Ali Sinan Sertöz Citations Page |
- Sertöz, S.; Özlük, Ali E. : On
a Diophantine problem of Frobenius.
Istanbul Tek. Üniv. Bül. 39 (1986),
no. 1, 41--51.
- T. C. Brown, A Remark related to the Frobenius Problem,
Fibonacci Quarterly, 31 (1993), 32-36.
- T. C. Brown, Wun-Seng Chou, Peter J-S Shiue, On the partition
function of a finite set, Australasian Journal of Combinatorics
27 (2003), 193-204.
- J. L. Ramirez Alfonsin, The Diophantine Frobenius
Problem, Oxford Lecture Series in Mathematics and its
Applications 30, Oxford University Press, 2005.
- Sertöz, S. : On Bott's
vanishing theorem and applications to singular foliations.
Doga Mat. 11 (1987), no. 1,
62--67.
- C. Godbillon, Feuilletages, Etudes Geometriques,
Progress in Mathematics series vol 98, Birkhauser Verlag Basel,
1991.
- Sertöz, S. : C*-actions on
Grassmann bundles and the cycle at infinity.
Math. Scand. 62 (1988), no. 1,
5--18.
- M. Kwiecinski, Sur le Transforme de Nash et la construction du
graph de MacPherson, Doctorat de l'universite de Provence,
aix-Marseille I, 1994.
- M. Kwiecinski, MacPherson's Graph Construction, Algebraic
Geometry, Proceedings of Bilkent Summer School, Marcel
Dekker, 1997, p135-155.
- Sertöz, S. : Residues of
singular holomorphic foliations.
Compositio Math. 70 (1989), no.
3, 227--243.
- M. Kwiecinski, Sur le Transforme de Nash et la construction du
graph de MacPherson, Doctorat de l'universite de Provence,
aix-Marseille I, 1994.
- J-P. Brasselet, Indices of Vectorfields and Residues of
Singular Foliations after Nash Transformation,
Topology of holomorphic dynamical systems and related topics
(Japanese) (Kyoto, 1995).
Surikaisekikenkyusho Kokyuroku No. 955, (1996), 39--45.
- M. Kwiecinski, MacPherson's Graph Construction, Algebraic
Geometry, Proceedings of Bilkent Summer School, Marcel
Dekker, 1997, p135-155.
- T. Suwa, Indices of Vector Fields and Residues of
Singular Holomorphic Foliations, Hermann, Paris, 1998.
- J-P. Brasselet and T. Suwa, Nash Residues of Singular
Holomorphic Foliations, Asian J. Math. 4 (2000), 37-50.
- Rogerio S. Mol, Classes polaires associées aux distributions
holomorphes de sous-espaces tangents.
[Polar classes associated with holomorphic distributions of
tangent subspaces],
Bull. Brazil Math. Soc. (N.S.) 37 (2006), 29-48.
- Lourenço, F., Baum-Bott residues for flags of foliations,
Ph.D. Dissertation at Minas Gerais, Belo Horizonte, Brasil,
(2016).
- Brasselet, J-P., Correa, M., Lourenço, F., Residues for flags
of holomorphics foliations,
Advances in Mathematics, 320 (2017), 1158-1184.
- Lavau, Sylvain, Lie \infty-algebroides et Feuilletages
Singuliers, These de doctorat, 2016.
arXiv:1703.07404
- Sertöz, S., On Arf Rings,
Appendix in "The Collected Works of Cahit Arf",
Turkish Math. Soc. (1990), 153-162.
- J. L. Ramirez Alfonsin, The Diophantine Frobenius
Problem, Oxford Lecture Series in Mathematics and its
Applications 30, Oxford University Press, 2005.
- Tonta Y, Özkan Çelik AE. Cahit Arf: Exploring his scientific
influence using social network analysis, author co-citation maps
and single publication h index1. J Sci Res 2013;2:37-51. http://www.jscires.org/text.asp?2013/2/1/37/115890
- García-Sánchez, P. A., Heredia, B. A., Karakaş, H. İ.,
Rosales, J. C., Parametrizing Arf numerical semigroups.
J. Algebra Appl. 16 (2017), no. 11, 1750209, 31 pp.
- Çelikbaş, E., Çelikbaş, O., Goto, S., Taniguchi, N.,
Generalized Gorenstein Arf Rings,
Ark. Mat. 57 (2019), no. 1, 35–53.
- Sertöz, S.; Özlük, Ali E. : On
the number of representations of an integer by a linear
form.
Istanbul Üniv. Fen Fak. Mat. Derg. 50 (1991),
67-77.
- M. Beck, I. M. Gessel and T. Komatsu, The polynomial part of a
restricted partition function to the Frobenius problem, The
Electronic Journal of Combinatorics, 8(1), (2001), #N7.
- T. C. Brown, Wun-Seng Chou, Peter J-S Shiue, On the partition
function of a finite set, Australasian Journal of Combinatorics
27 (2003), 193-204.
- J. L. Ramirez Alfonsin, The Diophantine Frobenius
Problem, Oxford Lecture Series in Mathematics and its
Applications 30, Oxford University Press, 2005.
- A. David Christopher and M. Davamani Christober, On
asymptotic formula of the partition function p_A(n), Integers
15 (2015) #A2.
- Christopher, A. David; Christober, M. Davamani, Estimates of
five restricted partition functions that are quasi polynomials,
Bulletin of Mathematical Sciences, Volume: 5
Issue: 1 Pages: 1-11, 2015
- Aguiló-Gost, F., Llena, D., Computing denumerants in numerical
3-semigroups.
Quaest. Math. 41 (2018), no. 8, 1083–1116.
- Tengely, S., Ulas, M., Equal values of certain partition
functionsvia Diophantine equations,
Research in Number Theory, (2021), 7-67.
- Sertöz, S. : A triple
intersection theorem for the varieties SO(n)/Pd.
Fund. Math. 142 (1993), no. 3,
201--220.
- P. Pragacz, Geometric Applications of Symmetric Polynomials;
some recent developments,
Max-Planck Institute Preprint MPI/92-16.
- P. Pragacz & J. Ratajski, A Pieri Type Theorem for Even
Dimensional Grassmannians,
Max-Planck Institute Preprint MPI/96-83,
Fund. Math. 178 (2003), 49-96.
- P. Pragacz, Symmetric Polynomials and Divided Differences in
Formulas of Intersection Theory, Banach Center Publications,
Volume 36, Polish Academy of Sciences, (1996), 125-177.
- P. Pragacz & J. Ratajski, A Pieri Type Theorem for
Lagrangian and odd Orthogonal Grassmannians,
J. reine angew Math 476 (1996), 143-189.
- F. Sottile, Pieri type formulas for maximal isotropic
Grassmannians via Triple Intersections,
alg-geom/9708026, MSRI Preprint no: 1997-062.
Colloquium Mathematicum, 82 (1999), 49-63.
- H. Tamvakis, Quantum
cohomology of isotropic Grassmannians,
Geometric methods in algebra and number theory,
311--338,
Progr. Math., 235, Birkhäuser Boston, Boston, MA, 2005.
- A. S. Buch, A. Kresch, H. Tamvakis, Quantum Pieri rules for
isotropic Grassmanians,
Invent. Math., 178 (2009), 345-405.
- Leung, N. C. and Li, C., Quantum Pieri rules for tautological
subbundles,
Advances in Mathematics 248 (2013) 279-307.
- Sertöz, S. : Arf Rings and
Characters,
Note di Matematica 14 (1994), 251-261 (1997).
- Saban, Giacomo, Development of mathematics in Turkey from the
University Reform to 1997, Boll. Unione Mat. Ital. Sez. A
Mat. Soc. Cult. (8) , 5 (2002), 257--292.
- Tonta Y, Özkan Çelik AE. Cahit Arf: Exploring his scientific
influence using social network analysis, author co-citation maps
and single publication h index1. J Sci Res 2013;2:37-51. http://www.jscires.org/text.asp?2013/2/1/37/115890
- F. Arslan, N. Şahin, A fast algorithm for constructing Arf
closure and a conjecture, Journal of Algebra 417 (2014),
148-160.
- García-Sánchez, P. A., Heredia, B. A., Karakaş, H. İ.,
Rosales, J. C., Parametrizing Arf numerical semigroups.
J. Algebra Appl. 16 (2017), no. 11, 1750209, 31 pp.
- Çelikbaş, E., Çelikbaş, O., Goto, S., Taniguchi, N.,
Generalized Gorenstein Arf Rings,
Ark. Mat. 57 (2019), no. 1, 35–53.
- García-Sánchez, P. A., Heredia, B. A., Karakaş, H. İ.,
Rosales, J. C., Parametrizing Arf numerical semigroups.
J. Algebra Appl. 16 (2017), no. 11, 1750209, 31 pp.
- F. Arslan, Sertöz, S. : Genus
calculations of complete intersections,
Communications in Algebra, 26(8) (1998), 2463-2471.
- Perez, V. H., Hernandes, M. E., Topological invariants of
isolated complete intersection curve singularities,
Czechoslovak Math. J., 59 (134) (2009), 975-987.
- B. Hutz, T. Hyde, B. Krause, Pre-images in quadratic dynamical
systems,
arXiv:1007.0744,
16 May 2011.
Involve, 4 (2011), no 4, 343-363.
- Liu, F., Xin, G., Zhang, C., Three simple redyction formulas
for the denumerant functions,
Ramanujan Journal, 65(3), (2024), 1567-1577.
- Sertöz, S. : On the Number
of Solutions of a Diophantine Equation of Frobenius,
Discrete Math. Appl. 8 (1998), 153-162.
- Matthias Beck and Sinai Robins, An extension of the Frobenius
coin-exchange problem,
arXiv:math/0204037,
2 April 2002.
- T. C. Brown, Wun-Seng Chou, Peter J-S Shiue, On the partition
function of a finite set, Australasian Journal of Combinatorics
27 (2003), 193-204.
- Komatsu, Takao, On the number of solutions of the Diophantine
equation of Frobenius-General Case
Mathematical Communications, 8 (2003), 195-206.
- Gil Alon and Pete L. Clark, On the number of representations
of an integer by a linear form,
Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.2
- J. L. Ramirez Alfonsin, The Diophantine Frobenius
Problem, Oxford Lecture Series in Mathematics and its
Applications 30, Oxford University Press, 2005.
- Matthias Beck and Sinai Robins, Computing the Continuous
Discretely: Integer-point Enumeration in Polyhedra
(Undergraduate Texts in Mathematics), Springer 2007
- Xu, Zhi-qiang, Multi-dimensional versions of a formula of
Popoviciu,
Science in China Series-A Mathematics, 50 (2007), 285-291.
- Zhi Xu, The Frobenius Problem in a Free Monoid,
Dissertation for PhD in Computer Science in University of
Waterloo, 2009.
- S. Caorsi and M. Stasolla, Towards the detection of multiple
reflections in time-domain em inverse sacttering of
multi-layered media,
Progress In Electromagnetics Research B, Vol. 38, 351-365, 2012
- M. I. Andreica and N. Tapus, Efficient computation of the
number of solutions of the linear Diophantine equation of
Frobenius with small coefficients,
Proceedings of the Romanian Academy, Series A,
Volume 15, Number 3/2014, pp. 310–314
- Slavkovic, Aleksandra; Zhu, Xiaotian; Petrovic, Sonja,
Fibers of multi-way contingency tables given conditionals:
relation to marginals, cell bounds and Markov bases,
Annals of the Institute of Statistical Mathematics,
Volume: 67 Issue: 4 Pages: 621-648 ,
2015
- Shvalb, Nir and Haconen, Shlomi, A short note on nested sums,
Miskolc Mathematical Notes, Vol. 19 (2018), No. 1, pp. 591–594.
- Tengely, S., Ulas, M., Equal values of certain partition
functionsvia Diophantine equations,
Research in Number Theory, (2021), 7-67.
- Önsiper, H., Sertöz, S.: On Generalized
Shioda-Inose Structures,
Turkish J. Math. 23 (1999), no. 4, 575–578.
- Roulleau, X., On generalized Kummer surfaces and the orbifold
Bogomolov-Miyaoka-Yau inequality.
Trans. Amer. Math. Soc. 371 (2019), no. 11, 7651–7668.
- Önsiper, H., Sertöz, S.: Generalized
Shioda-Inose Structures on K3 Surfaces,
Manuscripta Mathematica 98 (1999), 491-495.
- Whitcher, U., Symplectic automorphisms and the Picard group
of a K3 surface,
Communications in Algebra, 39 (2011), 1427-1440.
- van Luijk, Ronald, Cubic points on cubic curves and the
Brauer-Manin obstruction on surfaces, Acta Arith. 146 (2011),
no: 2, 153-172.
- Garbagnati, A., Sarti, A., Kummer surfaces and K3 surfaces
with (Z/2Z)^4 symplectic action,
Rocky Mountain J. Math. 46 (2016), no. 4, 1141–1205.
- Garbagnati and Montanez, Order 3 symplectic automorphisms on
K3 surfaces,
Math. Z. 301 (2022), no. 1, 225-253.
- Sertöz, S. : Which singular
K3 surfaces cover an Enriques surface,
Proc AMS 133 (2005), 43-50.
- Uludag, A.M., Smooth finite abelian
uniformizations of projective spaces and Calabi-Yau orbifolds,
Manuscripta Math 124 (2007), 31-44.
- Hulek, K. and Schütt, M., Enriques surfaces and Jacobian
elliptic K3 surfaces,
Math. Z., 268 (2011), 1025-1056.
- Hulek, K. and Schütt, M., Arithmetic of singular Enriques
surfaces,
Algebra & Number Theory, 6 (2012), no. 2, 195-230.
- Navas, H. J. Martinez, Fourier-Mukai transform for twisted
sheaves, Dissertation at Rheinischen Friedrich Wilhelms
Universitat Bonn, 2010.
- Kwangwoo Lee, Which K3 surfaces with Picard number 19 cover
an Enriques surface,
Bull. Korean Math. Soc. 49 (2012), No. 1, pp. 213-222. pdf
- Shimada, I., Veniani, D. C., Enriques involutions on singular
K3 surfaces of small discriminants,
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 21 (2020), 1667–1701.
- Skorobogatov and Valloni, Enriques involutions and Brauer
classes,
Nagoya Math. J.,251 (2022), 606-621
- Gvirtz-Chen and Mezzedimi-A Hilbert irreducibility theorem for
Enriques surfaces,
Trans. Amer. Soc, 376(6), (2023) 3867-3890.
- Geiko, R. and Moore, G. W., When Does a Three-Dimensional
Chern–Simons–Witten Theory Have a Time Reversal Symmetry?,
Annales Henri Poincare (2023)
- Lewis, J. D. and Sertöz, A. S., Motives
of Fano varieties,
Math. Z. 261(2009), 531–544.
- Lewis, J. and Shtayat, J.
A weak Lefschetz result for Chow groups of complete
intersections.
Canad. Math. Bull. 64 (2021), no. 4, 1014–1023.
- Da Silva, G., Lewis, J., On the Hodge conjecture for complete
intersections,
Communications in Algebra, 52(2), (2024), 884-893.
- Sertöz, S. : A Scientific
Biography of Cahit Arf (1910-1997),
Unpublished Manuscript,
arXiv:1301.3699.
- Roquette, P.,
Contributions to the History of Number Theory in the 20th
Century,
European Mathematical Society, 2013.
- Sertöz, A. S. : Dirichlet
problem for polynomials on the unit disk.
Commun. Korean Math. Soc., 29(3):415?420,
2014.
- Borsch, V.L., Platonova, I.E., On A representation of the
solution to the Dirichlet problem in a disk. The Poisson
integral based solution in polynomials,
Journal of Optimization, Differential Equations and their
Applications, 26(1) (2018), 72-77.
- Degtyarev, A., Itenberg, I., Sertöz,
S. : Lines on quartic surfaces,
Mathematische Annalen, 368 (2017), 753-809.
- Gonzales-Alonso,
V., Rams, S., Counting lines on quartic surfaces,
Taiwanese J. Math. 20 (2016), no. 4, 769–785.
- Veniani, D. C..,
Lines on K3 surfaces in characteristic 2,
Q. J. Math. 68 (2017), 551-581.
- Shimada, I.,
Shioda, T., On a smooth quartic surface containing 56 lines
which is isomorphic as a K3 surface to the Fermat quartic,
Manuscripta Math. 153 (2017), no. 1-2, 279–297.
- Veniani, D. C.,
The maximum number of lines lying on a K3 quartic surface,
Math. Z. 285 (2017), no. 3-4, 1141–1166.
- Benedetti, B., Di
Marco, M., Varbaro, M., Regularity of line configurations,
Journal of Pure and Applied Algebra, Volume 222, Issue 9,
September 2018, Pages 2596-2608
- Rams, S.,
Schütt, M., At most 64 lines on smooth quartic surfaces
(characteristic 2).
Nagoya Math. J. 232 (2018), 76–95.
- Degtyarev, A.,
Smooth models of singular K3-surfaces.
Rev. Mat. Iberoam. 35 (2019), no. 1, 125–172.
- Degtyarev, A.,
Lines on smooth polarized K3-surfaces.
Discrete Comput. Geom. 62 (2019), no. 3, 601–648.
- Veniani, Davide
Cesare, Symmetries and equations of smooth quartic surfaces
with many lines.
Rev. Mat. Iberoam. 36 (2020), no. 1, 233–256.
- Rams, Sławomir;
Schütt, Matthias
Counting lines on surfaces, especially quintics.
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 20 (2020), no. 3,
859–890.
- Veniani, Davide
Cesare, Lines on K3 quartic surfaces in characteristic 3.
Manuscripta Math. 167 (2022), no. 3-4, 675–701.
- Degtyarev, Alex,
Conics in sextic K3-surfaces in P4.
Nagoya Math. J. 246 (2022), 273–304.
- Degtyarev, Alex,
Lines in supersingular quartics.
J. Math. Soc. Japan 74 (2022), no. 3, 973–1019.
- Degtyarev, Alex,
Tritangents to smooth sextic curves.
Ann. Inst. Fourier (Grenoble) 72 (2022), no. 6, 2299–2338.
- Ciliberto and
Zaidenberg, Lines, conics and all that,
Pure Appl. Math. Q. 18 (2022), no. 1, 101–176.
- Degtyarev, A.,
Conics on Barth-Bauer octics,
Science China Mathematics, 67(7), (2024), 1507-1524.