MATH 202 - Complex Analysis
Fall 2015

Ali Sinan Sertöz
Faculty of Science, Department of Mathematics, Room: SA-121

Office Hours:
Monday 13:40-15:30

Text Books:
Complex Variables with Applications, S. Ponnusamy, H. Silverman, 2006, Birkhauser

Schedule:
MON 15:40-16:30 SAZ-18  
THU 13:40-15:30 SAZ-18  

Exams and Grading:

 Midterm 1 25%  17 October 2015 Saturday   10:00, SAZ18
  Solution 
 Midterm 2 25%  28 November 2015 Saturday   10:00, SAZ18   Solution 
 Makeup
 21 December 2015 Monday   17:30, SAZ-03   Solution  
 Final 35%
 4 January 2016 Monday
  18:30, SAZ-18     Solution  
 Homework 15%



By Yönetmelik Madde 4.7  here is our FZ grade policy:
Minimum Requirements to Qualify for the Final Exam: Sum of two midterm grades (each out of 100) at least 40.

 

Homework-1  Due on 21 September 2015 Monday Class time  Solution
Homework-2  Due on  26 October 2015 Monday Class time  Solution
Homework-3  Due on 19 November 2015 Thursday Class time  Solution
Homework-4  Due on 14 December 2015 Monday  Class time  Solution
Homework-5 Due on  21 December 2015 Monday Class time  Solution

Your homework will be read and graded by your assistant Bekir Danış who has full command of the subject material. His email address is bekir.danis@bilkent.edu.tr
Direct all your queries about homework to your assistant..


The course will be graded according to  the following catalogue:

 [0,34)
[34,40) D
[40,44) D+
[44,50) C-
[50,55) C
[55,59) C+
[59,63) B-
[63,65) B
[65,70) B+
[70,75) A-
[75,100] A

 

Syllabus: 

 
Week

Date

Hours Subjects to be covered Chapter
1 10 Sep 2 Complex numbers, representations, roots 1
2 14, 17 Sep  3 Topology of the complex line 2
3 21 Sep 1 Stereographic projection 2
4 28 Sep, 1 Oct 3 Linear fractional transformations 3
5 5, 8 Oct 3 Complex exponential function 4
6 12, 15 Oct 3 Complex logarithm 4
7 19, 22 Oct 3 Cauchy-Riemann equations 5
8 26 Oct 1 Harmonic functions 5
9 2, 5 Nov  3 Power series 6
10 9, 12 Nov 3 Complex integration and Cauchy theorem 7
11 19 Nov 2 Applications of Cauchy theorem 8
12 23, 26 Nov 3 Maximum modulus theorem 8
13 30 Nov, 3 Dec 3 Laurent series 9
14 7, 10 Dec 3 Classification of singularities 9
15 14, 17 Dec 3 Evaluating real integrals 9
16 21, 24 Dec 3 Argument principle 9

 

Old Exams are on Old Courses Web Page

 


Contact address is: