessary to extend our definitions

to divisors with rational coefficients, which we do in the definitions
of the following objects.

We say that two Cartier divisors D1 and D2 are numerically equiv-
alent, and we write D1 ≡ D2, if D1 · C = D2 · C for every curve C
in X. We similarly define numerical equivalence on Z1(X). Taking
quotients by numerical equivalence and tensoring with the rationals
we obtain the following objects:

Definition 4
N1(X) := (Div(X)/ ≡)⊗Q
N1(X) := (Z1(X)/ ≡)⊗Q

WhenX is projectiveN1(X) is isomorphic with the image of Pic(X)⊗
Q in H2(X,Z)⊗Q where the image is taken as the first Chern class
of a line bundle. This image is of finite rank. We denote this rank by
ρ(X) and call it the Picard number of X. Since N1(X) and N1(X)
are dual Q-vector spaces, they are both of finite dimension ρ(X).

Since N1(X) is a finite dimensional vector space we can define a
topology on it by choosing a norm, and the topology is independent
of the choice of the norm. We now come to the fundamental concept
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of the subject.

Definition 5
NE(X) := cone generated in N1(X) by irreducible curves in X.
NE(X) := the closure of NE(X) in N1(X). This is known as the

closed cone of curves in X.

A subset F of NE(X) is called extremal if for every u and v in NE(X),
u+v cannot be in F unless both u and v are in F . A one dimensional
extremal subset is called an extremal ray.

For any divisor class D in N1(X) we say that D is nef if D · C ≥ 0
for every C in NE(X). In particular we are interested when KX is
nef.

We have mentioned Weil divisors but did nothing with them so far.
Every Cartier divisor defines a Weil divisor but the converse is not
necessarily true. If for every Weil divisor D there is a positive integer
m such that mD becomes Cartier then we say that X is Q-factorial.
This concept will play a vital role later when we start working on
singular threefolds.

After this barrage of definitions we are finally ready to do some work!

References: [2], [3], [13].

4 Contraction Map

Going back to Theorem 2 we see that if f :X −→ Y contracts a curve
C to a point then (i) KX ·C < 0 and (ii) f contracts every curve
which is numerically equivalent to C. We are asking for a converse:
If KX · C < 0 for some curve C in X, then can we construct a
map f :X −→ Y into some smooth projective variety Y such that f
contracts to a point every curve which is numerically equivalent to
C?
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If D is a Cartier divisor such that O(mD) is generated by global sec-
tions for some m > 0, then these sections define a map ΨmD:X −→
P
N into some projective space. Moreover we have Ψ∗mD(O(1)) =
O(mD). This is expressed by saying that mD is free or base point
free or that D is eventually free. If moreover ΨmD is a closed immer-
sion, then we say that mD is very ample, or that D is ample.

Assume that D is a nef divisor on X and that mD is base point free.
Define a subset of NE(X) as

D⊥ = {C ∈ NE(X) | D · C = 0 }.

We then have for any C ∈ D⊥

0 = D · C
=

1

m
mD · C

=
1

m
Ψ∗mD(H) · C

=
1

m
H · (ΨmD)∗(C)

where H is a hyperplane section in ΨmD(X). But any nondegen-
erate curve has positive intersection with a hyperplane section, the
intersection being the degree of the curve in general. Since we ob-
tained zero in this case the curve C and all other curves numerically
equivalent to it must have been contracted to a point by ΨmD.

Assume that KX · C < 0. Using the duality of the spaces N1(X)
and N1(X) it is easy to find a nef divisor D such that D⊥ = {C}.
The question is whether mD will be base point free for some m > 0.
The affirmative answer was provided by Mori for smooth projective
threefolds.

Theorem 6 (Mori) Let X be a smooth projective threefold and C
a curve on X such that C spans an extremal ray of NE(X) and
KX · C < 0. Then there is a map f :X −→ Y onto some projective
variety Y such that f contracts C and all other curves numerically
equivalent to it. (f is the m-canonical map of some nef divisor D
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with D⊥ = {C}.) We then have the following cases:
(i): dimY < dimX. Then X is a fibred space.
(ii): dimY = dimX.

(a): Y is smooth and ρ(Y ) < ρ(X).
(b): Y has an isolated hypersurface or quotient singularity.

The classification program successfully terminates in the case of (i)
and continues for finitely many more steps before stopping in the
case of (ii-a). But we have to stop unsuccessfully in the case of (ii-
b) since we have reached to a class of varieties outside our accepted
category. This is the point where we consent to admit some mild
singularities into the theory.

References: [6], [11], [18].

5 Canonical Singularities

The singularities obtained by contracting an extremal ray in a smooth
threefold are fully described by Reid. Since these singularities are
obtained as the image of an m-canonical mapping associated to an
effective divisor Reid called them “canonical singularities”. As their
surface counterparts are called DuVal singularities, I imagine that
the future generations will with equal comfort and justice call them
“Reid singularities”.

The first obstacle for the program in the singular case is the def-
inition of a suitable KX . In fact we only need to know if some
‘representative’ of KX has negative intersections with some curves.
For that matter if KX fails to exist but mKX exists for some positive
integer m, then we can still define KX · C as 1

m
mKC · C. This way

we can transport all the terminology about extremal rays into the
singular case.

On the other hand the singular varieties obtained by contracting ex-
tremal rays are in the same birational class of varieties as the one we
started with so any birational invariant defined on the singular space
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must be the same as the ones before contraction. These expectations
are all met in the definition of canonical singularities:

Definition 7 (Reid) Let X be a normal projective variety. We say
that X has canonical singularities if
(i): rKX exists as a Cartier divisor for some r > 0,
(ii): for any resolution of singularities f :Y −→ X with {Ei} the
family of exceptional divisors, we have

rKY = f ∗(rKX) +
∑

aiEi,

where each ai ≥ 0. (This is equivalent to saying that the plurigenera
of X and Y agree.)

If the requirement that each ai ≥ 0 in (ii) is replaced by ai > 0,
then the singularity is called terminal.

Terminal threefold singularities are isolated. If X has only canonical
singularities, then there is a partial resolution f :Y −→ X such that
KY = f ∗KX and Y has only terminal singularities.

Suppose that rKX is Cartier for some positive integer r. We say
that KX is nef if rKX · C ≥ 0 for every C ∈ NE(X). In general we
write KX · C for 1

r
rKX · C.

Now we can go back to the considerations of the previous section
and ask the same question: Given a nef divisor D on a projective
normal threefold with at most canonical singularities, is it true that
for some integer m > 0, mD is base point free?

By Kawamata’s theorem mD is free for some m > 0 if aD −KX is
nef for some a > 0 and dim ΨaD−KX (X) = dimX (i.e. aD −KX is
big). Since KX · C < 0 the divisor aD −KX is going to be positive
on NE(X) for sufficiently large a. By Kleiman’s criteria aD−KX is
then ample. This implies in particular that aD−KX is big. Thus the
map ΨmD is going to contract the curve C and all those numerically
equivalent to it. Denote the contraction map by f :X −→ Y .

If rKY exists for some r > 0 we then need to check if Y has canonical
singularities so that we know we are staying inside the category of
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varieties we started with. To ensure this we need to impose a con-
dition on the canonical varieties: we want to work with Q-factorial
varieties, i.e. those in which every Weil divisor becomes Cartier after
multiplying by a suitable positive integer.

We then have the following result:

Theorem 8 (Kawamata) Let X be a Q-factorial threefold with
canonical singularities such that KX · C < 0 for some curve C.
Then we have a map f :X −→ Y onto some projective variety Y ,
f = ΨmD, such that one of the following holds:
(i): dimY < dimX. Then X is a fibered space.
(ii): dimY = dimX and one of the following holds:

(a): Y is a Q-factorial threefold with canonical singularities and
f contracts a curve iff it is numerically equivalent to C, and we have
ρ(Y ) = ρ(X)− 1. In this case f is called a divisorial contraction.

(b): rKY does not exist for any r > 0. In this case f is called a
small contraction.

If we start with smooth X, then case (ii-b) does not materialize.
Case (ii-b) occurs when X is singular and when f contracts a codi-
mension 2 subvariety in X, i.e. when the collection of curves nu-
merically equivalent to C fill out a 1-dimensional subvariety of X.
In this case it is easy to check that rKY does not exist for any
r: Assume that rKY exists for some sufficiently large and divisible
r > 0, (divisibility is mentioned since we also want rKX to exist as
a Cartier divisor). Since the exceptional set E of f has codimen-
sion 2, f ∗(rKY ) and rKX are two extensions of rKX−E. Since X is
normal such an extension is unique so f ∗(rKY ) = rKX . But since
C is collapsed to a point by f we have rKY · f∗(C) = 0 whereas
rKY · f∗(C) = f ∗(rKY ) ·C = rKX ·C < 0, a contradiction. So rKY

cannot exist for any r > 0.

We once again end up with a variety which is not in our accepted
category. We need more magic!

References: [19], [22], [23], [25], [26].
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6 Flip

In Section 4 we started with a smooth variety and contracting a
negative extremal ray we obtained a singularity. We extended our
category of acceptable varieties in Section 5 to include these singu-
larities. However starting with these new set of varieties and con-
tracting negative extremal rays we obtain varieties which are even
worse as far as singularities are concerned. It is clear that we cannot
continue to accept every stranger. We must find an alternate way of
proceeding with the program whenever we meet a variety for which
no multiple of the canonical divisor is Cartier. A major strategy for
everyday life is to avoid disaster if we are not equipped to handle it.
And that is what flip is all about.

Let f :X −→ Y be a small contraction. Assume that there is an
ample Cartier divisor H on Y such that for some sufficiently large
integer m > 0 the ring

R(mf ∗H +KX) :=
⊕
n≥0

H0(X,OX(n(mf ∗H +KX)))

is finitely generated. Then define a new projective variety X+ as

X+ := Proj R(mf ∗H +KX).

We then have the following facts:
(i): X+ is Q-factorial and has canonical singularities.
(ii): There is a morphism f+:X+ −→ Y contracting an extremal
ray R and for any curve C in this ray we have KX+ · C > 0.
(iii): There is a birational map φ:X ---> X+ such that f = f+ ◦φ.
In fact φ is an isomorphism outside the curves contracted by f and
f+.
(iv): ρ(X) = ρ(X+).

This set up is known as a flip. More often the map φ:X ---> X+ is
called a flip. The crucial point is that we have a

Theorem 9 (Mori) If X is a threefold with at most canonical sin-
gularities and f :X −→ Y is a small contraction which contracts the
negative extremal ray R, then a flip φ:X ---> X+ exists.
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Let X be a threefold with canonical singularities and π: X̃ −→ X a
resolution. We have KX̃ = π∗KX +

∑
aiEi, where {Ei} are excep-

tional divisors and ai ≥ 0.

Definition 10 (Shokurov) The difficulty d(X) of X is the number
of ai which are less than one, i.e.

d(X) = #{i | ai < 1}.

This is independent of the resolution chosen and is an invariant of
X. Note that if f :X −→ Y is a regular birational map, such as a
divisorial contraction, then d(X) = d(Y ) since a resolution of X is
also a resolution for Y . However the crucial point is what happens
to difficulty when we have a flip.

Theorem 11 (Shokurov) If φ:X ---> X+ is a flip, then d(X+) <
d(X).

This says that a threefold with canonical singularities cannot accept
infinitely many flips.

We now have an algorithm to apply. Start with a normal projective
Q-factorial threefold which has at most canonical singularities. IfKX

is nef, we stop. We accept X as a minimal model in the birational
equivalence class of X. If however KX is not nef, then there is a
negative extremal ray which we contract to obtain Y . If dimY < 3
or if KY is nef, we stop. In the former case we can still accept
X as a minimal model of its class since we can describe it as a
fibered space. If Y has canonical singularities and KY is not nef,
we continue the program with Y observing that ρ(Y ) < ρ(X) and
d(Y ) = d(X). If no multiple of KY is Cartier, then we construct a
flip X+ of X and continue with X+ observing that ρ(X+) = ρ(X)
and d(X+) < d(X). With these observations we are assured that
the algorithm will terminate after finitely many steps and when it
terminates we will have at the last step a variety Z which is either
of dimension less than 3 or which is a normal projective Q-factorial
threefold with at most canonical singularities and with KZ nef.
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When we start with a particular threefold X, then whether the above
algorithm stops because we end up with a variety of lower dimen-
sion or because we obtain a threefold whose canonical divisor is nef
depends only on the birational class X. However if we are going to
end up with a threefold at the end of the algorithm, then it is not
necessarily unique. The order of extremal rays chosen to contract or
flip at each step makes a difference at the end. Suppose that starting
with a fixed X but contracting and flipping extremal rays in different
orders we obtain the threefolds Z1 and Z2 whose canonical divisors
are nef. Then there exists a birational map ψ:Z1 ---> Z2 which is
an isomorphism in codimension one. ψ has the effect of cutting off
some 1-cycles from Z1 and gluing them back again with a different
embedding. Observe that this is very much like a flip map except
that the canonical divisors here have zero intersection with each of
the curves on which ψ and its inverse are not defined. Such a map
is called a flop.

References: [1], [7], [12], [14], [16], [17], [19], [21], [24], [27], [28], [31], [32].

7 The Minimal Model Program

In this section we summarize the classification algorithm, otherwise
known as the Minimal Model Program, MMP for short.

Theorem 12 (Minimal Model Program) Let X be a normal pro-
jective Q-factorial threefold with at most canonical singularities. As-
sume that KX is not nef. Let R be a negative extremal ray. Then
we can construct a contraction map f :X −→ Y onto a projective
variety Y such that a curve C is mapped to a point in Y iff C belong
to the ray R. Moreover only one of the following cases holds:
(i): f is a Fano contraction, i.e. dimY < 3.
(ii): f is a divisorial contraction, i.e. Y is a normal projective Q-
factorial threefold with at most canonical singularities. In this case
there is a codimension one subvariety E in X such that f(E) is a
point in Y and f :X \ E −→ Y \ f(E) is an isomorphism. As for
the numerical invariants we have ρ(Y ) < ρ(X) and d(Y ) = d(X).
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(iii): f is a small contraction, i.e. there is a codimension two subva-
riety E in X such that f(E) is a point in Y and f :X\E −→ Y \f(E)
is an isomorphism. In this case no multiple of the canonical divisor
of Y is Cartier. We then construct a flip φ:X ---> X+, flipping the
ray R. Then X+ is a normal projective Q-factorial threefold with
at most canonical singularities. In this case we have ρ(X) = ρ(X+)
and d(X+) < d(X).

If case (i) is encountered, then we stop. If case (ii) or (iii) is en-
countered, we continue the program with X replaced by Y or X+

respectively. The observation on the numerical invariants assures us
that the program will terminate after finitely many steps.

Thus if we start with an acceptable X with KX not nef, then X is
birationally isomorphic to a threefold Y such that either Y admits
a Fano contraction or else KY is nef.

With this result we can give a full description of the closed cone of
curves in X. First we have a

Definition 13 If X is a normal Q-factorial projective variety and
KX its canonical divisor, define

NEKX (X) := {R ∈ NE(X)|KX ·R ≥ 0}.

We can now describe the structure of NE(X).

Theorem 14 (Cone Theorem) Let X be as in Theorem 12. Then
there are a finite number of extremal rays Ri such that

NE(X) = NEKX (X) +
∑
Q+Ri,

where Q+ denotes the positive rational numbers. (If we had chosen
to define N1 and N1 as R-vector bundles from the beginning (see
Definition 4), then we would replace Q+ with R+.)
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The choice of singularities to admit seems to vary with taste but
the category of terminal singularities is the smallest category within
which the MMP works.

It is time now to check if the reader is comfortable with these new
ideas:

Exercise 15 Classify smooth projective surfaces within the frame-
work of MMP.

References: [2], [4], [8], [9], [10], [11], [13], [15], [20], [25], [29], [30], [33].
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